JPH0648899A - Production of silicon carbide single crystal - Google Patents

Production of silicon carbide single crystal

Info

Publication number
JPH0648899A
JPH0648899A JP21727492A JP21727492A JPH0648899A JP H0648899 A JPH0648899 A JP H0648899A JP 21727492 A JP21727492 A JP 21727492A JP 21727492 A JP21727492 A JP 21727492A JP H0648899 A JPH0648899 A JP H0648899A
Authority
JP
Japan
Prior art keywords
single crystal
silicon carbide
grown
crystal
epitaxial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP21727492A
Other languages
Japanese (ja)
Inventor
Seiichi Taniguchi
斉一 谷口
Yasuhiro Maeda
泰宏 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP21727492A priority Critical patent/JPH0648899A/en
Publication of JPH0648899A publication Critical patent/JPH0648899A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To simplify the process from the single crystal growth to the epitaxial layer growth and to obtain an inexpensive high-quality epitaxially grown silicon carbide crystal. CONSTITUTION:A gas (a) sublimated from a silicon carbide raw powder 4 is grown on a seed crystal 2 as a single crystal (b). When the single crystal (b) is grown, the ratio of the sublimation atmosphere pressure P in a reaction furnace 5 to the sublimation temp. T is kept at 0.03-0.05 Torr/ deg.C, and an epitaxial layer (c) is grown on the single crystal (b). A doping gas is introduced into the reaction chamber 5 from a gas feed pipe 8 or 9 in epitaxy to impart n-or p-type characteristic to the epitaxial layer (c). Consequently, since the epitaxial layer (c) is grown on the surface of the flawless single crystal (b), a high-quality epitaxially grown crystal is obtained. Besides, as an expensive gaseous semiconductor, etc., are not used, the production cost is drastically reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、安価で高品質の炭化ケ
イ素単結晶を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an inexpensive and high quality silicon carbide single crystal.

【0002】[0002]

【従来の技術】半導体材料として期待されている炭化ケ
イ素デバイスは、単結晶成長工程,スライシング工程,
研磨工程,エピタキシャル膜成長工程,機能作り込み工
程を経て製造される。炭化ケイ素単結晶は、従来から昇
華法で製造されている。昇華法においては、たとえば炭
化ケイ素の原料粉末を収容した黒鉛ルツボの蓋に、原料
粉末と対向させて種結晶を取り付ける。2000〜24
00℃に加熱すると、黒鉛ルツボ内の原料粉末が昇華す
る。昇華した炭化ケイ素は、結晶方位を揃えて種結晶上
に成長し、単結晶として育成される。
2. Description of the Related Art Silicon carbide devices, which are expected as semiconductor materials, are manufactured by a single crystal growth process, a slicing process,
It is manufactured through a polishing process, an epitaxial film growth process, and a function building process. Silicon carbide single crystals have been conventionally produced by a sublimation method. In the sublimation method, for example, a seed crystal is attached to a lid of a graphite crucible containing a raw material powder of silicon carbide so as to face the raw material powder. 2000-24
When heated to 00 ° C., the raw material powder in the graphite crucible sublimes. The sublimated silicon carbide grows on the seed crystal in the same crystal orientation and is grown as a single crystal.

【0003】また、単結晶の上にエピタキシャル膜を成
長させる手段としては、一般にCVD法が採用されてい
る。たとえば、シラン,プロパン等の反応性ガスを使用
し、Si,SiC等の基板結晶上にエピタキシャル層を
気相成長させる。成分調整したSi融液を黒鉛ルツボに
収容し、このSi融液にSiC基板を浸漬するLPE
法、高真空中でSi,C,ドーパント等の分子線を発生
させ、加熱した基板結晶上に照射させるMBE法等でエ
ピタキシャル膜を成長させる場合もある。
The CVD method is generally adopted as a means for growing an epitaxial film on a single crystal. For example, a reactive gas such as silane or propane is used to vapor-deposit an epitaxial layer on a substrate crystal such as Si or SiC. LPE in which the Si melt having the adjusted components is housed in a graphite crucible and the SiC substrate is immersed in the Si melt.
In some cases, a molecular beam of Si, C, a dopant, or the like is generated in a high vacuum, and an MBE method in which a heated substrate crystal is irradiated is used to grow an epitaxial film.

【0004】[0004]

【発明が解決しようとする課題】エピタキシャル膜成長
工程に供される基板結晶は、結晶成長後にスライス,研
磨等の工程を経て用意される。基板結晶は、スライス,
研磨等の加工が施されるとき、表面に疵等の欠陥が導入
され易い。基板結晶の欠陥は、その上に成長するエピタ
キシャル層に転位等の結晶欠陥を発生させる原因とな
る。その結果、得られたエピタキシャルウエハーは、エ
ピタキシャル層の単結晶制御に劣り、製品不良となる。
エピタキシャル成長をCVD法或いはMBE法で行うと
き、高価な半導体ガスが必要とされる。そのため、製造
コストが高くなる。他方、LPE法を採用する場合に
は、エピタキシャル層の膜厚を高精度に制御することが
できず、後続する機能作り込みの際における処理条件の
設定等が困難になる。本発明は、このような問題を解消
すべく案出されたものであり、一つの反応炉内で単結晶
の育成及びエピタキシャル層の成長を連続して行わせる
と共に、成長温度及び雰囲気圧力を相関的に制御するこ
とにより、安価で高品質の炭化ケイ素エピタキシャル層
を基板結晶の上に結晶成長させることを目的とする。
The substrate crystal used in the epitaxial film growth step is prepared through steps such as slicing and polishing after the crystal growth. Substrate crystals are slices,
When processing such as polishing is performed, defects such as scratches are likely to be introduced on the surface. Defects in the substrate crystal cause crystal defects such as dislocations in the epitaxial layer grown thereon. As a result, the obtained epitaxial wafer is inferior in the control of the single crystal in the epitaxial layer, resulting in a defective product.
When performing the epitaxial growth by the CVD method or the MBE method, an expensive semiconductor gas is required. Therefore, the manufacturing cost becomes high. On the other hand, when the LPE method is adopted, the film thickness of the epitaxial layer cannot be controlled with high precision, and it becomes difficult to set the processing conditions and the like when the subsequent function is built. The present invention has been devised in order to solve such a problem, and makes it possible to continuously grow a single crystal and an epitaxial layer in one reactor, and to correlate the growth temperature and the atmospheric pressure. The purpose of this is to grow a low-cost and high-quality silicon carbide epitaxial layer on the substrate crystal by controlling the temperature.

【0005】[0005]

【課題を解決するための手段】本発明の炭化ケイ素単結
晶製造方法は、その目的を達成するため、種結晶に対向
させて炭化ケイ素原料粉末を収容したルツボを圧力調整
された不活性ガス雰囲気内に配置し、温度勾配を付けた
加熱により前記炭化ケイ素原料粉末から昇華した蒸気を
前記種結晶の上に単結晶として成長させ、昇華雰囲気圧
力Pと昇華温度Tとの比P/Tを0.03〜0.05ト
ール/℃に維持した条件下で前記単結晶の上にエピタキ
シャル層を成長させることを特徴とする。
In order to achieve the object, the method for producing a silicon carbide single crystal according to the present invention has a pressure-controlled inert gas atmosphere in which a crucible containing a silicon carbide raw material powder is placed facing a seed crystal. The vapor is sublimated from the silicon carbide raw material powder by heating with a temperature gradient and is grown as a single crystal on the seed crystal, and the ratio P / T between the sublimation atmosphere pressure P and the sublimation temperature T is 0. An epitaxial layer is grown on the single crystal under the condition of maintaining 0.03 to 0.05 Torr / ° C.

【0006】[0006]

【作 用】本発明においては、昇華法によって種結晶の
上に第1層の単結晶を結晶成長させ、この単結晶を基板
として第2層のエピタキシャル層を成長させる。この方
法によるとき、CVD法,MBE法等のように高価な半
導体ガスを使用する必要がなく、LPE法にみられた膜
厚制御の困難さも解消される。しかも、第1層の単結晶
表面に疵等の欠陥が導入されることがないため、高品質
の炭化ケイ素エピタキシャル層を成長させることができ
る。
[Operation] In the present invention, the first-layer single crystal is grown on the seed crystal by the sublimation method, and the second-layer epitaxial layer is grown using this single crystal as a substrate. According to this method, it is not necessary to use an expensive semiconductor gas such as the CVD method and the MBE method, and the difficulty of controlling the film thickness found in the LPE method is solved. Moreover, since defects such as flaws are not introduced into the single crystal surface of the first layer, a high quality silicon carbide epitaxial layer can be grown.

【0007】以下、図面を参照しながら、本発明を具体
的に説明する。本発明では、たとえば図1に示す設備構
成をもつ装置が使用される。ルツボ1の上壁に種結晶2
を装着させ、ルツボ台3上にルツボ1を載置する。ルツ
ボ1に収容した炭化ケイ素原料粉末4を種結晶2に対向
させる。或いは、炭化ケイ素原料粉末4をルツボ1の上
部に配置し、ルツボ1の底部に種結晶を配置することも
できる。ルツボ1は、反応炉5内に配置した円筒状ヒー
タ6の中央部にセットされる。図面では1ゾーンのヒー
タ6を示しているが、反応炉5内に所定の温度分布が形
成されるように上下方向に関して複数のブロックに分割
され、それぞれのブロックに供給される電気量が制御さ
れるヒータを使用することもできる。
The present invention will be described in detail below with reference to the drawings. In the present invention, for example, an apparatus having the equipment configuration shown in FIG. 1 is used. Seed crystal 2 on top of crucible 1
And the crucible 1 is placed on the crucible base 3. The silicon carbide raw material powder 4 housed in the crucible 1 is opposed to the seed crystal 2. Alternatively, the silicon carbide raw material powder 4 may be arranged on the upper part of the crucible 1 and the seed crystal may be arranged on the bottom part of the crucible 1. The crucible 1 is set at the center of a cylindrical heater 6 arranged in the reaction furnace 5. Although the drawing shows the heater 6 in one zone, it is divided into a plurality of blocks in the vertical direction so that a predetermined temperature distribution is formed in the reaction furnace 5, and the amount of electricity supplied to each block is controlled. A heater can also be used.

【0008】反応炉5は、雰囲気ガスとしてのアルゴン
を導入するガス供給管7,n型特性を付与する窒素ガス
導入用のガス供給管8及びp型特性を付与するAl (C
3)3 ガス導入用のガス供給管9を上部に備え、排気管
10を下部に備えている。ガス供給管7〜9及び排気管
10にはそれぞれ流量調整弁7a〜10aが組み込まれ
ており、流量調整弁7a〜10aの開度を調節すること
によって反応炉5内の雰囲気圧が制御される。炭化ケイ
素原料粉末4は、ヒータ6で2000〜2400℃の高
温に加熱される。高温加熱によって炭化ケイ素原料粉末
4から発生した昇華ガスaは、比較的低温に維持されて
いる種結晶2の上に成長し、炭化ケイ素単結晶bとな
る。炭化ケイ素単結晶bが所定の厚みに成長するまで、
結晶成長工程を継続する。
The reaction furnace 5 includes a gas supply pipe 7 for introducing argon as an atmosphere gas, a gas supply pipe 8 for introducing a nitrogen gas for providing an n-type characteristic, and Al (C) for providing a p-type characteristic.
A gas supply pipe 9 for introducing H 3 ) 3 gas is provided in the upper part, and an exhaust pipe 10 is provided in the lower part. Flow rate adjusting valves 7a to 10a are incorporated in the gas supply pipes 7 to 9 and the exhaust pipe 10, respectively, and the atmospheric pressure in the reaction furnace 5 is controlled by adjusting the openings of the flow rate adjusting valves 7a to 10a. . The silicon carbide raw material powder 4 is heated by the heater 6 to a high temperature of 2000 to 2400 ° C. Sublimation gas a generated from silicon carbide raw material powder 4 by heating at high temperature grows on seed crystal 2 maintained at a relatively low temperature to become silicon carbide single crystal b. Until the silicon carbide single crystal b grows to a predetermined thickness,
Continue the crystal growth process.

【0009】炭化ケイ素単結晶bが所定の厚みに成長し
た時点で、反応炉5内の成長条件を切り換えて、第2層
のエピタキシャル層cを炭化ケイ素単結晶bの上に成長
させる。すなわち、昇華雰囲気圧力Pと昇華温度Tとの
比P/Tが0.03〜0.05トール/℃となるよう
に、反応炉5内の圧力を調整する。比P/Tをこの範囲
に維持するとき、健全な炭化ケイ素単結晶bの表面上に
高品質のエピタキシャル層cが成長する。n型特性をも
つエピタキシャル層cを成長させる場合にはガス供給管
8から窒素ガスを導入し、p型特性をもつエピタキシャ
ル層cを成長させる場合にはガス供給管9からAl (C
3)3 ガスを導入する。
When the silicon carbide single crystal b has grown to a predetermined thickness, the growth conditions in the reaction furnace 5 are switched to grow the second epitaxial layer c on the silicon carbide single crystal b. That is, the pressure in the reaction furnace 5 is adjusted so that the ratio P / T between the sublimation atmosphere pressure P and the sublimation temperature T is 0.03 to 0.05 Torr / ° C. When maintaining the ratio P / T in this range, a high-quality epitaxial layer c grows on the surface of a sound silicon carbide single crystal b. Nitrogen gas is introduced from the gas supply pipe 8 to grow the epitaxial layer c having the n-type characteristic, and Al (C 2) is supplied from the gas supply pipe 9 to grow the epitaxial layer c having the p-type characteristic.
H 3 ) 3 gas is introduced.

【0010】一般的にいって比P/Tが小さくなるほ
ど、炭化ケイ素原料粉末4の昇華量が多くなる。しか
し、0.03トール/℃未満になると、エピタキシャル
層cの膜厚を高精度に制御することができなくなること
は勿論、多結晶が生成し易くなる。逆に0.05トール
/℃を超える比P/Tでは、炭化ケイ素原料粉末4の昇
華量が少なくなるため、第1層である単結晶bの表層が
再昇華し、単結晶bの表面に凹凸が形成される。その結
果、第2層のエピタキシャル層cの膜厚制御が困難にな
るばかりでなく、凹凸に起因して転位等の欠陥がエピタ
キシャル層cに導入され易くなる。
Generally speaking, the smaller the ratio P / T, the greater the amount of sublimation of the silicon carbide raw material powder 4. However, if it is less than 0.03 Torr / ° C., it becomes difficult to control the film thickness of the epitaxial layer c with high accuracy, and it is easy to generate a polycrystal. On the contrary, when the ratio P / T exceeds 0.05 Torr / ° C., the sublimation amount of the silicon carbide raw material powder 4 decreases, so that the surface layer of the single crystal b, which is the first layer, is resublimated and the surface of the single crystal b is Unevenness is formed. As a result, not only it becomes difficult to control the film thickness of the second epitaxial layer c, but also defects such as dislocations are easily introduced into the epitaxial layer c due to the unevenness.

【0011】[0011]

【実施例】平均粒径200μm及び純度99.99%の
炭化ケイ素を原料粉末4としてルツボ1内に配置し、種
結晶2に対向させた。このルツボ1を、反応炉5内のヒ
ータ6の中央部にセットした。単結晶の成長に先立っ
て、ガス供給管7から反応炉5内にアルゴンガスを送り
込み、反応炉5内をアルゴン雰囲気にした。次いで、反
応炉5内の雰囲気圧を10-2トールまで減圧した。この
アルゴンガス導入及び排気を5回繰返すことにより、反
応炉5内をクリーニングした。
Example Silicon carbide having an average particle diameter of 200 μm and a purity of 99.99% was placed as a raw material powder 4 in the crucible 1 and faced the seed crystal 2. The crucible 1 was set in the center of the heater 6 in the reaction furnace 5. Prior to the growth of the single crystal, an argon gas was fed into the reaction furnace 5 from the gas supply pipe 7 to create an argon atmosphere in the reaction furnace 5. Then, the atmospheric pressure in the reaction furnace 5 was reduced to 10 -2 Torr. The inside of the reaction furnace 5 was cleaned by repeating this argon gas introduction and exhaust 5 times.

【0012】クリーニング後、1リットル/分の流量で
アルゴンガスを反応炉5に導入した。そして、ヒータ温
度を2200℃に保持し、第1層の炭化ケイ素単結晶b
を成長させた。この条件下で結晶成長を1時間継続した
ところ、炭化ケイ素単結晶bの厚みは、1mmに達し
た。次いで、昇華雰囲気圧力Pと昇華温度Tとの比P/
Tを0.04トール/℃に維持しながら、流量0.01
リットル/分で窒素ガスを反応炉5内に導入した。この
条件下で反応を1時間継続したところ、厚み500μm
のエピタキシャル層cが炭化ケイ素単結晶bの上に成長
した。
After cleaning, argon gas was introduced into the reaction furnace 5 at a flow rate of 1 liter / minute. Then, the heater temperature was maintained at 2200 ° C., and the first layer of silicon carbide single crystal b
Has grown up. When crystal growth was continued for 1 hour under these conditions, the thickness of the silicon carbide single crystal b reached 1 mm. Next, the ratio P / of the sublimation atmosphere pressure P and the sublimation temperature T
Flow rate 0.01 while maintaining T at 0.04 Torr / ° C.
Nitrogen gas was introduced into the reaction furnace 5 at a rate of 1 / min. When the reaction was continued for 1 hour under these conditions, the thickness was 500 μm.
Epitaxial layer c was grown on the silicon carbide single crystal b.

【0013】得られたエピタキシャル層cは、ドーピン
グガスとして窒素ガスを使用していることからn型の特
性を呈し、炭化ケイ素単結晶bの上に均等な厚みで形成
されていた。これは、炭化ケイ素単結晶bが表面疵等の
欠陥がなく、しかも表面平坦度が良好であることに由来
するものと推察される。
The obtained epitaxial layer c exhibited an n-type characteristic because nitrogen gas was used as a doping gas, and was formed on the silicon carbide single crystal b with a uniform thickness. It is speculated that this is because the silicon carbide single crystal b does not have defects such as surface defects and has good surface flatness.

【0014】[0014]

【発明の効果】以上に説明したように、本発明において
は、一つの反応炉内で単結晶の育成及びエピタキシャル
層の成長を連続して行っている。そのため、工程が簡略
化されるばかりでなく、品質特性に優れたエピタキシャ
ル結晶が得られる。しかも、高価な半導体ガスを使用す
る必要がないため、製造コストも節減される。
As described above, in the present invention, single crystal growth and epitaxial layer growth are continuously performed in one reactor. Therefore, not only the process is simplified, but an epitaxial crystal having excellent quality characteristics can be obtained. Moreover, since it is not necessary to use expensive semiconductor gas, the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明を実施する単結晶製造装置FIG. 1 is a single crystal production apparatus for carrying out the present invention.

【符号の説明】[Explanation of symbols]

1 ルツボ 2 種結晶 3 ル
ツボ台 5 反応炉 6 ヒータ 7〜9
ガス供給管 10 排気管 7a〜10a 流量調整弁 a 昇華ガス b 炭化ケイ素単結晶 c エ
ピタキシャル層
1 crucible 2 seed crystal 3 crucible stand 5 reactor 6 heater 7-9
Gas supply pipe 10 Exhaust pipe 7a to 10a Flow rate control valve a Sublimation gas b Silicon carbide single crystal c Epitaxial layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 種結晶に対向させて炭化ケイ素原料粉末
を収容したルツボを圧力調整された不活性ガス雰囲気内
に配置し、温度勾配を付けた加熱により前記炭化ケイ素
原料粉末から昇華した蒸気を前記種結晶の上に単結晶と
して成長させ、昇華雰囲気圧力Pと昇華温度Tとの比P
/Tを0.03〜0.05トール/℃に維持した条件下
で前記単結晶の上にエピタキシャル層を成長させること
を特徴とする炭化ケイ素単結晶の製造方法。
1. A crucible containing a silicon carbide raw material powder facing a seed crystal is placed in a pressure-controlled inert gas atmosphere, and vapors sublimated from the silicon carbide raw material powder by heating with a temperature gradient are heated. A single crystal is grown on the seed crystal, and the ratio P between the sublimation atmosphere pressure P and the sublimation temperature T is P.
A method for producing a silicon carbide single crystal, wherein an epitaxial layer is grown on the single crystal under the condition that / T is maintained at 0.03 to 0.05 Torr / ° C.
JP21727492A 1992-07-23 1992-07-23 Production of silicon carbide single crystal Withdrawn JPH0648899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21727492A JPH0648899A (en) 1992-07-23 1992-07-23 Production of silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21727492A JPH0648899A (en) 1992-07-23 1992-07-23 Production of silicon carbide single crystal

Publications (1)

Publication Number Publication Date
JPH0648899A true JPH0648899A (en) 1994-02-22

Family

ID=16701574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21727492A Withdrawn JPH0648899A (en) 1992-07-23 1992-07-23 Production of silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JPH0648899A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4427857A1 (en) * 1994-08-05 1996-02-08 Siemens Ag Prodn. of doped silicon carbide monocrystals
KR100416736B1 (en) * 1996-10-31 2004-03-19 삼성전기주식회사 Method for fabricating single crystal using vpe growth method
JP2007320790A (en) * 2006-05-30 2007-12-13 Nippon Steel Corp Method for producing silicon carbide single crystal, silicon carbide single crystal ingot, and silicon carbide single crystal substrate
WO2015182474A1 (en) * 2014-05-29 2015-12-03 住友電気工業株式会社 Silicon-carbide-ingot manufacturing method, silicon-carbide seed substrate, silicon-carbide substrate, semiconductor device, and semiconductor-device manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4427857A1 (en) * 1994-08-05 1996-02-08 Siemens Ag Prodn. of doped silicon carbide monocrystals
DE4427857C2 (en) * 1994-08-05 2001-04-12 Siemens Ag Process for producing a silicon carbide single crystal doped with aluminum
KR100416736B1 (en) * 1996-10-31 2004-03-19 삼성전기주식회사 Method for fabricating single crystal using vpe growth method
JP2007320790A (en) * 2006-05-30 2007-12-13 Nippon Steel Corp Method for producing silicon carbide single crystal, silicon carbide single crystal ingot, and silicon carbide single crystal substrate
WO2015182474A1 (en) * 2014-05-29 2015-12-03 住友電気工業株式会社 Silicon-carbide-ingot manufacturing method, silicon-carbide seed substrate, silicon-carbide substrate, semiconductor device, and semiconductor-device manufacturing method
JPWO2015182474A1 (en) * 2014-05-29 2017-04-20 住友電気工業株式会社 Silicon carbide ingot manufacturing method, silicon carbide seed substrate, silicon carbide substrate, semiconductor device, and semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
JP6830658B2 (en) Nitride semiconductor substrate manufacturing method and manufacturing equipment
US8409351B2 (en) Production of bulk silicon carbide with hot-filament chemical vapor deposition
EP0835336B1 (en) A device and a method for epitaxially growing objects by cvd
US5246536A (en) Method for growing single crystal thin films of element semiconductor
RU2764040C2 (en) Growing epitaxial 3c-sic on monocrystalline silicon
US20060011135A1 (en) HVPE apparatus for simultaneously producing multiple wafers during a single epitaxial growth run
CN1570225A (en) Device and method for producing single crystals by vapor deposition
WO2003029516A1 (en) Apparatus for inverted cvd
JPH05208900A (en) Apparatus for growing silicon carbide single crystal
JPH0856015A (en) Formation of semiconductor thin film
US6030661A (en) Device and a method for epitaxially growing objects by CVD
US3941647A (en) Method of producing epitaxially semiconductor layers
US5221412A (en) Vapor-phase epitaxial growth process by a hydrogen pretreatment step followed by decomposition of disilane to form monocrystalline Si film
JP4494856B2 (en) Seed crystal for silicon carbide single crystal growth, method for producing the same, and crystal growth method using the same
JPH0648899A (en) Production of silicon carbide single crystal
JPH11157988A (en) Device for growing crystal and growth of crystal
JPH097953A (en) Manufacture of single crystal thin film
JP2003137694A (en) Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot and method of producing the same
JP2004031874A (en) Epitaxial growing system for semiconductor
JPH07111958B2 (en) Epitaxial growth method for semiconductors
JPH0443878B2 (en)
JP4552516B2 (en) Method for producing AlN single crystal
CN111029245B (en) SiC epitaxial rate switching method
JP2743351B2 (en) Vapor phase epitaxy growth method
JP2005228757A (en) Apparatus and method for growing vapor phase

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005