JPH0570286A - Production of transparent zinc oxide - Google Patents

Production of transparent zinc oxide

Info

Publication number
JPH0570286A
JPH0570286A JP23507791A JP23507791A JPH0570286A JP H0570286 A JPH0570286 A JP H0570286A JP 23507791 A JP23507791 A JP 23507791A JP 23507791 A JP23507791 A JP 23507791A JP H0570286 A JPH0570286 A JP H0570286A
Authority
JP
Japan
Prior art keywords
zinc oxide
substrate
crystal
zno
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23507791A
Other languages
Japanese (ja)
Inventor
Satoru Fujizu
悟 藤津
Fumitomo Noritake
史智 乗竹
Yasunobu Horiguchi
恭伸 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lion Corp
Original Assignee
Lion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lion Corp filed Critical Lion Corp
Priority to JP23507791A priority Critical patent/JPH0570286A/en
Publication of JPH0570286A publication Critical patent/JPH0570286A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To produce the ZnO crystal having a large thickness and high transparency by rotating a substrate at the time of sublimating ZnO in the high-temp. part in a synthesizing pipe of a reducing atmosphere and depositing transparent ZnO on the substrate in a low-temp. part. CONSTITUTION:A sintered body B of ZnO powder is placed in the synthesizing pipe 1 made of mullite and is heated with a heater 9. A reducing gaseous mixture composed of gaseous CO and gaseous H2 is supplied into the synthesizing tube 1 from a gas introducing pipe 10 on the upstream side thereof and is passed to the downstream side and is discharged from a discharge port 11. A base body 4 made of a single crystal or polycrystal having crystal axes of pellet- shaped ZnO, alumina, sapphire, silicon, quartz glass, etc., is mounted to a revolving shaft 5 on the downstream side of the ZnO sintered body B and the base body 4 is rotated by a motor 7 and a reduction gear 8. The ZnO sintered body B of the high temp. sublimates by reacting with the reducing gas and comes into contact with the front surface of the base body 4 of the low temp. rotating on the downstream side. The transparent ZnO crystal body having the C-axis directing to the high-temp. part is thus deposited and formed at a high speed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酸化性気体を用いない透
明酸化亜鉛の製造方法、特に肉厚の透明酸化亜鉛結晶体
を結晶軸の乱れを生じさせずに均質につくる方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing transparent zinc oxide which does not use an oxidizing gas, and more particularly to a method for uniformly producing a thick transparent zinc oxide crystal without disturbing the crystal axis.

【0002】[0002]

【従来の技術】酸化亜鉛は、半導性、光導電性あいは圧
電性を有し、かつ、可視光領域で本質的に透明な数少な
い物質であり、圧電体材料や半導性もしくは圧電性をも
つオプトエレクトロニクス材料等への応用が期待されて
いる。これらの材料として用いるためには、特に、透明
性と結晶軸配向性とが要求される。
2. Description of the Related Art Zinc oxide is one of the few substances that has semiconductivity, photoconductivity, or piezoelectricity, and is essentially transparent in the visible light region. It is expected to be applied to optoelectronic materials with To be used as these materials, transparency and crystal axis orientation are particularly required.

【0003】透明酸化亜鉛は、従来、ホットプレスを用
いて焼結する方法で製造されている。たとえば、特開昭
56−84367号公報には、亜鉛とガドリウムのシュ
ウ酸塩共沈物を熱分解して酸化微粉に変え、これを加圧
成形後空気中で焼結する方法が開示されている。しかし
ながら、これらの方法では、いずれも一種以上の添加物
を加えている上、結晶軸配向性を有していないので、酸
化亜鉛の性能を有効に利用するには不十分であった。
Transparent zinc oxide is conventionally manufactured by a method of sintering using hot pressing. For example, Japanese Unexamined Patent Publication (Kokai) No. 56-84367 discloses a method in which an oxalate coprecipitate of zinc and gadolinium is pyrolyzed into oxide fine powder, which is pressed and then sintered in air. There is. However, these methods are not sufficient to effectively utilize the performance of zinc oxide, because all of them have one or more additives and do not have crystal axis orientation.

【0004】また、結晶軸配向性酸化亜鉛は、サファイ
ア基板上等へのスパッタ法により製造されている。たと
えば、特開昭54−120286号公報及び特開昭54
−162689号公報には、金属亜鉛を加熱し、酸素雰
囲気中で酸化させて、これを基板上に沈着させる方法が
開示されている。しかしながら、これらの方法では装置
が複雑で成長速度も遅く、現在工業化されているのは、
数百μm以下の薄膜のみである。
The crystallographically oriented zinc oxide is produced by sputtering on a sapphire substrate or the like. For example, JP-A-54-120286 and JP-A-54
JP-A-162689 discloses a method of heating metallic zinc, oxidizing it in an oxygen atmosphere, and depositing it on a substrate. However, in these methods, the apparatus is complicated and the growth rate is slow, and the current industrialization is
Only a thin film having a thickness of several hundreds μm or less.

【0005】一方、本発明者らは、かかる問題点を解決
する手段として、先に、透明酸化亜鉛を簡易かつ迅速に
製造する方法を見いだし、特許出願した(特願平第2−
81890号)。この方法は、還元性気体中で酸化亜鉛
を加熱、昇華させ、該還元性気体を低温の基体に接触さ
せることにより、基体上に透明酸化亜鉛を析出(沈着)
させるものである。この方法によれば、結晶軸配向性を
有した透明酸化亜鉛が得られ、しかもその成長速度は、
スパッタリングやCVDで通常得られる酸化亜鉛膜の成
長速度よりも速く、短時間で容易に数mm程度の厚いもの
が得られる。しかしながら、この方法で得られる透明酸
化亜鉛には、しばしば結晶の中に小さなクラックが入る
ことが認められ、完全な結晶として使用するためは、こ
れを避けて切断する必要があり、所望の大きさの結晶を
再現性よく得るには問題があった。
On the other hand, the present inventors have previously found a method for producing transparent zinc oxide simply and quickly as a means for solving such a problem, and filed a patent application (Japanese Patent Application No. 2-
81890). In this method, zinc oxide is heated and sublimated in a reducing gas, and the reducing gas is brought into contact with a low-temperature substrate to deposit (deposit) transparent zinc oxide on the substrate.
It is what makes them. According to this method, transparent zinc oxide having crystal axis orientation is obtained, and its growth rate is
It is faster than the growth rate of a zinc oxide film usually obtained by sputtering or CVD, and a thick film of about several mm can be easily obtained in a short time. However, the transparent zinc oxide obtained by this method is often found to have small cracks in the crystal, and in order to use it as a complete crystal, it is necessary to avoid it and cut it, and to obtain the desired size. There was a problem in obtaining the crystals of 1) with good reproducibility.

【0006】[0006]

【発明が解決しようとする課題】本発明は、還元性気体
を用いて透明酸化亜鉛を製造する方法において、クラッ
クのない透明酸化亜鉛を再現性よく製造する方法を提供
することを目的とする。
DISCLOSURE OF THE INVENTION An object of the present invention is to provide a method for producing transparent zinc oxide using a reducing gas with good reproducibility and producing transparent zinc oxide without cracks.

【0007】[0007]

【課題を解決するための手段】本発明は、還元性気体を
用い、該還元性気体中で酸化亜鉛を昇華させ、該還元性
気体を低温の基体に接触させる透明酸化亜鉛の製造方法
において、該基体を回転さると、該基体上に析出する透
明酸化亜鉛の結晶中にクラックが入りにくくなり、所望
の大きさのものが再現性よく製造できるとの知見に基づ
いてなされたものである。また、該透明酸化亜鉛はc軸
に配向しているが、上記の方法を用いれば、この配向性
が向上するとの知見に基づいてなされたものである。
The present invention provides a method for producing transparent zinc oxide in which a reducing gas is used, zinc oxide is sublimated in the reducing gas, and the reducing gas is brought into contact with a low temperature substrate. This is based on the finding that when the substrate is rotated, cracks are less likely to form in the crystal of transparent zinc oxide deposited on the substrate, and a desired size can be produced with good reproducibility. Further, although the transparent zinc oxide is oriented along the c-axis, it was made based on the finding that the orientation can be improved by using the above method.

【0008】すなわち、本発明は、酸化亜鉛を還元性気
体中、高温加熱域で加熱して昇華させ、ついで該還元性
気体を高温加熱域よりも低温の基体に接触させて該基体
上に透明酸化亜鉛を析出させる方法に於て、該基体を回
転させることを特徴とする透明酸化亜鉛の製造方法を提
供する。本発明の方法は、例えば、上流が高温、下流が
低温となるように温度差を設けた還元性気流の上流で酸
化亜鉛を加熱して昇華させ、該還元性気流の下流に設け
た基体を回転させながら、該基体上に透明酸化亜鉛を析
出させる方法により、効率的に行うことができる。
That is, according to the present invention, zinc oxide is heated in a high-temperature heating region in a reducing gas to be sublimated, and then the reducing gas is brought into contact with a substrate having a temperature lower than that in the high-temperature heating region to be transparent on the substrate. A method for producing transparent zinc oxide, which comprises rotating the substrate in the method for depositing zinc oxide. In the method of the present invention, for example, zinc oxide is heated and sublimated upstream of a reducing gas stream having a temperature difference so that the upstream temperature is high and the downstream temperature is low, and a substrate provided downstream of the reducing gas stream is It can be efficiently carried out by a method of depositing transparent zinc oxide on the substrate while rotating.

【0009】本発明で原料として用いる酸化亜鉛とし
て、酸化亜鉛の粉末、圧粉体、焼結体などいずれでもよ
いが、密度が高いものの方が一定の容積中で多く仕込め
るので、大きな生成物(透明酸化亜鉛)を製造する上で
好ましい。すなわち、焼結体が好適である。また、酸化
亜鉛単独でもよいが、所望により各種ドーピング物質を
含んだものでもよい。
The zinc oxide used as a raw material in the present invention may be zinc oxide powder, green compact, sintered body, or the like, but a higher density product can be charged in a fixed volume, so that a large product can be obtained. It is preferable for producing (transparent zinc oxide). That is, a sintered body is suitable. Further, zinc oxide may be used alone, but may contain various doping substances as desired.

【0010】本発明で透明酸化亜鉛を析出させるのに用
いる基体としては、酸化亜鉛、アルミナ、サファイア、
シリコン、石英ガラスなどの各種焼結体、単結晶、ガラ
ス、金属を材質としてつくったもののいずれでもよい。
これらの中で、クラックがなく、均質で大きな透明酸化
亜鉛を製造するためには、配向した結晶軸を有する単結
晶や多結晶体が特に好ましい。このようなものとして、
現在安価に入手可能であること、あるいは、容易に合成
可能であることなどの点から、酸化亜鉛、アルミナ、シ
リコン、水晶、酸化マグネシウム、チタン酸ストロンチ
ウム、酸化チタンなどの単結晶、配向した結晶軸を有す
る多結晶体、単結晶薄膜および結晶軸配向性薄膜などが
挙げられる。これらの基体は合成中に固体形状を崩壊さ
せないものである必要がある。基体の形状は、透明酸化
亜鉛が析出成長する面、すなわち、高温部に向ける面を
平滑にしたものが好ましく、所望により表面処理した物
を使うこともできる。
Substrates used for depositing transparent zinc oxide in the present invention include zinc oxide, alumina, sapphire,
Any of various sintered bodies such as silicon and quartz glass, single crystals, glass, and materials made of metal may be used.
Among these, in order to produce a uniform and large transparent zinc oxide having no cracks, a single crystal or a polycrystal having an oriented crystal axis is particularly preferable. Like this,
From the viewpoint that it is currently available at low cost or can be easily synthesized, single crystals of zinc oxide, alumina, silicon, quartz, magnesium oxide, strontium titanate, titanium oxide, etc., oriented crystal axes Examples thereof include a polycrystal, a single crystal thin film, and a crystal axis oriented thin film. These substrates should be such that the solid form does not collapse during synthesis. The shape of the substrate is preferably such that the surface on which transparent zinc oxide is deposited and grown, that is, the surface facing the high temperature portion is made smooth, and a surface-treated material can be used if desired.

【0011】基体として多結晶焼結体を用いた場合に比
べて、このような上述の基体を用いた場合、配向性がさ
らに高まりかつクラックの少ない良質の配向性透明酸化
亜鉛を得ることができる。本発明では、治具を用いて、
基体が合成管壁に接しないように、合成管の基体下流側
より挿入された回転軸先端に基体を固定するのがよい。
回転軸の材質は特に限定されないが、使用温度および還
元性雰囲気中で機械的に安定である必要がある。回転軸
は合成管外部において低速モーターに接続された減速機
に接続することによって回転する。回転軸の回転数は、
特に限定されるものではないが、余り速すぎると、回転
軸の振動、軸ぶれ等が起こり均質な結晶が得難くなるの
で、好適には10rpm 以下、より好ましくは0.05〜2
rpm とするのがよい。
Compared with the case where a polycrystalline sintered body is used as the substrate, a high-quality oriented transparent zinc oxide having higher orientation and less cracks can be obtained by using the above-mentioned substrate. .. In the present invention, using a jig,
It is preferable to fix the base to the tip of the rotary shaft inserted from the downstream side of the base of the synthetic tube so that the base does not contact the wall of the synthetic tube.
The material of the rotating shaft is not particularly limited, but it needs to be mechanically stable in the use temperature and the reducing atmosphere. The rotating shaft rotates by connecting to a speed reducer connected to a low speed motor outside the synthesis tube. The rotation speed of the rotating shaft is
It is not particularly limited, but if it is too fast, vibration of the rotating shaft, shaft wobbling, etc. occur and it becomes difficult to obtain a homogeneous crystal. Therefore, it is preferably 10 rpm or less, more preferably 0.05 to 2
It is good to use rpm.

【0012】本発明では、基体を置く部分の温度は、高
温加熱域よりも1〜600℃、好ましくは50〜400
℃低くするのがよい。この高温の部分と基体を置く低温
部との距離は、生成させる結晶体の大きさ、結晶成長速
度を鑑み、適宜設定することができる。特に、高温加熱
域の温度を800〜1300℃、好ましくは1000〜
1250℃、基体を置く低温部の温度を500〜100
0℃、好ましくは700〜950℃とするのがよい。
In the present invention, the temperature of the portion on which the substrate is placed is 1 to 600 ° C., preferably 50 to 400 ° C., as compared with the high temperature heating region.
It is better to lower the temperature by ℃. The distance between the high temperature portion and the low temperature portion on which the substrate is placed can be appropriately set in consideration of the size of the crystal to be generated and the crystal growth rate. Particularly, the temperature in the high temperature heating range is 800 to 1300 ° C., preferably 1000 to
1250 ℃, the temperature of the low temperature part to put the substrate 500 ~ 100
The temperature is 0 ° C, preferably 700 to 950 ° C.

【0013】高温加熱域の温度として1000〜125
0℃が好適であるのは、この温度より低いと原料の酸化
亜鉛(粉体または焼結体)の昇華速度が遅く、この温度
を越えると原料酸化亜鉛の昇華速度が著しく速かった
り、高価な加熱装置を必要とするからである。また、低
温部の温度として700〜950℃が好適であるのは、
この温度より低いと装置の内壁等に酸化亜鉛の結晶が成
長して基体上に成長する透明酸化亜鉛結晶体の成長速度
が遅くなるからであり、この温度を越えると成長する透
明酸化亜鉛結晶体の着色が増すからである。
The temperature of the high temperature heating range is 1000 to 125
0 ° C. is suitable because the sublimation rate of the raw material zinc oxide (powder or sintered body) is slower than this temperature, and the sublimation rate of the raw material zinc oxide is remarkably high or expensive when the temperature exceeds this temperature. This is because a heating device is required. Moreover, 700-950 degreeC is suitable as a temperature of a low temperature part,
This is because if the temperature is lower than this temperature, the crystal of zinc oxide grows on the inner wall of the device and the growth rate of the transparent zinc oxide crystal that grows on the substrate becomes slower. If the temperature is exceeded, the transparent zinc oxide crystal grows. This is because the coloration of is increased.

【0014】上記高温部と低温部の間には温度勾配をつ
けるのが好ましい。勾配は、高温部と低温部の間にいく
つかの加熱ゾーンを設け、隣接するゾーンの間で独立に
違った勾配をつける等変則的であってもよいが、一定の
方が好ましい。この温度勾配は1〜800℃/cm、好ま
しくは50〜250℃/cmとするのがよい。温度勾配が
この値より小さいと、高温部で昇華した酸化亜鉛が低温
部に至る以前に装置の内壁等に凝縮し、目的の透明酸化
亜鉛を低温部で得ることが困難となる。また、この値よ
りも大きい勾配では、温度勾配をつけるために複雑な装
置を必要とするからである。
It is preferable to provide a temperature gradient between the high temperature portion and the low temperature portion. The gradient may be irregular, such as providing several heating zones between the hot zone and the cold zone and providing different gradients independently between adjacent zones, but a constant gradient is preferred. The temperature gradient is 1 to 800 ° C./cm, preferably 50 to 250 ° C./cm. When the temperature gradient is smaller than this value, zinc oxide sublimated in the high temperature portion is condensed on the inner wall of the apparatus before reaching the low temperature portion, and it becomes difficult to obtain the target transparent zinc oxide in the low temperature portion. In addition, a gradient larger than this value requires a complicated device for providing a temperature gradient.

【0015】本発明では、高温部、低温部ともに還元性
雰囲気にすることが必要で、還元性ガスを流通させるこ
とが好ましい。つまり、特開昭54−162689号公
報では、昇華した亜鉛を酸化して、基板上に酸化亜鉛と
して析出させるために酸化性ガスが必要であるが、本発
明では、還元性ガスを流通させるのみでよいのである。
本発明で用いる還元性ガスとしては、水素や一酸化炭素
などの通常の還元性気体単独または混合物が挙げられ、
好ましくはこれらを窒素やアルゴン等の不活性ガスで希
釈したものである。不活性ガス中の還元性気体の含有量
は、0.1〜50%が好ましく、酸素分圧として10-3at
m 以下、好ましくは10-7atm 以下がよい。
In the present invention, it is necessary to make a reducing atmosphere in both the high temperature portion and the low temperature portion, and it is preferable to pass the reducing gas. That is, in Japanese Patent Laid-Open No. 54-162689, an oxidizing gas is required to oxidize sublimated zinc and deposit it as zinc oxide on the substrate, but in the present invention, only a reducing gas is passed. Is good.
Examples of the reducing gas used in the present invention include ordinary reducing gases such as hydrogen and carbon monoxide alone or in a mixture,
Preferably, these are diluted with an inert gas such as nitrogen or argon. The content of the reducing gas in the inert gas is preferably 0.1 to 50%, and the oxygen partial pressure is 10 −3 at
m or less, preferably 10 -7 atm or less.

【0016】この還元性ガスによって、高温部に設置し
た原料の酸化亜鉛が還元、昇華されて、基体を置いた低
温部まで移送され、その基体上に酸化亜鉛として再び析
出し、透明酸化亜鉛として成長するわけである。還元性
気体の線流速は任意とすることができるが、0.1cm/mi
n 〜250cm/min とするのが好ましく、より好ましく
は1cm/min 〜100cm/min であるが、これ未満で
は、高温部に置いた原料の酸化亜鉛の昇華が進まず、ま
た、移送が遅くなる結果、透明酸化亜鉛の成長が遅くな
り、これを越えると昇華、移送が激しくなる結果、還元
性ガスに同伴されて系外に流出し、かえって透明酸化亜
鉛の成長が遅くなるからである。
With this reducing gas, the raw material zinc oxide placed in the high temperature portion is reduced and sublimated, transferred to the low temperature portion on which the substrate is placed, and again deposited as zinc oxide on the substrate to obtain transparent zinc oxide. It will grow. The linear velocity of the reducing gas can be arbitrary, but it is 0.1 cm / mi
It is preferably from n to 250 cm / min, more preferably from 1 cm / min to 100 cm / min, but below this, the sublimation of the raw material zinc oxide placed in the high temperature part does not proceed and the transfer becomes slow. As a result, the growth of the transparent zinc oxide becomes slower, and if it exceeds this, sublimation and transfer become violent, and as a result, the transparent zinc oxide is entrained and flows out of the system, and the growth of the transparent zinc oxide becomes slower.

【0017】なお、還元性ガスの流通方向は特に限定さ
れるものではなく、通常は高温部から低温部へ流すが、
例えば、酸化亜鉛を高温部で還元、昇華し、拡散によっ
て低温部に移行させる場合には、低温部から高温部へ還
元性ガスを低速で流し、低温部に置いた基体上に透明酸
化亜鉛を析出させることもできる。本発明の方法におい
て、透明酸化亜鉛の製造に要する時間は特に限定される
ものでない。すなわち、本発明の透明酸化亜鉛の成長速
度は、原料酸化亜鉛と基体を設置した部分の温度および
その間の温度勾配、還元性ガスの線流速によって決まる
ので、これらを調節し、所望の肉厚のものが得られるま
で反応を行えばよい。成長速度は、スパッタリングやC
VDで得られる酸化亜鉛膜の成長速度よりも速く、通常
10μm/hr以上、場合によっては100μm/hr以上
とすることも可能である。
The direction of flow of the reducing gas is not particularly limited. Normally, the reducing gas flows from the high temperature part to the low temperature part.
For example, when zinc oxide is reduced and sublimated in a high temperature part and is transferred to a low temperature part by diffusion, a reducing gas is flowed from the low temperature part to the high temperature part at a low speed, and transparent zinc oxide is deposited on the substrate placed in the low temperature part. It can also be deposited. In the method of the present invention, the time required for producing transparent zinc oxide is not particularly limited. That is, the growth rate of the transparent zinc oxide of the present invention is determined by the temperature of the material zinc oxide and the portion where the substrate is installed, the temperature gradient between them, and the linear flow velocity of the reducing gas. The reaction may be carried out until a product is obtained. The growth rate is sputtering or C
It is faster than the growth rate of the zinc oxide film obtained by VD, and usually 10 μm / hr or more, and in some cases, 100 μm / hr or more.

【0018】本発明の方法によれば、低温部に置かれた
基体上に、c軸が高温部に向いた配向性の透明酸化亜鉛
結晶体が成長する。さらに、本発明のように、基体を回
転させることによって透明酸化亜鉛を製造すれば、回転
しない場合にしばしばみられるクラックの生成が大幅に
抑制され、透明酸化亜鉛の大きな結晶体が安定して製造
できる。具体的な大きさは、次の通りである。
According to the method of the present invention, a transparent zinc oxide crystal having an orientation in which the c-axis faces the high temperature portion is grown on the substrate placed in the low temperature portion. Further, when the transparent zinc oxide is produced by rotating the substrate as in the present invention, the generation of cracks often seen when the substrate is not rotated is significantly suppressed, and a large crystal of transparent zinc oxide is stably produced. it can. The specific size is as follows.

【0019】c軸方向の厚み:2mm以上とすることがで
き、さらに、10mm以上とすることも可能である。 c軸に垂直方向の大きさ:基体の大きさとそれにともな
う装置の大きさに依存し、基体を大きくすることによっ
て大面積の透明酸化亜鉛を容易に得ることができる。例
えば、c軸方向に成長した単結晶では得難い直径1mm以
上のものが得られ、10mm以上のものも可能である。
Thickness in the c-axis direction: 2 mm or more, and further 10 mm or more is possible. Size in the direction perpendicular to the c-axis: Depends on the size of the substrate and the size of the device that accompanies it. By enlarging the substrate, a large area of transparent zinc oxide can be easily obtained. For example, a diameter of 1 mm or more, which is difficult to obtain with a single crystal grown in the c-axis direction, can be obtained, and a diameter of 10 mm or more is also possible.

【0020】このようにして基体上に成長した酸化亜鉛
結晶体は、用いた基体とともに使用してもよいが、基体
を切り放して切断、研磨し、任意の大きさおよび形状に
することも可能である。なお、本発明の方法によって得
られる酸化亜鉛結晶体は、透明ではあるが、やや褐色に
着色している。これは、製造の際に使用する還元性ガス
の作用によって、酸化亜鉛中に酸素欠陥が生じるためと
考えられる。従って、無色ないしそれに近い透明体を得
るためには、本発明の方法によって製造した後、酸素雰
囲気中で加熱処理すればよい。たとえば、空気または酸
素を混合した不活性ガス中で、500〜1000℃、1
時間以上の条件で行えばよい。この際、通常の電気炉の
他、HIP等加圧下で処理することもできる。
The zinc oxide crystal thus grown on the substrate may be used together with the substrate used, but it is also possible to cut the substrate into pieces, cut and polish it into any size and shape. is there. The zinc oxide crystal obtained by the method of the present invention is transparent, but is colored slightly brown. It is considered that this is because oxygen deficiency occurs in zinc oxide due to the action of the reducing gas used in the production. Therefore, in order to obtain a transparent body which is colorless or close thereto, it is sufficient to carry out heat treatment in an oxygen atmosphere after manufacturing by the method of the present invention. For example, in an inert gas mixed with air or oxygen, 500 to 1000 ° C., 1
It should be done under the condition of time or more. At this time, in addition to the usual electric furnace, it is possible to perform the treatment under pressure such as HIP.

【0021】本発明の方法によって得られる透明酸化亜
鉛は、次のような特性を有する。 1)可視光領域で透明である。 本発明の方法によって製造した透明酸化亜鉛をc軸方向
と直角に切断し、厚さ1mmに研磨した試料の可視光領域
の光透過率は、平均で65%以上である。さらに、これ
を酸素雰囲気で熱処理すると、80%以上のものが得ら
れる。 2)c軸方向に配向している。
The transparent zinc oxide obtained by the method of the present invention has the following characteristics. 1) It is transparent in the visible light region. The transparent zinc oxide produced by the method of the present invention was cut at a right angle to the c-axis direction and polished to a thickness of 1 mm, and the average light transmittance in the visible light region was 65% or more. Further, when this is heat-treated in an oxygen atmosphere, 80% or more is obtained. 2) Oriented in the c-axis direction.

【0022】結晶体のc軸方向にX線をあててX線回折
を測定すると、通常の酸化亜鉛(多結晶体)で観測され
るピーク強度の大きい101面(d=2.476A)、1
00面(d=2.816A)のピークはほとんどみられ
ず、c軸に垂直な002面(d=2.602A)や004
面(d=1.301A)の強度が大きいピークが観察さ
れ、c軸に配向していることがわかる。 3)結晶体の性状 本発明の透明酸化亜鉛は、酸化亜鉛の六方晶多結晶体で
あり、純度は、原料酸化亜鉛や装置からの不純物の混入
によって左右されるが、かなり高純度のものが得られ
る。
When X-ray diffraction is measured by applying X-rays to the c-axis direction of the crystal, 101-plane (d = 2.476A), which has a large peak intensity observed in ordinary zinc oxide (polycrystal), 1
Almost no peak is observed on the 00 plane (d = 2.816A), and the 002 plane (d = 2.602A) or 004 perpendicular to the c-axis.
A peak with a large intensity on the plane (d = 1.301A) is observed, which indicates that the orientation is on the c-axis. 3) Properties of Crystalline The transparent zinc oxide of the present invention is a hexagonal polycrystal of zinc oxide, and its purity depends on the raw material zinc oxide and the mixing of impurities from the apparatus. can get.

【0023】また、電気的特性を変えるために、原料酸
化亜鉛にドーピング物質を添加したものからは各種元素
がドーピングされた結晶体が得られる。このようなドー
ピングは、得られた透明酸化亜鉛を後処理して行うこと
もできる。例えば、Liをドーピングする場合には、切
断、研磨した透明酸化亜鉛を所定濃度の炭酸リチウム水
溶液に入れ、取り出した後乾燥して、表面に炭酸リチウ
ムをコートし、その後800〜1000℃で24時間程
度空気中で熱処理すればよい。 4)電気的特性 酸化亜鉛単独の場合は半導性を示すが、Al、Ga、Ge、I
n、Sn等3価または4価の元素、F等がドーピングされ
たものは導電性を示し、Li、Na、Kなど1価の元素がド
ーピングされたものは絶縁性を示す。
Crystals doped with various elements can be obtained by adding a doping substance to the raw material zinc oxide in order to change the electrical characteristics. Such doping can also be performed by post-treating the obtained transparent zinc oxide. For example, in the case of doping with Li, the cut and polished transparent zinc oxide is put into an aqueous solution of lithium carbonate having a predetermined concentration, taken out and dried, and the surface is coated with lithium carbonate, and then at 800 to 1000 ° C. for 24 hours. The heat treatment may be performed in the air to some extent. 4) Electrical characteristics Zinc oxide alone shows semiconductivity, but Al, Ga, Ge, I
Those doped with trivalent or tetravalent elements such as n and Sn, F and the like show conductivity, and those doped with monovalent elements such as Li, Na and K show insulating properties.

【0024】[0024]

【発明の効果】本発明によれば、簡単な装置と簡単な操
作で、肉厚で比較的大きく、均質な透明酸化亜鉛の結晶
体を高速度で製造することができる。また、本発明の方
法によれば、高純度の透明酸化亜鉛が得られる一方、ド
ーピング剤を選ぶことによって所望の元素をドーピング
することもでき、任意に特性を変えることができる。
According to the present invention, it is possible to produce, at a high speed, a relatively thick, relatively large and uniform transparent zinc oxide crystal body with a simple apparatus and a simple operation. Further, according to the method of the present invention, high-purity transparent zinc oxide can be obtained, while a desired element can be doped by selecting a doping agent, and the characteristics can be arbitrarily changed.

【0025】従って、本発明の方法で製造した透明酸化
亜鉛は、エレクトロニクスやオプトエレクトロニクス分
野において新規な応用が可能である。例えば、酸化亜鉛
の半導性や導電性と透明性を利用すれば、ディスプレー
基板や透明電極への利用が期待できる。また、Liをドー
ピングすること等により絶縁化すれば、圧電体材料とし
て広く用いることができる。また、紫外線を吸収し、可
視光を透過する選択透過性の光学材料としても有用であ
る。
Therefore, the transparent zinc oxide produced by the method of the present invention has new applications in the fields of electronics and optoelectronics. For example, if the semiconductivity, conductivity, and transparency of zinc oxide are used, it can be expected to be used for display substrates and transparent electrodes. If it is insulated by doping with Li or the like, it can be widely used as a piezoelectric material. In addition, it is also useful as an optical material that absorbs ultraviolet rays and transmits visible light.

【0026】次に実施例により本発明を説明する。Next, the present invention will be described with reference to examples.

【0027】[0027]

【実施例】【Example】

実施例1 第1図に示す装置のムライト管(内径34mm)高温部2
に、酸化亜鉛約5gをラバープレス後1000℃で1時
間空気中で焼成した焼結体Bを6個おき、低温部3に、
直径12mm、厚さ5mmのペレット状酸化亜鉛焼結体から
なる基体4の平滑な一面Aを高温部に向けて回転軸5
に、セラミック接着剤を用いて取り付けることによって
設置した。回転軸5は軸封部6を通して、モーター7に
接続された減速機8に連結し、回転速度0.2rpm で回転
させた。温度調節器に接続された加熱装置9で加熱して
室温から昇温時間2時間で高温状態とし、その後の装置
内温度分布を第2図に示すように設定し、48時間運転
した後、炉冷した。この間、還元性気体として水素6%
を含む窒素を用い、室温で計測した量は、3cm/minの
線流速で導入管10から合成管1に入れ、排出口11か
ら排出させて昇温から炉冷まで常に流通させた。得られ
た配向性透明酸化亜鉛結晶は成長方向の厚さが、いずれ
の部分であっても約12mmで、この結晶を基体より切断
研磨した結果、クラックの入らない厚さ7mmの結晶が得
られた。
Example 1 High temperature part 2 of mullite tube (internal diameter 34 mm) of the apparatus shown in FIG.
In addition, about 5 g of zinc oxide was placed in the low temperature part 3 by placing 6 sintered bodies B, each of which was fired in air at 1000 ° C. for 1 hour after rubber pressing.
Rotating shaft 5 with smooth surface A of base body 4 made of pelletized zinc oxide sinter having a diameter of 12 mm and a thickness of 5 mm facing the high temperature part.
Was installed by using a ceramic adhesive. The rotating shaft 5 was connected to a speed reducer 8 connected to a motor 7 through a shaft sealing portion 6 and rotated at a rotation speed of 0.2 rpm. It is heated by a heating device 9 connected to a temperature controller to reach a high temperature state from room temperature for a heating time of 2 hours, after which the temperature distribution in the device is set as shown in FIG. Chilled During this period, 6% hydrogen as reducing gas
Using nitrogen containing nitrogen, the amount measured at room temperature was introduced into the synthesis tube 1 from the introduction tube 10 at a linear flow rate of 3 cm / min, discharged from the discharge port 11 and constantly circulated from the temperature rise to the furnace cooling. The obtained oriented transparent zinc oxide crystal had a thickness in the growth direction of about 12 mm in any part, and when this crystal was cut and polished from the substrate, a 7 mm thick crystal free from cracks was obtained. It was

【0028】この結晶から切り取った小片のX線回折か
ら、c軸の配向度を次のように算定した。すなわち、
(101)面と(002)面の強度比および(103)
面と(004)面の強度比を、別に測定した酸化亜鉛粉
末のそれとで比較した。比較の結果を粉末の強度比に対
する結晶の強度比の割合(%)で示すと、前者は0%、
後者は2%であった。
From the X-ray diffraction of a small piece cut from this crystal, the degree of c-axis orientation was calculated as follows. That is,
Intensity ratio of (101) plane to (002) plane and (103)
The intensity ratio of the (004) plane and that of the (004) plane were compared with those of the zinc oxide powder measured separately. When the result of the comparison is shown by the ratio (%) of the crystal strength ratio to the powder strength ratio, the former is 0%,
The latter was 2%.

【0029】実施例2 直径12mm、厚さ3mmのc軸に配向した透明酸化亜鉛を
基体4とし、配向軸(c軸)が回転軸5に平行になるよ
うに設置した以外は、実施例1と同様にして透明酸化亜
鉛を成長させた。得られた配向性透明酸化亜鉛結晶から
クラックの入らない部分を切断研磨したところ、厚さ9
mmのものが得られた。
Example 2 Example 1 was repeated except that a transparent zinc oxide having a diameter of 12 mm and a thickness of 3 mm and oriented to the c-axis was used as the substrate 4, and the orientation axis (c-axis) was parallel to the rotation axis 5. Transparent zinc oxide was grown in the same manner as in. From the obtained oriented transparent zinc oxide crystal, a portion free from cracks was cut and polished to have a thickness of 9
mm was obtained.

【0030】また、この結果のc軸の配向度を評価した
結果、(101)面と(002)面の強度比が粉末のそ
れに対して0%、(103)面と(004)面の強度比
が1.5%であった。 比較例1 回転軸5を取り外し、基体を合成管1内に直接設置した
以外は実施例1と同様に行った。得られた結晶の成長方
向の厚さは結晶の上部で9mm、下部で6mmとなり、均一
な成長をしなかった。また、結晶内に成長方向に垂直に
クラックが生じこの結晶を基体より切断し、研磨して
も、クラックを避けると厚さ2.5mmのものしか得られな
かった。
Further, as a result of evaluating the degree of c-axis orientation as a result, the strength ratio between the (101) plane and the (002) plane is 0% with respect to that of the powder, and the strength between the (103) plane and the (004) plane is high. The ratio was 1.5%. Comparative Example 1 The same procedure as in Example 1 was carried out except that the rotary shaft 5 was removed and the substrate was placed directly in the synthesis tube 1. The thickness of the obtained crystal in the growth direction was 9 mm at the upper part of the crystal and 6 mm at the lower part, and uniform growth was not achieved. Further, cracks were formed in the crystal perpendicularly to the growth direction, and even if the crystal was cut from the substrate and polished, only a thickness of 2.5 mm was obtained if the crack was avoided.

【0031】また、この結晶のc軸の配向度を評価した
結果、(101)面と(002)面の強度比は粉末のそ
れに対して0%、(103)面と(004)面の強度比
は7%であった。 実施例3 実施例1と比較例1で得られた結晶から、それぞれ9×
9×2mmの研磨した結晶を切り出し、これらを炭酸リチ
ウム水溶液(4.98g/1)中に入れ、乾燥させること
によって試料表面に炭酸リチウムをコートした。これら
を空気中、900℃で24時間加熱してリチウムを熱拡
散させ、さらに表面を研磨して試料とした。いずれの試
料も108 Ωcm 以上の抵抗を持つ高抵抗体であった。
As a result of evaluating the degree of c-axis orientation of this crystal, the strength ratio of the (101) plane to the (002) plane was 0% with respect to that of the powder, and the strength of the (103) plane to the (004) plane. The ratio was 7%. Example 3 9 × each from the crystals obtained in Example 1 and Comparative Example 1.
9 × 2 mm polished crystals were cut out, put into an aqueous lithium carbonate solution (4.98 g / 1), and dried to coat the sample surface with lithium carbonate. These were heated in air at 900 ° C. for 24 hours to thermally diffuse lithium, and the surface was polished to prepare a sample. All samples were high resistance materials having a resistance of 10 8 Ωcm or more.

【0032】得られた試料にIn−Ga電極を塗布し、
10kHz〜10MHzの範囲でインピーダンスを測定
することによって電気機械結合係数を求めた。結果を単
結晶の値と比較して表1に示すが、比較例1に比べて実
施例1の電気機械結合係数が大きく、単結晶の値に近い
のは、配向度が高いことに由来するものと考えられる。
An In-Ga electrode was applied to the obtained sample,
The electromechanical coupling coefficient was obtained by measuring the impedance in the range of 10 kHz to 10 MHz. The results are shown in Table 1 in comparison with the value of the single crystal. The electromechanical coupling coefficient of Example 1 is larger than that of Comparative Example 1, and the reason why the value is close to the value of the single crystal is that the degree of orientation is high. Thought to be a thing.

【0033】 [0033]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法で用いる透明酸化亜鉛の製造装置
の概略図である。
FIG. 1 is a schematic view of an apparatus for producing transparent zinc oxide used in the method of the present invention.

【図2】図1の製造装置内の温度分布を示す。2 shows a temperature distribution in the manufacturing apparatus of FIG.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 酸化亜鉛を還元性雰囲気中、高温加熱域
で加熱して昇華させ、ついで該還元性気体を高温加熱域
よりも低温の基体に接触させて該気体上に透明酸化亜鉛
を析出させる方法に於て、該基体を回転させることを特
徴とする透明酸化亜鉛の製造方法。
1. Zinc oxide is heated in a high-temperature heating zone in a reducing atmosphere to sublimate, and then the reducing gas is brought into contact with a substrate whose temperature is lower than in the high-temperature heating zone to deposit transparent zinc oxide on the gas. The method for producing transparent zinc oxide, characterized in that the substrate is rotated.
【請求項2】 単結晶および配向した結晶軸を有する多
結晶体からなる群から選ばれた一種を基体に用いる請求
項1に記載の製造方法。
2. The manufacturing method according to claim 1, wherein one kind selected from the group consisting of a single crystal and a polycrystalline body having an oriented crystal axis is used for the substrate.
【請求項3】 基体がc軸に配向した透明酸化亜鉛であ
る請求項2に記載の製造方法。
3. The method according to claim 2, wherein the substrate is a transparent zinc oxide oriented in the c-axis.
【請求項4】 上流が高温、下流が低温となるように温
度差を設けた還元性気流の上流で酸化亜鉛を加熱して昇
華させ、還元性気流の下流に設けた基体上に透明酸化亜
鉛を析出させる請求項1〜3のいずれか1項に記載の方
法。
4. A transparent zinc oxide is formed on a substrate provided downstream of the reducing air stream by heating and sublimating zinc oxide upstream of the reducing air stream having a temperature difference so that the upstream temperature is high and the downstream temperature is low. The method according to any one of claims 1 to 3, wherein the is precipitated.
JP23507791A 1991-09-13 1991-09-13 Production of transparent zinc oxide Pending JPH0570286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23507791A JPH0570286A (en) 1991-09-13 1991-09-13 Production of transparent zinc oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23507791A JPH0570286A (en) 1991-09-13 1991-09-13 Production of transparent zinc oxide

Publications (1)

Publication Number Publication Date
JPH0570286A true JPH0570286A (en) 1993-03-23

Family

ID=16980725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23507791A Pending JPH0570286A (en) 1991-09-13 1991-09-13 Production of transparent zinc oxide

Country Status (1)

Country Link
JP (1) JPH0570286A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100416736B1 (en) * 1996-10-31 2004-03-19 삼성전기주식회사 Method for fabricating single crystal using vpe growth method
JP2006225213A (en) * 2005-02-21 2006-08-31 Tosoh Corp Zinc oxide single crystal, substrate for epitaxial growth obtained from the same, and methods for manufacturing them
WO2007100146A1 (en) 2006-03-01 2007-09-07 Mitsubishi Gas Chemical Company, Inc. PROCESS FOR PRODUCING ZnO SINGLE CRYSTAL ACCORDING TO METHOD OF LIQUID PHASE GROWTH
WO2010140426A1 (en) 2009-06-04 2010-12-09 三菱瓦斯化学株式会社 MULTILAYER ZnO SINGLE CRYSTAL SCINTILLATOR AND METHOD FOR MANUFACTURING SAME
US8257842B2 (en) 2003-08-27 2012-09-04 National Institute For Materials Science Zinc oxide-based multilayer structural body and its producing method
CN102703973A (en) * 2012-06-05 2012-10-03 西安理工大学 Method for growing zinc oxide crystal

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100416736B1 (en) * 1996-10-31 2004-03-19 삼성전기주식회사 Method for fabricating single crystal using vpe growth method
US8257842B2 (en) 2003-08-27 2012-09-04 National Institute For Materials Science Zinc oxide-based multilayer structural body and its producing method
JP2006225213A (en) * 2005-02-21 2006-08-31 Tosoh Corp Zinc oxide single crystal, substrate for epitaxial growth obtained from the same, and methods for manufacturing them
JP4677796B2 (en) * 2005-02-21 2011-04-27 東ソー株式会社 Method for producing zinc oxide single crystal
WO2007100146A1 (en) 2006-03-01 2007-09-07 Mitsubishi Gas Chemical Company, Inc. PROCESS FOR PRODUCING ZnO SINGLE CRYSTAL ACCORDING TO METHOD OF LIQUID PHASE GROWTH
WO2010140426A1 (en) 2009-06-04 2010-12-09 三菱瓦斯化学株式会社 MULTILAYER ZnO SINGLE CRYSTAL SCINTILLATOR AND METHOD FOR MANUFACTURING SAME
CN102703973A (en) * 2012-06-05 2012-10-03 西安理工大学 Method for growing zinc oxide crystal
CN102703973B (en) * 2012-06-05 2015-03-25 西安理工大学 Method for growing zinc oxide crystal

Similar Documents

Publication Publication Date Title
US4565747A (en) Boron nitride containing titanium nitride, method of producing the same and composite ceramics produced therefrom
Lee et al. Growth and electrostrictive properties of Pb (Mg1/3Nb2/3) O3 crystals
WO1999055619A1 (en) Process for producing metal oxide, target comprising the metal oxide for forming thin metal oxide film, process for producing the same, and process for producing thin metal oxide film
JPS61158877A (en) Manufacture of ceramic porous membrane
JP3997365B2 (en) Oxide ion conductive single crystal and method for producing the same
JPH0570286A (en) Production of transparent zinc oxide
JP3985144B2 (en) Method for producing oxide ion conductive crystal
JPS62223009A (en) Production of alpha-sialon powder
JP2888340B2 (en) Method for producing crystalline solid solution powder, crystalline solid solution powder of indium-tin-oxide, ITO sputtering target and ITO coating
CN113353973A (en) Preparation method of calcium-doped barium titanate powder
CN113652670A (en) Gallium oxide nanowire and preparation method and application thereof
CN108286043A (en) β-Ga are prepared using chemical vapour deposition technique2O3The method of nanosphere
Parlak et al. Effect of heat treatment on nickel manganite thin film thermistors deposited by electron beam evaporation
Sibieude et al. Kinetics and crystallization studies by in situ X-ray diffraction of the oxidation of chemically vapour deposited SiC
JP2000109366A (en) Light non-transmittive high purity silicon carbide material, light shieldable material for semiconductor treating device, and semiconductor treating device
Kim et al. The effects of substrates on the thin-film structures of BaTiO 3
JPH0724258B2 (en) Solid diffusion source, doped silicon wafer and method of making same
CN103664171A (en) Ferrous acid lutecium ceramic material and preparation method and application thereof
WO2001087799A1 (en) Sintered compact of lanthanum sulfide or cerium sulfide and method for preparing the same
JP2679798B2 (en) Manufacturing method of aluminum nitride
JPS6355108A (en) Aluminum nitride powder and production thereof
Yoon et al. Effect of deposition parameters on the deposition characteristics of chemically vapour deposited PbTiO3
JPH03279214A (en) Production of transparent zinc oxide
Wang et al. Effect of heat treatment on phase transformation of aluminum nitride ultrafine powder prepared by chemical vapor deposition
JPS61136995A (en) Oxide thin film and its manufacture