KR100416736B1 - Method for fabricating single crystal using vpe growth method - Google Patents

Method for fabricating single crystal using vpe growth method Download PDF

Info

Publication number
KR100416736B1
KR100416736B1 KR1019960051860A KR19960051860A KR100416736B1 KR 100416736 B1 KR100416736 B1 KR 100416736B1 KR 1019960051860 A KR1019960051860 A KR 1019960051860A KR 19960051860 A KR19960051860 A KR 19960051860A KR 100416736 B1 KR100416736 B1 KR 100416736B1
Authority
KR
South Korea
Prior art keywords
growth
amplifier
single crystal
gas atmosphere
gas
Prior art date
Application number
KR1019960051860A
Other languages
Korean (ko)
Other versions
KR19980031988A (en
Inventor
박성수
Original Assignee
삼성전기주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전기주식회사 filed Critical 삼성전기주식회사
Priority to KR1019960051860A priority Critical patent/KR100416736B1/en
Publication of KR19980031988A publication Critical patent/KR19980031988A/en
Application granted granted Critical
Publication of KR100416736B1 publication Critical patent/KR100416736B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/08Etching
    • C30B33/12Etching in gas atmosphere or plasma

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE: A method for fabricating a single crystal using a VPE(Vapor Phase Epitaxy) growth method is provided to minimize the generation of defects in a growing process by injecting gas into an inner part of a growth ampoule to form the flowing gas atmosphere. CONSTITUTION: A state of vacuum is formed in an inner part of a growth ampoule(202). The predetermined gas is injected into the inner part of the growth ampoule in order to form the predetermined pressure. The flowing gas atmosphere is maintained in the inner part of the growth ampoule. A surface of a seed is etched by performing a heat etching process under the flowing gas atmosphere. The growth ampoule is heated under the flowing gas atmosphere. The temperature of an upper side including a raw material vessel(204) is higher than the temperature of a lower side including the seed crystal by performing the heating process.

Description

기상결정성장법에 의한 단결정 제조방법Single Crystal Production Method by Vapor Crystal Growth Method

본 발명은 기상결정성장법에 의한 단결정 제조방법에 관한 것으로서, 상세하게는 성장앰폴내의 오염을 방지함으로써 결함을 감소시킨 ZnSe 단결정을 얻을 수 있는 기상결정성장법에 의한 단결정 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal production method by vapor phase crystal growth method, and more particularly, to a single crystal production method by vapor phase crystal growth method capable of obtaining ZnSe single crystals having reduced defects by preventing contamination in growth ampoules.

ZnSe 단결정은 청색 발광 다이오드 및 청색 반도체 레이저용 기판 재료로 주목받고 있는 물질중의 하나이다. 이러한 ZnSe 단결정의 성장방법은 대표적으로 3가지 방법이 있다.ZnSe single crystal is one of the materials attracting attention as substrate materials for blue light emitting diodes and blue semiconductor lasers. There are three typical methods for growing ZnSe single crystals.

첫 번째 방법은 용융법으로 30기압의 아르곤 분위기와 1650 내지 1680℃의 온도에서 원료를 용융시키고 도가니를 서서히 냉각시켜 도가니의 하부에 위치한 종자결정(seed)으로부터 결정을 성장시키는 방법이다. 그런데 이 방법은 ZnSe 결정이 1425℃에서 결정 구조가 육방정계(hexagonal)에서 정방정계(cubic)으로 바뀌는 상전이가 일어나 냉각중 결정에 쌍정(twin)이 대량 발생되는 단점이 있다.The first method is a method of melting a raw material in an argon atmosphere of 30 atm and a temperature of 1650 to 1680 ° C. and slowly cooling the crucible to grow crystals from seed crystals located at the bottom of the crucible. However, this method has a disadvantage in that a large number of twins are generated during crystal cooling due to a phase transition in which the ZnSe crystal is changed from hexagonal to cubic at 1425 ° C.

두 번째 방법은 재결정화방법(Recrystallization Travelling Heater Method)으로 고온, 고압에서 ZnSe 분말을 처리하여 공극률이 90%이상인 고체 덩어리를 제조하고 이 고체 덩어리를 다시 고온, 고압으로 처리하여 고체상에서 결정립 크기를 증가시키는 원리로 단결정을 제조하는 방법이다.The second method is the Recrystallization Traveling Heater Method, which treats ZnSe powder at high temperature and high pressure to produce a solid mass with a porosity of 90% or more, and increases the grain size in the solid phase by treating the solid mass at high temperature and high pressure again. It is a method of producing a single crystal on the principle of.

세 번째 방법은 기상결정성장방법으로 ZnSe 원료를 성장앰폴(growth ampoule)내에 넣고 약 1150℃의 온도로 가열하여 ZnSe 증기를 발생시키고 동일한 성장앰폴내에서 약 1050℃가 되는 온도영역에 종자결정을 설치하여 ZnSe 증기가 종자결정 위에 응축되어 결정이 성장되도록 하는 방법이며, ZnSe 원료 장착부의 온도가 약 1150℃에서 수소, 헬륨 또는 아르곤 등의 분위기로 1기압 하에서 ZnSe 단결정을 성장한다. 이 방법은 성장앰폴내의 가스 종류에 따라 SPVT(Seeded Physical Vapor Transport)법과 SCVT(Seeded Chemical Vapor Transport)법으로 나누어진다.The third method is the vapor phase crystal growth method, in which ZnSe raw materials are placed in a growth ampoule and heated to a temperature of about 1150 ° C. to generate ZnSe vapor, and seed crystals are installed at a temperature range of about 1050 ° C. in the same growth ampoule. ZnSe vapor is condensed on the seed crystal so that the crystal is grown, and the ZnSe single crystal is grown under 1 atmosphere under an atmosphere of hydrogen, helium or argon at a temperature of about 1150 ° C. This method is divided into Seeded Physical Vapor Transport (SPVT) method and Seeded Chemical Vapor Transport (SCVT) method depending on the type of gas in the growth ampoule.

도 1은 폐쇄형 성장앰폴이 이용되는 단결정 제조장치를 나타내는 단면도로서, 폐쇄형 성장앰폴을 이용한 종래의 기상결정성장법에 의한 ZnSe 단결정 제조방법을 설명하면 다음과 같다.1 is a cross-sectional view illustrating a single crystal manufacturing apparatus using a closed growth ampoule, and a ZnSe single crystal manufacturing method by a conventional vapor phase crystal growth method using a closed growth ampoule is as follows.

상단부와 하단부가 밀봉된 성장앰폴(2)에 가열로(1)가 둘러싸여지고, 성장앰폴(2) 내부에 종자결정(seed)(5)이 설치된다. 성장앰폴(2) 상부쪽에는 종자결정(5)과 일정한 간격으로 이격되고, 내부에 다결정 ZnSe(3) 원료가 장입된 원료용기(4)가 설치된다.The heating furnace 1 is surrounded by the growth amplifier 2 sealed with the upper end and the lower end, and seed crystals 5 are installed inside the growth amplifier 2. On the upper side of the growth ampoule 2, a raw material container 4 is spaced apart from the seed crystals 5 at regular intervals and filled with polycrystalline ZnSe 3 raw materials.

이와 같은 구조에서, 먼저 성장앰폴(2) 내부는 수소와 헬륨과 아르곤중 어느 하나로 채워져 성장앰폴(2) 내부의 기압이 1기압이 되도록 가스분위기가 유지된다. 다음 가열로(1)에 의해 성장앰폴(2)이 가열된다. 이때 종자결정(5)의 상부 표면을 경계로 원료용기(4)가 포함된 성장앰폴(2) 내부의 상부쪽은 약 1150℃가 되도록 가열되고, 성장앰폴(2) 내부의 하부쪽은 약 1050℃가 되도록 가열된다. 이렇게 되면 원료용기(4) 내부에 장입된 다결정 ZnSe(3) 원료는 승화되어 증기로 변한다. 이 증기는 원료용기(4) 밖으로 빠져나와 종자결정(5)까지 비행되고, 그 증기는 종자결정(5) 위에 응축되어 서서히 종자결정(5) 위에 ZnSe 단결정이 성장된다. 이렇게 ZnSe 단결정의 성장이 완료되면 가열로(1)를 냉각하여 성장앰폴(2)로부터 ZnSe 단결정을 얻을 수 있다.In such a structure, first, the growth ampoules 2 are filled with one of hydrogen, helium and argon so that the gas atmosphere is maintained such that the pressure inside the growth ampoules 2 is 1 atm. Next, the growth amplifier 2 is heated by the heating furnace 1. At this time, the upper side of the inside of the growth amplifier 2 containing the raw material container 4 is heated to be about 1150 ° C., and the lower side of the inside of the growth amplifier 2 is about 1050 on the upper surface of the seed crystal 5. Heated to ° C. In this case, the polycrystalline ZnSe (3) raw material charged into the raw material container 4 is sublimed into steam. This vapor exits the raw material container 4 and flows up to the seed crystals 5, which are then condensed on the seed crystals 5 and slowly growing ZnSe single crystals on the seed crystals 5. When the growth of the ZnSe single crystal is completed as described above, the heating furnace 1 may be cooled to obtain a ZnSe single crystal from the growth amplifier 2.

그런데 상기와 같은 구조의 폐쇄형 성장앰폴(2)이 사용될 경우 페쇄형 성장앰폴(2)은 한 번 밖에 사용될 수 없게 되고, 이로인해 결정의 제조원가가 증가되는 단점을 가지게 된다. 뿐만아니라 폐쇄형 성장앰폴(2)은 상부쪽과 하부쪽이 연결되어 만들어진 것으로 이 상부쪽과 하부쪽의 성장앰폴(2)의 상하연결부(8a)를 용접할 때 SiO과 탄소등이 성장앰폴(2) 내부로 유입되고, 성장앰폴(2)의 가스주입부(8b)로 성장앰폴(2) 내부에 가스를 주입시키고 이후 가스주입부(8b)를 밀봉시키기 위하여 가스주입부(8b)를 용접할 때 SiO과 탄소등이 성장앰폴(2) 내부로 유입되어 SiO과 탄소는 다결정 ZnSe(3) 원료와 성장된 ZnSe 단결정에 오염원으로 작용하게 된다. 이들은 ZnSe 단결정에 결함을 유발시키고, 또한 원하지 않는 이들 불순물에 의해 ZnSe 단결정의 밴드갭(band gap)은 변화된다. 이와 같은 결과는 반도체 레이저 등의 소자(device)의 응용을 어렵게 하는 단점이 된다.However, when the closed growth ampoule 2 having the above structure is used, the closed growth ampoule 2 may be used only once, and thus, the manufacturing cost of the crystal is increased. In addition, the closed growth amplifier 2 is made by connecting the upper side and the lower side. When welding the upper and lower connecting portions 8a of the upper and lower growth amplifiers 2, SiO and carbon, etc. 2) It is introduced into the inside, the gas injection portion (8b) of the growth ampoules (2) to inject gas into the growth ampoules (2) and then weld the gas injection portion (8b) to seal the gas injection portion (8b) In this case, SiO and carbon are introduced into the growth ampoules (2), and SiO and carbon act as contaminants to the polycrystalline ZnSe (3) raw material and the grown ZnSe single crystal. They cause defects in the ZnSe single crystal, and the band gap of the ZnSe single crystal is changed by these unwanted impurities. This result is a disadvantage that makes the application of devices such as semiconductor lasers difficult.

도 2는 개방형 성장앰폴이 이용되는 단결정 제조장치를 나타내는 단면도로서, 도면을 참조하여 개방형 성장앰폴을 이용한 종래의 기상결정성장법에 의한 ZnSe 단결정 제조방법을 설명하면 다음과 같다.FIG. 2 is a cross-sectional view illustrating a single crystal manufacturing apparatus using an open growth ampoule. Referring to the drawings, a ZnSe single crystal manufacturing method according to a conventional vapor phase crystal growth method using an open growth ampoule is as follows.

상단부는 밀봉되고 하단부는 개방된 성장앰폴(202)은 내부에 공동이 형성되고, 성장앰폴(202) 내부의 상단부에는 다결정 ZnSe(203) 원료를 장입시킨 원료용기(204)를 장착시킨다.The growth amplifier 202, which is sealed at the upper end and opened at the lower end, has a cavity formed therein, and a raw material container 204 in which the polycrystalline ZnSe 203 material is charged is mounted at the upper end of the growth amplifier 202.

한편, 성장챔버(209) 위에는 지지대(207)의 일단을 부착시키고, 지지대(207)의 하단에는 석영로드(quartz rod)(206)의 저면을 결합시킨다. 석영로드(206) 상면에는 종자결정(seed)(205)을 설치한다. 여기서 성장챔버(209) 외측면에는 공기배출부(211)가 결합되어 있고, 또 성장챔버(209)의 다른 외측면에는 가스주입부(212)가 결합되어 있다.Meanwhile, one end of the support 207 is attached to the growth chamber 209, and the bottom surface of the quartz rod 206 is coupled to the lower end of the support 207. A seed crystal 205 is provided on the top surface of the quartz rod 206. Here, the air discharge portion 211 is coupled to the outer surface of the growth chamber 209, and the gas injection portion 212 is coupled to the other outer surface of the growth chamber 209.

다음, 종자결정(205)과 석영로드(206)와 지지대(207)로 구성된 구조체에 원료용기(204)를 장착시킨 성장앰폴(202)로 덮어 씌워 성장앰폴(202)의 하단부의 외측면을 상부가 개방된 성장챔버(209)의 상부 내측면에 결합시킨다. 이 때 성장앰폴(202)의 하단부의 외측면과 성장챔버(209)의 상부 내측면은 O-링(O-ring)(210)으로 결합시켜 외부와 차폐시킨다.Next, the structure consisting of the seed crystal 205, the quartz rod 206, and the support 207 is covered with the growth amplifier 202 in which the raw material container 204 is mounted so that the outer surface of the lower end of the growth amplifier 202 is covered with the top. Is coupled to the upper inner surface of the open growth chamber 209. At this time, the outer surface of the lower end of the growth amplifier 202 and the upper inner surface of the growth chamber 209 are coupled to the O-ring (210) to shield the outside.

그리고 성장앰폴(202)이 가열되도록 가열로(201)를 성장앰폴(202) 외곽에 설치한다.In addition, the heating furnace 201 is installed outside the growth amplifier 202 so that the growth amplifier 202 is heated.

이와 같은 구조에 있어서 작동을 설명하면, 먼저 가열로(201)로 성장앰폴(202)을 가열한다. 이때 종자결정(205)의 상부 표면을 경계로 원료용기(204)가 포함된 성장앰폴(202) 내부의 상부쪽은 약 1150℃가 되도록 가열하고, 성장앰폴(202) 내부의 하부쪽은 약 1050℃가 되도록 가열한다. 공기배출부(211)에 의해 성장챔버(209)와 결합시킨 성장앰폴(202) 내부를 약torr의 진공으로 만들고, 가스주입부(212)에 의해 수소와 헬륨과 아르곤중 어느 하나를 성장앰폴(202) 내부에 주입시켜 성장앰폴(202) 내부의 기압이 1기압이 되도록 가스분위기를 유지한다.Referring to the operation in this structure, the growth amplifier 202 is first heated by the heating furnace 201. At this time, the upper side of the growth amplifier 202 including the raw material container 204 is heated to about 1150 ° C., and the lower side of the growth amplifier 202 is about 1050 on the upper surface of the seed crystal 205. Heat to ℃. The inside of the growth amplifier 202 coupled with the growth chamber 209 by the air discharge unit 211 is approximately Torr is vacuumed and one of hydrogen, helium, and argon is injected into the growth amplifier 202 by the gas injection unit 212 to maintain a gas atmosphere such that the pressure inside the growth amplifier 202 is 1 atm. .

이렇게 되면 원료용기(204) 내부에 장입된 다결정 ZnSe(203) 원료는 승화되어 증기로 변한다. 이 증기는 원료용기(204) 밖으로 빠져나와 종자결정(205)까지 비행하고, 상기 증기는 종자결정(205) 위에 응축되어 서서히 종자결정(205) 위에 ZnSe 단결정이 성장된다. 이렇게 ZnSe 단결정의 성장이 완료되면 가열로(201)를 냉각하여 성장앰폴(202)로부터 ZnSe 단결정을 얻을 수 있다.In this case, the polycrystalline ZnSe 203 raw material charged into the raw material container 204 is sublimed into vapor. This vapor exits the raw material container 204 and flies to the seed crystal 205, which is condensed on the seed crystal 205 and gradually grows a ZnSe single crystal on the seed crystal 205. When the growth of the ZnSe single crystal is completed, the heating furnace 201 may be cooled to obtain a ZnSe single crystal from the growth amplifier 202.

그런데 이와 같은 기상결정성장법에 의한 ZnSe 단결정 제조방법은 ZnSe 단결정 성장 기간이 1주 내지 4주 정도 되므로 개방형 성장앰폴(202)과 성장챔버(209)의 결합부위에서 외부 공기가 유입되어 성장앰폴(202)내의 가스 순도는 저하된다. 이 또한 ZnSe 단결정에 결함을 유발시키고, 원하지 않은 불순물에 의해 결정의 반드갭(band gap)을 변화시켜 반도체 레이저 등의 소자 응용을 어렵게 한다.However, since the ZnSe single crystal manufacturing method using the vapor phase crystal growth method has a ZnSe single crystal growth period of about 1 to 4 weeks, external air is introduced from the coupling region of the open growth amplifier 202 and the growth chamber 209 to allow the growth amplifier ( The gas purity in 202 is lowered. This also causes defects in the ZnSe single crystal and makes it difficult to apply devices such as semiconductor lasers by changing the band gap of the crystal due to unwanted impurities.

본 발명은 상기와 같은 문제점을 개선코자 창출된 것으로서, 가스주입부에 의해 일정한 압력의 가스를 성장앰폴 내부에 주입하여 성장앰폴 내부를 흐르는 가스분위기로 유지시킴으로써, ZnSe 단결정내의 결함을 감소시킬 수 있는 기상결정성장법에 의한 단결정 제조방법을 제공하는데 그 목적이 있다.The present invention was created to improve the above problems, by injecting a constant pressure gas into the growth amplifier by the gas injection unit to maintain the gas atmosphere flowing inside the growth amplifier, it is possible to reduce the defects in the ZnSe single crystal It is an object of the present invention to provide a single crystal manufacturing method by vapor phase crystal growth method.

도 1은 폐쇄형 성장앰폴이 이용되는 단결정 제조장치를 나타내는 단면도.1 is a cross-sectional view showing a single crystal manufacturing apparatus using a closed growth ampoule.

도 2는 개방형 성장앰폴이 이용되는 단결정 제조장치를 나타내는 단면도.Fig. 2 is a sectional view showing a single crystal manufacturing apparatus in which an open growth amplifier is used.

도 3는 개방형 성장앰폴에 결합되는 성장챔버를 나타내는 개략적인 구성도.3 is a schematic diagram illustrating a growth chamber coupled to an open growth amplifier.

도 4는 본 발명에 따른 기상결정성장법에 의한 단결정 제조방법을 나타내는 순서도.Figure 4 is a flow chart showing a single crystal manufacturing method by the vapor phase crystal growth method according to the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

201..가열로202..성장앰폴(growth ampoule)201. Heating furnace 202. Growth ampoule

204..원료용기205..종자결정(seed)204. Raw material container 205. Seed determination

209..성장챔버(growth chamber)209. growth chamber

210..O-링(O-ring)211..공기배출부210..O-ring 211.Air exhaust

212..가스주입부213..터보 펌프(turbo pump)212.Gas injection 213.Turbo pump

214..다이아프램 펌프(diaphram pump)214 diaphragm pump

218..MFC(Mass Flow Controller)220..봄베(bombe)218..Mass Flow Controller 220..bombe

225..바라트론 게이지(baratron gauge)225..baratron gauge

상기와 같은 목적을 달성하기 위하여 본 발명의 ZnSe 단결정 제조방법은, 성장앰폴 내부를 진공상태로 만들고, 소정의 기체를 상기 성장앰폴의 내부에 일정 압력이 되도록 주입하는 가스주입단계; 상기 성장앰폴 내를 흐르는 기체분위기로 유지하는 기체분위기유지단계; 상기 흐르는 기체분위기를 유지하면서, 상기 종자결정의 표면을 열에칭하는 열에칭단계; 및 상기 흐르는 기체분위기를 유지하면서, 상기 원료용기를 포함한 상기 종자결정 상부쪽의 온도가 상기 종자결정을 포함한 상기 종자결정 하부쪽의 온도 보다 높도록 상기 성장앰폴을 가열하는 가열단계;를 포함하는 것을 특징으로 한다.ZnSe single crystal production method of the present invention to achieve the above object, the gas injection step of making the interior of the growth ampoules in a vacuum state, and a predetermined gas is injected into the growth ampoules at a predetermined pressure; A gas atmosphere maintaining step of maintaining the gas atmosphere flowing in the growth ampoule; A thermal etching step of thermally etching the surface of the seed crystal while maintaining the flowing gas atmosphere; And heating the growth ampoule such that the temperature of the upper part of the seed crystal including the raw material container is higher than the temperature of the lower part of the seed crystal including the seed crystal while maintaining the flowing gas atmosphere. It features.

본 발명에 의하면, 상기 기체는 수소, 헬륨 및 아르곤중 어느 하나인 것이 바람직하다.According to the invention, the gas is preferably any one of hydrogen, helium and argon.

이하 본 발명의 일 실시예에 따른 ZnSe 단결정 제조방법을 첨부한 도면을 참조하여 상세히 설명한다. 도 3은 개방형 성장앰폴에 결합되는 성장챔버를 나타내는 개략적인 구성도이다.Hereinafter, a ZnSe single crystal manufacturing method according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. 3 is a schematic diagram illustrating a growth chamber coupled to an open growth amplifier.

본 발명에 이용되는 도 2의 개방형 성장앰폴의 구조는 상술한 바 있고, 이 개방형 성장앰폴의 하단부에 결합되는 성장챔버의 구조는 도 3을 참고하여 아래에 설명한다.The structure of the open growth amplifier of FIG. 2 used in the present invention has been described above, and the structure of the growth chamber coupled to the lower end of the open growth amplifier is described below with reference to FIG.

도시된 바와 같이 개방형 성장앰폴에 결합된 성장챔버는, 성장앰폴(202)내의 공기를 배출시켜 진공상태로 만들기 위하여 성장챔버(209)의 외측면중 서로 수직인 4방향의 제1외측면(226a), 제2외측면(226b), 제3외측면(226c) 및 제4외측면(226d)중 제1외측면(226a)에는 제1게이트밸브(215), 터보 펌프(turbo pump)(213), 저진공도를 측정하기 위한 TC게이지(ion gauge)(222) 및 다이아프램 펌프(diaphram pump)(214)가 각각 순차적으로 결합된 상기 공기배출부(211)의 제1게이트밸브(215)가 결합된다.As shown, the growth chamber coupled to the open growth amplifier has a first outer surface 226a in four directions perpendicular to each other among the outer surfaces of the growth chamber 209 in order to discharge the air in the growth amplifier 202 into a vacuum state. ), The first outer valve 215 and the turbo pump 213 on the first outer surface 226a of the second outer surface 226b, the third outer surface 226c, and the fourth outer surface 226d. ), The first gate valve 215 of the air exhaust portion 211, in which the TC gauge (222) and the diaphragm pump (214) for measuring low vacuum degree are sequentially coupled, respectively. Combined.

또한 성장앰폴(202) 내부를 흐르는 가스분위기로 유지하기 위하여 제2외측면(226b)에는 가스주입부(212)의 TC게이지(223)가 결합된다. 여기서 가스주입부(212)는 TC게이지(223)와 제2게이트밸브(216)가 직렬로 연결되어 결합되고, 다시 제2게이트밸브(216)에는 제1밸브(217a), 제2밸브(217b) 및 제3밸브(217c)가 병렬로 연결되어 결합되고, 제1밸브(217a), 제2밸브(217b) 및 제3밸브(217c)에는 각각 제1MFC(Mass Flow Controller)(218a), 제2MFC(218b) 및 제3MFC(218c)가 직렬로 연결되어 결합되고, 제1MFC(218a), 제2MFC(218b) 및 제3MFC(218c)에는 각각 제4밸브(219a), 제5밸브(219b) 및 제6밸브(219c)가 직렬로 연결되어 결합되고, 제4밸브(219a), 제5밸브(219b) 및 제6밸브(219c)에는 각각 아르곤 가스가 장입된 제1봄베(bombe)(220a), 헬륨 가스가 장입된 제2봄베(220b) 및 수소 가스가 장입된 제3봄베(220c)가 직렬로 연결되어 결합된 구조로 되어 있다.In addition, the TC gauge 223 of the gas injection unit 212 is coupled to the second outer surface 226b in order to maintain the inside of the growth amplifier 202 as a gas atmosphere. Here, the gas injection unit 212 is coupled to the TC gauge 223 and the second gate valve 216 connected in series, and the second gate valve 216 is connected to the first valve 217a and the second valve 217b. ) And the third valve 217c are connected in parallel to each other, and the first valve 217a, the second valve 217b, and the third valve 217c are respectively connected to the first MFC (Mass Flow Controller) 218a and the third valve. The 2MFCs 218b and the third MFCs 218c are connected in series and coupled, and the fourth and fifth valves 219a and 219b are respectively connected to the first MFC 218a, the second MFC 218b, and the third MFC 218c. And a sixth valve 219c connected in series, and coupled to the fourth valve 219a, the fifth valve 219b, and the sixth valve 219c, respectively, in which a first bombe 220a into which argon gas is charged. ), The second cylinder 220b loaded with helium gas and the third cylinder 220c loaded with hydrogen gas are connected in series to each other.

제3외측면에(226c)는 이온게이지(224)가 결합되고, 제4외측면(226d)에는 제7밸브(221)와 바라트론 게이지(Baratron guage)(225)가 순차 연결되어 결합된다.An ion gauge 224 is coupled to the third outer surface 226c, and a seventh valve 221 and a baratron gauge 225 are sequentially connected to the fourth outer surface 226d.

이하, 도 4를 참조하여 본 발명에 따른 기상결정성장법에 의한 단결정 제조방법을 설명한다.Hereinafter, a single crystal manufacturing method by the vapor phase crystal growth method according to the present invention will be described with reference to FIG. 4.

먼저, 다이아프램 펌프(214)를 이용하여 성장앰폴(202) 내를 약Torr까지 공기를 배출시켜 진공으로 만든다. 이 때 TC게이지(222)는 낮은 진공도를 감시하기 위한 것으로 다이아프램 펌프(214)에 의한 성장앰폴(202)내의 진공도를 TC게이지(223)로 감시하여 성장앰폴(202)내의 진공도를 조절한다(401).First, the diaphragm pump 214 is used to weaken the inside of the growth amplifier 202. Evacuate the air to Torr and vacuum it. At this time, the TC gauge 222 is to monitor the low vacuum level, and the vacuum gauge in the growth amplifier 202 by the diaphragm pump 214 is monitored by the TC gauge 223 to adjust the vacuum degree in the growth amplifier 202 ( 401).

다음, 성장챔버(209)내의 불순물을 제거하기 위하여 다이아프램 펌프(214)를 동작 시키면서 터보 펌프(213)를 이용하여Torr까지 공기를 배출시켜 성장앰폴(202) 내부를 진공으로 만든다. 이 때 제3이온게이지(224)는 높은 진공도를 감시하기 위한 것으로 터보 펌프(213)에 의한 성장앰폴(202)내의 진공도를 제3이온게이지(224)로 감시하여 성장앰폴(202)내의 진공도를 조절한다(402).Next, using the turbo pump 213 while operating the diaphragm pump 214 to remove impurities in the growth chamber 209. The air is discharged to Torr to vacuum the inside of the growth amplifier 202. At this time, the third ion gauge 224 is to monitor the high vacuum degree, and the vacuum degree in the growth amplifier 202 by the turbo pump 213 is monitored by the third ion gauge 224 to monitor the vacuum degree in the growth amplifier 202. Adjust (402).

그 다음 다이아프램 펌프(214)와 터보 펌프(213)를 오프(off) 시킨다(403).The diaphragm pump 214 and the turbo pump 213 are then turned off (403).

이후 이 상태로 계속 다이아프램 펌프(214)가 동작이 되므로 원하는 가스를 계속 주입하여 흘려 준다. 다음 바라트론 게이지(225)로 성장챔버(209)내의 압력을 감시하여 감시된 결과를 MFC1(219a), MFC2(219b) 및 MFC3(219c)중 어느 하나를 선택하여 전기적 신호로 전달함으로써 MFC(219a, 219b, 219c)을 작동시켜 봄베(220a, 220b, 220c)에 장입된 가스를 성장챔버(209)내의 압력이 1기압이 유지 되도록 성장챔버(209)내로 주입한다. 이렇게 하면 성장앰폴(202) 내부는 가스주입부(212)에 의해 가스가 정체되지 않고 흐르는 가스순도 7N 이상의 가스분위기가 유지된다. 여기서 제1밸브(217a)에서 제6밸브(219c)까지는 상기 가스의 유량을 조절하기 위한 것이고, 제7밸브(221)는 바라트론 게이지(225)에 의해 측정되는 가스의 유랑을 조절하기 위한 것이다(404).Since the diaphragm pump 214 continues to operate in this state, the desired gas is continuously injected and flowed. The baratron gauge 225 then monitors the pressure in the growth chamber 209 and selects one of the MFC1 219a, MFC2 219b and MFC3 219c and transmits it as an electrical signal to the MFC 219a. , 219b and 219c are operated to inject the gas charged into the cylinders 220a, 220b and 220c into the growth chamber 209 such that the pressure in the growth chamber 209 is maintained at 1 atmosphere. In this way, a gas atmosphere of 7N or higher gas purity is maintained in the growth amplifier 202 without flowing gas by the gas injection unit 212. The first valve 217a to the sixth valve 219c control the flow rate of the gas, and the seventh valve 221 adjusts the flow of the gas measured by the baratron gauge 225. (404).

이러한 상태에서 가열로(201)로 성장앰폴(202)을 가열한다. 이때 종자결정(205)의 상부 표면을 경계로 원료용기(204)가 포함된 성장앰폴(202) 내부의 상부쪽은 약 1150℃가 되도록 가열하고, 성장앰폴(202) 내부의 하부쪽은 약 1050℃가 되도록 가열한다(405).In this state, the growth amplifier 202 is heated by the heating furnace 201. At this time, the upper side of the growth amplifier 202 including the raw material container 204 is heated to about 1150 ° C., and the lower side of the growth amplifier 202 is about 1050 on the upper surface of the seed crystal 205. Heat to 캜 (405).

이렇게 하면 원료용기(204) 내부에 장입된 다결정 ZnSe(203) 원료는 승화되어 증기로 변한다. 이 증기는 원료용기(204) 밖으로 빠져나와 종자결정(205)까지 비행되고, 상기 증기는 종자결정(205) 위에 응축되어 결정 성장속도가 100μm/hr 이하로 서서히 종자결정(205) 위에 ZnSe 단결정이 성장된다. 이러한 경우 성장앰폴(202) 내부는 가스주입부(212)에 의해 가스가 정체되지 않고 흐르는 가스순도 7N 이상의 가스분위기가 유지되므로 ZnSe 단결정의 성장중에 발생되는 결함이 최소화되고, ZnSe 단결정내에 불순물이 혼합되지 않아 밴드갭이 일정한 ZnSe 단결정을 얻을 수 있게 된다. 이렇게 하여 8일 간의 결정 성장기간이 지나면 ZnSe 단결정의 성장이 완료되고, ZnSe 단결정을 30℃/hr의 냉각속도로 서서히 냉각시켜 성장앰폴(202)로부터 ZnSe 단결정을 얻을 수 있다(406).In this way, the polycrystalline ZnSe 203 raw material charged into the raw material container 204 is sublimed into vapor. This vapor exits the raw material container 204 and flies to the seed crystal 205, which is condensed on the seed crystal 205 so that the ZnSe single crystal is gradually deposited on the seed crystal 205 at a crystal growth rate of 100 m / hr or less. Is grown. In this case, since the gas atmosphere is maintained in the growth amplifier 202 without gas stagnation by the gas injection unit 212, a gas atmosphere with a purity of 7N or higher is maintained, thereby minimizing defects generated during the growth of the ZnSe single crystal and mixing impurities in the ZnSe single crystal. Therefore, a ZnSe single crystal having a constant band gap can be obtained. In this manner, after 8 days of crystal growth period, ZnSe single crystals are completely grown, and ZnSe single crystals are gradually cooled at a cooling rate of 30 ° C / hr to obtain ZnSe single crystals from the growth amplifier 202 (406).

이와 함께 상기와 같은 구조의 개방형 성장앰폴(202)은 본 발명의 제조 방법에 사용될 때, 종래 제조 방법에 의해 성장앰폴(202) 내에 오염물이 잔존하는 문제점을 개선한 것이므로, ZnSe 단결정 제조장치로 이 성장앰폴(202)이 여러 번 사용될 수 있는 장점이 있다.In addition, since the open growth ampoule 202 having the above structure is used in the manufacturing method of the present invention, the contaminant remains in the growth ampoule 202 by the conventional manufacturing method. The growth amplifier 202 has the advantage that it can be used multiple times.

이상에서 살펴본 바와 같이 본 발명에 따른 기상결정성장법에 의한 단결정 제조방법은 성장앰폴 내부에 가스를 주입시켜 성장앰폴 내부를 흐르는 가스분위기로 유지해 줌으로써 ZnSe 단결정내로 혼합되는 불순물과 ZnSe 단결정의 성장중에 생성되는 결함을 최소화시키는 효과가 있다.As described above, the single crystal manufacturing method by the vapor phase crystal growth method according to the present invention is generated during the growth of the ZnSe single crystal and the impurities mixed into the ZnSe single crystal by maintaining the gas atmosphere inside the growth ampoule by injecting gas into the growth ampoule. There is an effect to minimize the defects.

Claims (2)

성장앰폴 내부를 진공상태로 만들고, 소정의 기체를 상기 성장앰폴의 내부에 일정 압력이 되도록 주입하는 가스주입단계;A gas injection step of making the inside of the growth amplifier into a vacuum state and injecting a predetermined gas into the growth ampoules at a predetermined pressure; 상기 성장앰폴 내를 흐르는 기체분위기로 유지하는 기체분위기유지단계;A gas atmosphere maintaining step of maintaining the gas atmosphere flowing in the growth ampoule; 상기 흐르는 기체분위기를 유지하면서, 상기 종자결정의 표면을 열에칭하는 열에칭단계; 및A thermal etching step of thermally etching the surface of the seed crystal while maintaining the flowing gas atmosphere; And 상기 흐르는 기체분위기를 유지하면서, 상기 원료용기를 포함한 상기 종자결정 상부쪽의 온도가 상기 종자결정을 포함한 상기 종자결정 하부쪽의 온도 보다 높도록 상기 성장앰폴을 가열하는 가열단계;를 포함하는 것을 특징으로 하는 기상결정성장법에 의한 단결정 제조방법.And heating the growth ampoule such that the temperature of the upper part of the seed crystal including the raw material container is higher than the temperature of the lower part of the seed crystal including the seed crystal while maintaining the flowing gas atmosphere. A single crystal production method by vapor phase crystal growth method. 제1항에 있어서, 상기 기체는 수소, 헬륨 및 아르곤중 어느 하나인 것을 특징으로 하는 기상결정성장법에 의한 단결정 제조방법.The method of claim 1, wherein the gas is one of hydrogen, helium, and argon.
KR1019960051860A 1996-10-31 1996-10-31 Method for fabricating single crystal using vpe growth method KR100416736B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960051860A KR100416736B1 (en) 1996-10-31 1996-10-31 Method for fabricating single crystal using vpe growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960051860A KR100416736B1 (en) 1996-10-31 1996-10-31 Method for fabricating single crystal using vpe growth method

Publications (2)

Publication Number Publication Date
KR19980031988A KR19980031988A (en) 1998-07-25
KR100416736B1 true KR100416736B1 (en) 2004-03-19

Family

ID=37319100

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960051860A KR100416736B1 (en) 1996-10-31 1996-10-31 Method for fabricating single crystal using vpe growth method

Country Status (1)

Country Link
KR (1) KR100416736B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210062949A (en) 2019-11-22 2021-06-01 (주)그린광학 Apparatus for growing Mercurous Halide single crystal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100320586B1 (en) * 1999-10-21 2002-01-18 정세영 apparatus for single crystal growing using high pressure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570286A (en) * 1991-09-13 1993-03-23 Lion Corp Production of transparent zinc oxide
JPH05306199A (en) * 1992-04-30 1993-11-19 Nisshin Steel Co Ltd Apparatus for producing silicon carbide single crystal
JPH0648899A (en) * 1992-07-23 1994-02-22 Nisshin Steel Co Ltd Production of silicon carbide single crystal
JPH06183897A (en) * 1992-12-16 1994-07-05 Nisshin Steel Co Ltd Method for growing silicon carbide single crystal
JPH0651275U (en) * 1992-12-18 1994-07-12 住友金属鉱山株式会社 Silicon carbide single crystal growth equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570286A (en) * 1991-09-13 1993-03-23 Lion Corp Production of transparent zinc oxide
JPH05306199A (en) * 1992-04-30 1993-11-19 Nisshin Steel Co Ltd Apparatus for producing silicon carbide single crystal
JPH0648899A (en) * 1992-07-23 1994-02-22 Nisshin Steel Co Ltd Production of silicon carbide single crystal
JPH06183897A (en) * 1992-12-16 1994-07-05 Nisshin Steel Co Ltd Method for growing silicon carbide single crystal
JPH0651275U (en) * 1992-12-18 1994-07-12 住友金属鉱山株式会社 Silicon carbide single crystal growth equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210062949A (en) 2019-11-22 2021-06-01 (주)그린광학 Apparatus for growing Mercurous Halide single crystal
KR102305455B1 (en) 2019-11-22 2021-09-30 (주)그린광학 Apparatus for growing Mercurous Halide single crystal

Also Published As

Publication number Publication date
KR19980031988A (en) 1998-07-25

Similar Documents

Publication Publication Date Title
US7524376B2 (en) Method and apparatus for aluminum nitride monocrystal boule growth
US7279040B1 (en) Method and apparatus for zinc oxide single crystal boule growth
US6066205A (en) Growth of bulk single crystals of aluminum nitride from a melt
US5968261A (en) Method for growing large silicon carbide single crystals
US5746827A (en) Method of producing large diameter silicon carbide crystals
CN113622018B (en) Method for growing aluminum nitride single crystal by physical vapor transport method
EP1508632B1 (en) METHOD FOR PREPARATION OF Cl DOPED CdTe SINGLE CRYSTAL
US6800136B2 (en) Axial gradient transport apparatus and process
CN109183143B (en) Method for improving AlN single crystal purity by using reducing gas
JP2001509769A (en) Large silicon carbide single crystal growth equipment
KR100416736B1 (en) Method for fabricating single crystal using vpe growth method
JPH05178698A (en) Apparatus and process for production of silicon carbide bulk single crystal
US5240685A (en) Apparatus for growing a GaAs single crystal by pulling from GaAs melt
US4869776A (en) Method for the growth of a compound semiconductor crystal
JPH06298600A (en) Method of growing sic single crystal
JP2000053493A (en) Production of single crystal and single crystal production device
CN110158151A (en) For the crucible cover of silicon carbide monocrystal growth, crucible and the method for crystal growth
JP2725647B2 (en) Method for growing II-VI compound semiconductor single crystal
JP2000026190A (en) Equipment for growing compound single crystal and method for growing compound single crystal, using the same
KR19980031986A (en) Single crystal manufacturing device by vapor crystal growth method
KR100416738B1 (en) APPARATUS FOR FABRICATING ZnSe SINGLE CRYSTAL BY VAPOR CRYSTAL GROWTH METHOD
JPH08290991A (en) Method for growing compound semiconductor single crystal
US20060081856A1 (en) Novel wide bandgap material and method of making
JP3551607B2 (en) Method for producing GaAs single crystal
Pelzer et al. Reactor design and improvement of uniformity in InP based OMVPE

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140103

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20141231

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160104

Year of fee payment: 13