JP2006225213A - Zinc oxide single crystal, substrate for epitaxial growth obtained from the same, and methods for manufacturing them - Google Patents

Zinc oxide single crystal, substrate for epitaxial growth obtained from the same, and methods for manufacturing them Download PDF

Info

Publication number
JP2006225213A
JP2006225213A JP2005043360A JP2005043360A JP2006225213A JP 2006225213 A JP2006225213 A JP 2006225213A JP 2005043360 A JP2005043360 A JP 2005043360A JP 2005043360 A JP2005043360 A JP 2005043360A JP 2006225213 A JP2006225213 A JP 2006225213A
Authority
JP
Japan
Prior art keywords
zinc oxide
single crystal
oxide single
substrate
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005043360A
Other languages
Japanese (ja)
Other versions
JP4677796B2 (en
Inventor
Takahiro Matsunaga
敬浩 松永
Noriyoshi Shishido
統悦 宍戸
Kazuo Nakajima
一雄 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2005043360A priority Critical patent/JP4677796B2/en
Publication of JP2006225213A publication Critical patent/JP2006225213A/en
Application granted granted Critical
Publication of JP4677796B2 publication Critical patent/JP4677796B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a zinc oxide single crystal having such a composition that oxygen and zinc are substantially stoichiometrically equal in amount, that is to say, a stoichiometry composition and having extremely high electric specific resistance, and to provide a substrate for epitaxial growth obtained from the same and methods for manufacturing them. <P>SOLUTION: The zinc oxide single crystal is provided which has such a composition that oxygen and zinc are substantially stoichiometrically equal in amount and which has electric specific resistance of ≥1×10<SP>9</SP>Ω cm. The substrate for epitaxial growth obtained from the same, and methods for manufacturing them are also provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ストイキオメトリー組成の酸化亜鉛単結晶、それより得られるエピタキシャル成長用基板に用いる酸化亜鉛単結晶基板、およびそれらの製造方法に関するものである。   The present invention relates to a zinc oxide single crystal having a stoichiometric composition, a zinc oxide single crystal substrate used for a substrate for epitaxial growth obtained therefrom, and a method for producing them.

酸化亜鉛は古くから知られている材料であり、触媒、化粧品など工業化学品として用いられてきた。しかし、最近、酸化亜鉛が直接遷移型のワイドバンドギャップ半導体であることから半導体として見直されており、近年、青色LED(Light Emitting Diode),LD(Laser Diode)など、半導体デバイスに幅広く応用されることが期待され、注目されている。この酸化亜鉛単結晶は、水熱法で製造できることが知られている。一般に、水熱法による単結晶の製造は人工水晶が広く知られているが、酸化亜鉛単結晶も同様な手法で実施できる。例えば、非特許文献1で示されているが、水熱法による酸化亜鉛単結晶の製造条件の代表的な例を次に示す。酸化亜鉛単結晶の小片を種結晶とし、原料は酸化亜鉛焼結体、そして溶媒は6.5mol/Lの水酸化カリウムおよび0.1〜2mol/Lの水酸化リチウムを用いて、これらを貴金属(Ag,Pt)ルツボに投入し密閉する。そしてこれをオートクレーブに挿入し、育成温度300〜400℃、圧力55MPaで数週間かけて育成する。しかし、従来、育成されたものは不純物が混入したり、着色があるなど、単結晶性は低く、品質が劣るものであった。例えば、これら従来の育成による酸化亜鉛単結晶は、電気比抵抗が10−1〜5Ω・cm程度と低かった。これは、酸化亜鉛を構成する酸素原子と亜鉛原子の化学量論比が当量の1:1ではなく、酸素欠損側にずれた、言い換えれば亜鉛過剰側にずれた組成となっていることに由来するものと考えられる。即ち、その酸素欠損が多いほど酸化亜鉛単結晶中での酸素と亜鉛の電荷のバランスが崩れる為、電気比抵抗が低くなったと推察される。 Zinc oxide is a material that has been known for a long time and has been used as an industrial chemical such as a catalyst and cosmetics. However, zinc oxide has recently been reviewed as a semiconductor because it is a direct transition type wide band gap semiconductor, and in recent years, it has been widely applied to semiconductor devices such as blue LEDs (Light Emitting Diodes) and LDs (Laser Diodes). It is expected and attracting attention. It is known that this zinc oxide single crystal can be produced by a hydrothermal method. Generally, artificial crystals are widely known for the production of single crystals by the hydrothermal method, but zinc oxide single crystals can also be implemented in the same manner. For example, as shown in Non-Patent Document 1, a typical example of a manufacturing condition of a zinc oxide single crystal by a hydrothermal method is shown below. A small piece of zinc oxide single crystal is used as a seed crystal, the raw material is a zinc oxide sintered body, and the solvent is 6.5 mol / L potassium hydroxide and 0.1 to 2 mol / L lithium hydroxide. Put in (Ag, Pt) crucible and seal. Then, this is inserted into an autoclave and grown over several weeks at a growth temperature of 300 to 400 ° C. and a pressure of 55 MPa. However, conventionally grown ones have low single crystallinity and inferior quality, such as contamination with impurities and coloring. For example, these conventional grown zinc oxide single crystals have a low electrical resistivity of about 10 −1 to 5 Ω · cm. This is because the stoichiometric ratio of oxygen atoms and zinc atoms constituting zinc oxide is not equivalent to 1: 1, but shifted to the oxygen deficiency side, in other words, the composition shifted to the zinc excess side. It is thought to do. That is, it is presumed that the electrical resistivity decreased because the balance of oxygen and zinc charges in the zinc oxide single crystal was lost as the oxygen deficiency increased.

このような酸素欠損の多い酸化亜鉛単結晶の結晶性は十分なものではなく、酸素欠損それ自体が結晶欠陥となったり、さらにまた該欠損部へ他の不純物が混入したりして、転位等の結晶欠陥が増大することが懸念される。前記した青色LED,LDまたはそれらの基板として使用するためには、単結晶性に優れた高品質な酸化亜鉛単結晶が必須である。即ち、酸化亜鉛単結晶の結晶欠陥の抑制、言い換えれば酸化亜鉛単結晶中の酸素欠損の低減が必須であり、これが大きな課題のひとつである。   The crystallinity of such a zinc oxide single crystal with many oxygen vacancies is not sufficient. Oxygen vacancies themselves become crystal defects, and other impurities may be mixed into the vacancy, causing dislocations, etc. There is a concern that the number of crystal defects increases. In order to be used as the blue LED, LD, or substrate thereof, a high-quality zinc oxide single crystal excellent in single crystallinity is essential. That is, suppression of crystal defects in the zinc oxide single crystal, in other words, reduction of oxygen vacancies in the zinc oxide single crystal is essential, and this is one of the major problems.

また、誘電体への応用に関しては、これまでに単結晶性が高く、且つ高電気比抵抗の酸化亜鉛単結晶はなかった。   As for application to dielectrics, there has been no zinc oxide single crystal having high single crystallinity and high electrical resistivity so far.

R.A.Laudise et.al. J.Am.Ceram.Soc.,47,9,1964年R. A. Laudise et. al. J. et al. Am. Ceram. Soc. 47, 9, 1964

産業上、青色LED、LD、またはそれらの基板、そして誘電体等に利用できる新規材料として、ストイキオメトリー組成の単結晶性に優れた酸化亜鉛単結晶および基板の開発が強く望まれている。このため本発明の目的は、酸素と亜鉛とが実質的に化学量論的に等量の組成、すなわちストイキオメトリー組成であって電気比抵抗が極めて高い酸化亜鉛単結晶、この酸化亜鉛単結晶より得られるエピタキシャル成長用基板及びこれらの製造方法を提供することにある。   Industrially, as a new material that can be used for blue LEDs, LD, or their substrates, dielectrics, and the like, development of zinc oxide single crystals and substrates excellent in single crystallinity of stoichiometric composition is strongly desired. For this reason, an object of the present invention is to provide a composition in which oxygen and zinc are substantially stoichiometrically equivalent, that is, a zinc oxide single crystal having a stoichiometric composition and extremely high electrical resistivity, the zinc oxide single crystal It is another object of the present invention to provide a substrate for epitaxial growth and a method for producing them.

本発明者等は、これら従来の問題点を解決する為、酸化亜鉛単結晶の水熱製造条件と得られる単結晶の物性、そして単結晶性の改質について鋭意検討した。その結果、従来にないストイキオメトリー組成の酸化亜鉛単結晶を発明した。該単結晶は電気比抵抗が高く、即ち酸化亜鉛を構成する酸素と亜鉛とが実質的に化学量論的に当量であることを示唆している。また、該単結晶は水熱法において酸素発生剤を投入し、金製容器内で製造することによって、これまでの問題点をすべて解決できること、そして該単結晶に熱処理を施すことによりさらにこれまでにない大きな効果が得られることを見出し、本発明を完成させるに至った。   In order to solve these conventional problems, the present inventors diligently studied the hydrothermal production conditions of the zinc oxide single crystal, the physical properties of the obtained single crystal, and the modification of the single crystal. As a result, a zinc oxide single crystal having an unprecedented stoichiometric composition was invented. The single crystal has a high electrical resistivity, that is, suggests that oxygen and zinc constituting zinc oxide are substantially stoichiometrically equivalent. In addition, the single crystal can be solved in a gold container by introducing an oxygen generator in a hydrothermal method, and all the conventional problems can be solved, and the single crystal can be further treated by heat treatment. The present inventors have found that a great effect that is not possible can be obtained, and have completed the present invention.

すなわち本発明は、酸素と亜鉛とが実質的に化学量論的に等量の組成、すなわちストイキオメトリー組成であり、電気比抵抗が1×10Ω・cm以上である酸化亜鉛単結晶である。また該酸化亜鉛単結晶を切削あるいは公知の方法により加工して得られるエピタキシャル成長用基板である。 That is, the present invention relates to a zinc oxide single crystal having a composition in which oxygen and zinc are substantially stoichiometrically equivalent, that is, a stoichiometric composition, and having an electrical resistivity of 1 × 10 9 Ω · cm or more. is there. Further, it is an epitaxial growth substrate obtained by cutting or processing the zinc oxide single crystal by a known method.

また本発明は、酸化亜鉛単結晶の原料となる酸化亜鉛粉末焼結体を予め材質が金製などの容器に仕込み過酸化水素水溶液中でオートクレーブ装置を用いて水熱処理したものを用いて製造した酸化亜鉛単結晶である。   In addition, the present invention is manufactured using a zinc oxide powder sintered body, which is a raw material for zinc oxide single crystal, previously charged in a container made of gold or the like and hydrothermally treated in an aqueous hydrogen peroxide solution using an autoclave apparatus. Zinc oxide single crystal.

さらにまた本発明は、単結晶育成容器に前記水熱処理した酸化亜鉛粉末焼結体を仕込み、酸化亜鉛単結晶の小片を種結晶として吊り下げるとともに、アルカリ金属水酸化物水溶液と過酸化バリウム、過酸化カルシウム、過酸化水素、過炭酸ナトリウム、過炭酸カリウム、過炭酸リチウム及び過ホウ酸ナトリウムからなる群より選ばれる1種または2種以上の酸素発生剤とを投入して、これを密閉しオートクレーブ装置に挿入して高温高圧下で種結晶を成長させて育成する水熱法により酸化亜鉛単結晶を製造する方法である。   Furthermore, the present invention provides a single crystal growth vessel in which the hydrothermally treated zinc oxide powder sintered body is charged, a small piece of zinc oxide single crystal is suspended as a seed crystal, an alkali metal hydroxide aqueous solution and barium peroxide, One or more oxygen generators selected from the group consisting of calcium oxide, hydrogen peroxide, sodium percarbonate, potassium percarbonate, lithium percarbonate, and sodium perborate are added, and this is sealed and autoclaved. This is a method for producing a zinc oxide single crystal by a hydrothermal method in which it is inserted into an apparatus and grown by growing a seed crystal under high temperature and high pressure.

また本発明は、該酸化亜鉛単結晶を、酸素および/または窒素ガス中、800℃以上の温度で熱処理する、酸化亜鉛単結晶の製造方法である。   Moreover, this invention is a manufacturing method of the zinc oxide single crystal which heat-processes this zinc oxide single crystal in oxygen and / or nitrogen gas at the temperature of 800 degreeC or more.

また本発明は、酸化亜鉛単結晶基板を加工して得られるエピタキシャル成長用基板を、さらに酸素および/または窒素ガス中、800℃以上の温度で熱処理するエピタキシャル成長用基板の製造方法およびこの方法により得られるエピタキシャル成長用基板である。   In addition, the present invention provides a method for producing an epitaxial growth substrate in which an epitaxial growth substrate obtained by processing a zinc oxide single crystal substrate is further heat-treated in oxygen and / or nitrogen gas at a temperature of 800 ° C. or higher, and this method is obtained. This is a substrate for epitaxial growth.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

上記のように、本発明はストイキオメトリー組成の酸化亜鉛単結晶であり、この単結晶は電気比抵抗が1×10Ω・cm以上である。電気比抵抗が1×10Ω・cm以上というきわめて高い値を示すということは、本発明の酸化亜鉛単結晶を構成する酸素と亜鉛が実質的に化学量論的に当量であり、ストイキオメトリー組成であることを示唆している。ここで、「酸素と亜鉛が実質的に化学量論的に当量」とは、理論的には酸化亜鉛を形成する酸素と亜鉛が等量であることを意味するものの、実質的に電気比抵抗が1×10Ω・cm以上という高い電気比抵抗性を有しておればよいことを意味する。 As described above, the present invention is a zinc oxide single crystal having a stoichiometric composition, and the single crystal has an electric resistivity of 1 × 10 9 Ω · cm or more. The fact that the electrical specific resistance shows a very high value of 1 × 10 9 Ω · cm or more means that oxygen and zinc constituting the zinc oxide single crystal of the present invention are substantially stoichiometrically equivalent, and stoichiometric. This suggests that it is a metric composition. Here, “substantially stoichiometric equivalent of oxygen and zinc” means that the oxygen and zinc that form zinc oxide are theoretically equivalent, but the electrical resistivity is substantially equal. Means a high electrical resistivity of 1 × 10 9 Ω · cm or more.

また、本発明の酸化亜鉛単結晶は、育成溶媒として用いるアルカリ金属水酸化物水溶液由来であるアルカリ金属不純物が10重量ppm以下、可視領域における光外部透過率が75%以上の無色透明で、かつX線回折法によるX線ロッキングカーブ測定における酸化亜鉛単結晶のc軸に垂直な(0004)面のピーク半価幅が25秒以下である高品質で単結晶性に優れた酸化亜鉛単結晶である。   The zinc oxide single crystal of the present invention is colorless and transparent with an alkali metal impurity derived from an aqueous alkali metal hydroxide solution used as a growth solvent of 10 ppm by weight or less, and an external light transmittance of 75% or more in the visible region, and Zinc oxide single crystal with high quality and excellent single crystallinity with peak half-value width of (0004) plane perpendicular to c-axis of zinc oxide single crystal measured by X-ray diffractometry by X-ray diffraction method is 25 seconds or less is there.

従来の酸化亜鉛単結晶は、酸素欠損量が多く、そのため電気比抵抗は10−1〜5Ω・cm程度と低いものであった。本発明の酸化亜鉛単結晶は、ストイキオメトリー組成であり、その電気比抵抗は1×10Ω・cm以上と非常に高いものであり、従って単結晶性に優れた高品質な単結晶であることを必須とする。 Conventional zinc oxide single crystals have a large amount of oxygen vacancies , and therefore the electrical specific resistance is as low as about 10 −1 to 5 Ω · cm. The zinc oxide single crystal of the present invention has a stoichiometric composition and its electrical specific resistance is as high as 1 × 10 9 Ω · cm or more, and therefore, it is a high-quality single crystal excellent in single crystallinity. It is essential to be.

酸化亜鉛単結晶の電気比抵抗は、該値が大きいほど結晶欠陥はより少なく酸化亜鉛単結晶の品質が高いものと考えられる。その理由は、酸化亜鉛化合物が酸素欠損し易い性質に由来し、その酸素欠損を少なくすればするほど酸化亜鉛単結晶を構成する酸素と亜鉛が化学量論的に等量に近づくため、正負の電荷のバランスが保持され電気比抵抗が高くなるからである。   It is considered that the electrical resistivity of the zinc oxide single crystal is such that the larger the value, the fewer crystal defects and the higher the quality of the zinc oxide single crystal. The reason is that the zinc oxide compound is prone to oxygen deficiency. The smaller the oxygen deficiency, the closer the oxygen and zinc that make up the zinc oxide single crystal are stoichiometrically equivalent. This is because the electric charge balance is maintained and the electrical resistivity increases.

本発明の酸化亜鉛単結晶の電気比抵抗は1×10Ω・cm以上、好ましくは1011Ω・cm以上、さらに好ましくは1012Ω・cm以上のものである。一方、酸化亜鉛単結晶の電気比抵抗が1×10Ω・cmより小さい場合は、酸化亜鉛単結晶中で酸素欠損が比較的多く、その為、結晶欠陥が多く存在していると考えられ結晶性が劣ることが予想され好ましくない。 The electrical resistivity of the zinc oxide single crystal of the present invention is 1 × 10 9 Ω · cm or more, preferably 10 11 Ω · cm or more, more preferably 10 12 Ω · cm or more. On the other hand, when the electrical resistivity of the zinc oxide single crystal is smaller than 1 × 10 9 Ω · cm, there are relatively many oxygen vacancies in the zinc oxide single crystal, and it is considered that there are many crystal defects. Inferior crystallinity is expected and not preferred.

また、本発明の酸化亜鉛単結晶は高純度であり、不純物の少ないことを特徴とする。具体的に不純物としては、単結晶育成溶媒由来のK,Liや育成容器材質のAu或いはPt等があげられ、それらの含有量は合計10ppm以下であり、好ましくは5ppm以下、さらに好ましくは1ppm以下である。これらの不純物が10ppmを超えると酸化亜鉛単結晶の結晶性等が低下し好ましくない。   Moreover, the zinc oxide single crystal of the present invention is characterized by high purity and few impurities. Specific examples of impurities include K and Li derived from a single crystal growth solvent, Au or Pt as a growth container material, and the total content thereof is 10 ppm or less, preferably 5 ppm or less, more preferably 1 ppm or less. It is. If these impurities exceed 10 ppm, the crystallinity and the like of the zinc oxide single crystal is lowered, which is not preferable.

また、本発明の酸化亜鉛単結晶は、無色透明である。本発明の酸化亜鉛単結晶から得られたエピタキシャル成長用基板の可視領域の波長における光外部透過率(島津製作所製,UV−3100PC)は、例えば1mm厚さの基板で測定した場合、75%以上であり、好ましくは80%以上である。光外部透過率が75%未満のものは、着色を呈し、これは不純物混入や結晶欠陥等に起因するものと考えられ好ましくないことがある。   The zinc oxide single crystal of the present invention is colorless and transparent. The optical external transmittance (UV-3100PC, manufactured by Shimadzu Corporation) at a wavelength in the visible region of the substrate for epitaxial growth obtained from the zinc oxide single crystal of the present invention is 75% or more when measured with a 1 mm thick substrate, for example. Yes, preferably 80% or more. Those having an external light transmittance of less than 75% exhibit coloring, which is considered to be caused by impurity contamination, crystal defects, and the like, which may be undesirable.

また、酸化亜鉛単結晶の単結晶性はX線回折法によるX線ロッキングカーブ測定の半価幅でみることができ、該半価幅は小さいほど単結晶性が優れることを意味する。本発明の酸化亜鉛単結晶の(0004)面のピーク半価幅(光学系:入射/人工多層膜ミラー+Ge(440)−4結晶光学系、受光/Ge(002)−2結晶アナライザー)は25秒以下、好ましくは20秒以下、さらに好ましくは15秒以下であり、酸素欠損等のない理論的完全結晶に近い極めて単結晶性に優れたものである。酸化亜鉛(0004)面の該ピーク半価幅が25秒を超えるものは単結晶性が不十分となり、例えば該単結晶をLED用のエピタキシャル成長用基板結晶として用いた場合、該酸化亜鉛単結晶性の不十分な品質、即ち結晶欠陥がエピタキシャル成長する単結晶へ悪影響を及ぼすことが考えられる。   Moreover, the single crystallinity of the zinc oxide single crystal can be seen by the half width of the X-ray rocking curve measurement by the X-ray diffraction method, and the smaller the half width, the better the single crystallinity. The peak half width of the (0004) plane of the zinc oxide single crystal of the present invention is 25 (optical system: incident / artificial multilayer mirror + Ge (440) -4 crystal optical system, light receiving / Ge (002) -2 crystal analyzer). It is not more than seconds, preferably not more than 20 seconds, more preferably not more than 15 seconds, and it is extremely excellent in single crystallinity close to a theoretical perfect crystal without oxygen deficiency. When the peak half width of the zinc oxide (0004) surface exceeds 25 seconds, the single crystallinity becomes insufficient. For example, when the single crystal is used as a substrate crystal for epitaxial growth for LEDs, the single crystallinity of the zinc oxide Insufficient quality, i.e., crystal defects may adversely affect the single crystal epitaxially grown.

本発明は酸化亜鉛単結晶を切削等により加工して得られるエピタキシャル成長用基板である。   The present invention is an epitaxial growth substrate obtained by processing a zinc oxide single crystal by cutting or the like.

エピタキシャル成長用基板とは、GaN系、ZnO系等の青色LEDおよびLD等のデバイスにおけるエピタキシャル結晶膜成長用の基板である。該基板は、本発明による酸化亜鉛単結晶を加工して得るが、その加工方法は一般的な方法でよい。その一例を示す。酸化亜鉛単結晶のc軸に垂直な(0001)面に沿って、ダイヤモンドカッターでスライスし、これを研磨、ウェットエッチング、熱処理等により処理および改質して基板を得る。   The substrate for epitaxial growth is a substrate for epitaxial crystal film growth in devices such as GaN-based and ZnO-based blue LEDs and LDs. The substrate is obtained by processing the zinc oxide single crystal according to the present invention, and the processing method may be a general method. An example is shown. A substrate is obtained by slicing with a diamond cutter along the (0001) plane perpendicular to the c-axis of the zinc oxide single crystal, and processing and modifying this by polishing, wet etching, heat treatment or the like.

従来の酸化亜鉛単結晶基板は、酸素欠損量が多く、そのため結晶欠陥が多く品質に劣るため、エピタキシャル成長用基板としては十分なものではなかった。本発明のエピタキシャル成長用基板は酸素欠損のないストイキオメトリー組成であり、結晶欠陥の極めて少ない良質な基板として用いられることが考えられる。
また本発明は、酸化亜鉛単結晶の原料として、酸化亜鉛粉末焼結体を過酸化水素水溶液中でオートクレーブ装置を用いて水熱処理したものを用いて得られる酸化亜鉛単結晶である。
A conventional zinc oxide single crystal substrate has a large amount of oxygen vacancies, and therefore has a large number of crystal defects and is inferior in quality, so that it is not sufficient as an epitaxial growth substrate. The epitaxial growth substrate of the present invention has a stoichiometric composition free of oxygen vacancies and is considered to be used as a high-quality substrate with extremely few crystal defects.
Further, the present invention is a zinc oxide single crystal obtained by using a zinc oxide powder sintered body hydrothermally treated in an aqueous hydrogen peroxide solution using an autoclave apparatus as a raw material for the zinc oxide single crystal.

さらにまた本発明は、単結晶育成容器の下部に原料として前記水熱処理した酸化亜鉛粉末焼結体を仕込み、上部に種結晶として酸化亜鉛単結晶の小片を吊り下げるとともに、アルカリ金属水酸化物水溶液と過酸化バリウム、過酸化カルシウム、過酸化水素、過炭酸ナトリウム、過炭酸カリウム、過炭酸リチウム及び過ホウ酸ナトリウムからなる群より選ばれる1種または2種以上の酸素発生剤とを投入して、オートクレーブ装置を用いて高温高圧下で酸化亜鉛単結晶を育成する水熱法によりストイキオメトリー組成の酸化亜鉛単結晶を製造する方法である。   Furthermore, the present invention provides a hydrothermally treated zinc oxide powder sintered body as a raw material at the bottom of a single crystal growth vessel, suspends a small piece of zinc oxide single crystal as a seed crystal at the top, and an alkali metal hydroxide aqueous solution. And one or more oxygen generators selected from the group consisting of barium peroxide, calcium peroxide, hydrogen peroxide, sodium percarbonate, potassium percarbonate, lithium percarbonate and sodium perborate. This is a method for producing a zinc oxide single crystal having a stoichiometric composition by a hydrothermal method of growing a zinc oxide single crystal under high temperature and high pressure using an autoclave apparatus.

以下、その製造方法を説明するが、本発明の酸化亜鉛単結晶及びエピタキシャル成長用基板の製造方法としてはこの製造方法に限定されるものではない。   Hereinafter, the manufacturing method will be described, but the manufacturing method of the zinc oxide single crystal and the substrate for epitaxial growth of the present invention is not limited to this manufacturing method.

本発明は、材質が金製などの単結晶育成用容器に、酸化亜鉛粉末より得られる焼結体を予め過酸化水素水溶液中でオートクレーブ装置を用いて水熱処理したものを仕込み、種結晶として酸化亜鉛単結晶の小片を吊り下げるとともに、アルカリ金属水酸化物水溶液を仕込み、これに酸素発生剤を加えた後密閉してオートクレーブ装置に挿入し、温度300〜450℃、圧力50〜130MPaで水熱育成して製造する。   In the present invention, a single crystal growth vessel made of gold or the like is charged with a sintered body obtained from zinc oxide powder previously hydrothermally treated in an aqueous hydrogen peroxide solution using an autoclave apparatus, and oxidized as a seed crystal. While hanging a small piece of zinc single crystal, charging with an alkali metal hydroxide aqueous solution, adding an oxygen generator to this, it was sealed and inserted into an autoclave, hydrothermally at a temperature of 300 to 450 ° C. and a pressure of 50 to 130 MPa. Grow and manufacture.

本発明の原料である酸化亜鉛焼結体は、酸化亜鉛の粉末を冷間等方圧縮成形等により成形した後焼結し、該焼結体を過酸化水素水溶液中でオートクレーブ装置を用いて水熱処理したものである。これは、該焼結体を再結晶化して精製する際に、過酸化水素を共存させることにより、原料となる該焼結体が酸素欠損の少ない状態で再結晶されることを意図した工程となる。該焼結体の処理法は、金製等容器に該焼結体と水と過酸化水素水を仕込んだ後密閉してオートクレーブ装置に挿入し、温度100℃以上、より好ましくは200℃以上、さらにより好ましくは単結晶育成条件と同じ300〜450℃、圧力50〜130MPaの高温高圧下で処理する方法である。過酸化水素の量は、発生する酸素圧が0.01MPa以上であればよく,好ましくは,0.1MPa以上がよい。酸素圧が0.01MPa未満の場合には、前記した効果が小さくなる。   The zinc oxide sintered body which is the raw material of the present invention is formed by sintering zinc oxide powder by cold isostatic pressing or the like, and then sintering the sintered body in an aqueous hydrogen peroxide solution using an autoclave device. Heat-treated. This is a process intended to recrystallize the sintered body as a raw material with few oxygen vacancies by coexisting hydrogen peroxide when the sintered body is recrystallized and purified. Become. The method for treating the sintered body is that the sintered body, water and hydrogen peroxide solution are charged in a container such as a metal container and then sealed and inserted into an autoclave apparatus, and the temperature is 100 ° C. or higher, more preferably 200 ° C. or higher. Even more preferably, it is a method of treating at a high temperature and a high pressure of 300 to 450 ° C. and a pressure of 50 to 130 MPa, the same as the single crystal growth conditions. The amount of hydrogen peroxide may be such that the generated oxygen pressure is 0.01 MPa or more, and preferably 0.1 MPa or more. When the oxygen pressure is less than 0.01 MPa, the above-described effect is reduced.

また、該焼結体の前駆体である酸化亜鉛粉末の平均粒径は30μm以下のものが好ましく、より好ましくは10μm以下、さらに好ましくは1μm以下である。30μmを超えると酸化亜鉛粉末の成形および/または焼結の際に粒子間同士の接触面積が小さくなることから最終的に焼結密度が低くなり、その為、単結晶育成時に原料が溶解する際に粉状に崩れてしまう懸念がある。粉状になると育成容器内で散乱し、育成領域において核発生を起こす原因となってしまい種結晶の成長を妨げることがある。   Moreover, the average particle diameter of the zinc oxide powder which is the precursor of the sintered body is preferably 30 μm or less, more preferably 10 μm or less, and further preferably 1 μm or less. If it exceeds 30 μm, the contact area between the particles becomes smaller during the formation and / or sintering of the zinc oxide powder, so that the sintering density is finally lowered. There is a concern that it will collapse into powder. When it becomes powdery, it is scattered in the growth vessel, causing nucleation in the growth region, which may hinder seed crystal growth.

また、該粉末の粒度分布はシャープでもよいが、ある程度ブロードでもよく、即ち粒子間の接触面積が大きくなるほどよい。   The particle size distribution of the powder may be sharp, but may be broad to some extent, that is, the larger the contact area between the particles, the better.

また、焼結密度を増すには、原料の粉末の比表面積が大きいことも有効である。好ましくは2m/g、より好ましくは4m/g、さらに好ましくは8m/gである。2m/g未満の場合には、焼結密度が思うように上がらないことがある。 In order to increase the sintered density, it is also effective that the specific surface area of the raw material powder is large. Preferably it is 2 m < 2 > / g, More preferably, it is 4 m < 2 > / g, More preferably, it is 8 m < 2 > / g. If it is less than 2 m 2 / g, the sintered density may not increase as expected.

酸化亜鉛単結晶の製造に用いる酸素発生剤としては、過酸化バリウム、過酸化カルシウム、過酸化水素、過炭酸ナトリウム、過炭酸カリウム、過炭酸リチウム、過ホウ酸ナトリウムなど、酸素を発生する化合物であればよく、さらに過酸化バリウムが好ましく用いられる。これらの酸素発生剤は、1種単独で用いてよいが、2種以上を用いることもできる。   Examples of oxygen generators used in the production of zinc oxide single crystals include compounds that generate oxygen, such as barium peroxide, calcium peroxide, hydrogen peroxide, sodium percarbonate, potassium percarbonate, lithium percarbonate, and sodium perborate. Any barium peroxide is preferably used. These oxygen generators may be used alone or in combination of two or more.

過酸化バリウムが好ましい理由は、過酸化バリウムは常温では安定な物質であり定量性に優れること、そして熱水下では分解して酸素を発生するという性質から、本発明の酸素発生剤として極めて有用である。また、同時に分解により生成する水酸化バリウムは水への溶解度が非常に高くかつ、バリウムのイオン半径が大きいことから、単結晶として成長する酸化亜鉛単結晶への混入もなく、これも好適である。   Barium peroxide is preferable because barium peroxide is a stable substance at room temperature and has excellent quantitative properties, and decomposes under hot water to generate oxygen, which makes it extremely useful as an oxygen generator of the present invention. It is. At the same time, barium hydroxide produced by decomposition has a very high solubility in water and the ionic radius of barium is large, so that it is not mixed into the zinc oxide single crystal growing as a single crystal, which is also preferable. .

酸素発生剤の量は、単結晶育成時に発生する酸素圧が0.01MPa以上であればよく、好ましくは0.1MPa以上、さらに好ましくは1MPa以上である。酸素圧が0.01MPa未満の場合には、本発明の酸化亜鉛単結晶を得るためには不十分である。また、1MPaを超える量においては特に限定しないが、さらに大過剰にしても本発明の酸化亜鉛単結晶の特性は殆ど変わらない。   The amount of the oxygen generator may be such that the oxygen pressure generated during single crystal growth is 0.01 MPa or more, preferably 0.1 MPa or more, more preferably 1 MPa or more. When the oxygen pressure is less than 0.01 MPa, it is insufficient for obtaining the zinc oxide single crystal of the present invention. Moreover, although it does not specifically limit in the quantity exceeding 1 Mpa, The characteristic of the zinc oxide single crystal of this invention will hardly change even if it makes it excessive further.

また、該酸素発生剤においては、過酸化水素はもちろん、過酸化バリウム等も熱水下では分解性が非常に高く、いずれの化合物も全量が分解して酸素が発生すると考えてよい。   Further, in the oxygen generator, hydrogen peroxide as well as barium peroxide and the like are extremely decomposable under hot water, and it can be considered that all the compounds are decomposed to generate oxygen.

本発明の水熱法による酸化亜鉛単結晶の育成温度は特に限定しない。従来から行われている300から450℃の間であれば問題ない。しかし、好ましい酸化亜鉛単結晶が高単結晶性となるためには育成容器の上部にある単結晶成長領域の温度と下部にある原料酸化亜鉛焼結体領域の温度の差が重要である。具体的には、高温の原料溶解域と低温の単結晶成長域の温度差が10℃以下、好ましくは8℃以下、さらに好ましくは6℃以下かつ1℃以上である。10℃を超えると酸化亜鉛の過飽和度が一気に崩壊して核発生が起こり種結晶の効率的な成長を阻害してしまうことがある。また、1℃より低くなると、種結晶が溶けたり、種結晶の成長速度が急速に遅くなり、生産性が劣ってしまうことがある。   The growth temperature of the zinc oxide single crystal by the hydrothermal method of the present invention is not particularly limited. If it is between 300 to 450 degreeC conventionally performed, there is no problem. However, in order for the preferable zinc oxide single crystal to have high single crystallinity, the difference between the temperature of the single crystal growth region at the top of the growth vessel and the temperature of the raw material zinc oxide sintered body region at the bottom is important. Specifically, the temperature difference between the high temperature raw material melting region and the low temperature single crystal growth region is 10 ° C. or less, preferably 8 ° C. or less, more preferably 6 ° C. or less and 1 ° C. or more. If the temperature exceeds 10 ° C., the supersaturation degree of zinc oxide may collapse at once and nucleation may occur, thereby inhibiting efficient growth of seed crystals. On the other hand, when the temperature is lower than 1 ° C., the seed crystal may be melted or the growth rate of the seed crystal may be rapidly reduced, resulting in poor productivity.

本発明の酸化亜鉛単結晶を製造するオートクレーブ装置において、単結晶育成用容器の材質としては金製(Au)であることが好ましい。本発明者らがこの単結晶育成の容器材質について鋭意検討した結果、予期せぬ大きな効果を見出した。すなわち、水熱下でアルカリ金属水酸化物水溶液および/または酸素発生剤を使用した場合において、貴金属の全てが耐食性に優れているわけではないことが判明したことである。本発明による酸化亜鉛単結晶製造の条件において、貴金属のうち、Auの耐食性が著しく優れた。   In the autoclave for producing the zinc oxide single crystal of the present invention, the material for the single crystal growing vessel is preferably made of gold (Au). As a result of intensive studies on the material of the single crystal growing container, the present inventors have found an unexpectedly large effect. That is, when an alkali metal hydroxide aqueous solution and / or an oxygen generator is used under hydrothermal conditions, it has been found that not all noble metals are excellent in corrosion resistance. Among the noble metals, Au was remarkably excellent in corrosion resistance under the conditions for producing the zinc oxide single crystal according to the present invention.

従来は、貴金属として白金(Pt)が使用されていたが、Ptはアルカリ金属水酸化物水溶液に僅かながら溶解し、熱水下ではその溶解度は増すことが判った。即ち、育成溶液の中にPtが溶解し、酸化亜鉛単結晶の成長過程において不純物としてコンタミし、アルカリ金属水酸化物水溶液を用いた酸化亜鉛単結晶製造においてPt容器を使用することは好ましくないことがある。また、本発明の酸素発生剤としての過酸化バリウムや、過酸化バリウムと過酸化水素との併用剤などを仕込むと、Ptの耐食性はさらに劣り、コンタミの程度が悪化することも判った。   Conventionally, platinum (Pt) has been used as a noble metal, but it has been found that Pt is slightly dissolved in an aqueous alkali metal hydroxide solution, and its solubility increases under hot water. That is, it is not preferable to use a Pt container in the production of zinc oxide single crystal using an alkali metal hydroxide aqueous solution because Pt is dissolved in the growth solution and contaminated as an impurity in the growth process of the zinc oxide single crystal. There is. It was also found that when barium peroxide as an oxygen generating agent of the present invention or a combination agent of barium peroxide and hydrogen peroxide was charged, the corrosion resistance of Pt was further deteriorated, and the degree of contamination deteriorated.

また、AuはPtと比較して、機能的にもコスト的にも有利である。具体的には、AuはPtに比べて延性に富むため、単結晶製造時の圧力の変化に柔軟に対応できる。   Further, Au is advantageous in terms of function and cost as compared with Pt. Specifically, since Au is more ductile than Pt, it can flexibly cope with changes in pressure during single crystal production.

本発明において種結晶として用いる酸化亜鉛単結晶の小片は、研磨および/または化学的機械研磨により平坦化され、さらに酸素および/または窒素ガス中で800℃以上の温度で熱処理されたものを用いるとよい。その理由は、該処理により種結晶表面の平坦性および結晶性が改善され、製造時の種結晶成長において、良質な単結晶が成長するためである。一方、種結晶の表面が粗いものは、結晶性の好ましくないものに成長することが懸念される。   A small piece of zinc oxide single crystal used as a seed crystal in the present invention is flattened by polishing and / or chemical mechanical polishing, and further heat treated in oxygen and / or nitrogen gas at a temperature of 800 ° C. or higher. Good. This is because the flatness and crystallinity of the seed crystal surface are improved by the treatment, and a high-quality single crystal is grown in the seed crystal growth at the time of manufacture. On the other hand, it is feared that the seed crystal having a rough surface grows to an unfavorable crystallinity.

本発明の原料である酸化亜鉛中に含有する金属不純物の合計量は100重量ppm未満以下であることが好ましい。さらに好ましくは10重量ppm以下である。このとき、製造する酸化亜鉛単結晶への不純物の取り込み要素が極めて小さくなり、高純度の酸化亜鉛単結晶が製造できる。   The total amount of metal impurities contained in the zinc oxide as the raw material of the present invention is preferably less than 100 ppm by weight. More preferably, it is 10 ppm by weight or less. At this time, the element of impurity incorporation into the zinc oxide single crystal to be manufactured becomes extremely small, and a high-purity zinc oxide single crystal can be manufactured.

本発明の溶媒のアルカリ金属水溶液中に含有する金属不純物の合計量は100重量ppm未満であることが好ましい。さらに好ましくは10重量ppm以下である。このとき、前記と同様、製造する酸化亜鉛単結晶への不純物の取り込み要素が極めて小さくなり、高純度の酸化亜鉛単結晶が製造できる。   The total amount of metal impurities contained in the alkali metal aqueous solution of the solvent of the present invention is preferably less than 100 ppm by weight. More preferably, it is 10 ppm by weight or less. At this time, as described above, the element of impurity incorporation into the zinc oxide single crystal to be manufactured becomes extremely small, and a high-purity zinc oxide single crystal can be manufactured.

本発明により得られた酸化亜鉛単結晶およびそれを加工して得られるエピタキシャル成長用基板は酸素および/または窒素ガス中で800℃以上の温度で熱処理される。このとき、得られた酸化亜鉛単結晶やエピタキシャル成長用基板はさらに高抵抗化し、高単結晶性となり、品質が向上する。また、熱処理によって、酸化亜鉛単結晶やエピタキシャル成長用基板の表面は原子レベルで平坦化され、ステップ・テラスが形成する。このことはエピタキシャル成長用基板として用いる際に、エピタキシャル成長結晶がスムーズに該基板に堆積し、非常に有益である。   The zinc oxide single crystal obtained by the present invention and the substrate for epitaxial growth obtained by processing it are heat-treated in oxygen and / or nitrogen gas at a temperature of 800 ° C. or higher. At this time, the obtained zinc oxide single crystal and the substrate for epitaxial growth are further increased in resistance, become high single crystal, and quality is improved. Further, the surface of the zinc oxide single crystal or the epitaxial growth substrate is flattened at the atomic level by the heat treatment, and a step terrace is formed. This is very useful when an epitaxially grown crystal is deposited on the substrate smoothly when used as an epitaxial growth substrate.

熱処理温度は800℃以上の温度とすることが好ましく、さらに1000℃以上が好ましく、特に好ましくは1100℃以上である。800℃未満では前記した酸化亜鉛単結晶の品質向上の効果が不十分となることがある。また、酸化亜鉛は炭酸を吸着しやすい性質があり、800℃未満ではその脱着が不十分となることがある。   The heat treatment temperature is preferably 800 ° C. or higher, more preferably 1000 ° C. or higher, and particularly preferably 1100 ° C. or higher. If it is less than 800 degreeC, the effect of the quality improvement of a zinc oxide single crystal mentioned above may become inadequate. Zinc oxide has a property of easily adsorbing carbonic acid, and if it is less than 800 ° C., its desorption may be insufficient.

また、熱処理の雰囲気は酸素および/または窒素ガス中であればいずれでもよい。また、熱処理時に酸化亜鉛の粉末やそれよりなる焼結体を周囲におくとよい。その理由は、酸化亜鉛が昇華性の化合物であり、1300℃くらいから昇華し始める性質を有しており、酸化亜鉛の蒸気圧を一定に保持し、酸化亜鉛単結晶の変質を防ぐことができると考えられるからである。   The atmosphere for the heat treatment may be any as long as it is in oxygen and / or nitrogen gas. In addition, zinc oxide powder or a sintered body made of the zinc oxide may be placed around the heat treatment. The reason is that zinc oxide is a sublimable compound and has a property of starting to sublimate from about 1300 ° C., which can keep the vapor pressure of zinc oxide constant and prevent alteration of the zinc oxide single crystal. Because it is considered.

また、酸化亜鉛単結晶やエピタキシャル成長用基板は、酸素供給型化合物、例えばイットリウム安定化ジルコニア等で挟んでおくとよい。その理由は、酸化亜鉛単結晶やエピタキシャル成長用基板が高温での熱処理時における酸素欠損を防ぐことができると考えられるからである。   Further, the zinc oxide single crystal or the epitaxial growth substrate is preferably sandwiched between oxygen supply type compounds such as yttrium-stabilized zirconia. The reason is that it is considered that the zinc oxide single crystal and the epitaxial growth substrate can prevent oxygen deficiency during heat treatment at high temperature.

本発明は以下の効果を奏する。
(1)本発明の酸化亜鉛単結晶及びそれより得られるエピタキシャル成長用基板は、従来にないストイキオメトリー組成の酸化亜鉛であり、高い電気比抵抗を有し、単結晶性に優れた、酸素欠損が極めて少ない結晶欠陥の少ない良質な単結晶である。従って、該酸化亜鉛単結晶およびそれより得られる基板は、青色LED,LDおよびそれらの基板として、高性能化が図れるものとして非常に有用である。
(2)本発明の酸化亜鉛単結晶及びそれより得られるエピタキシャル成長用基板の製造方法はオートクレーブ装置を用いた高温高圧下での育成法によるものであり、原料として酸化亜鉛粉末焼結体をオートクレーブ装置を用いて過酸化水素水溶液中で処理したものの使用、金製育成容器の使用、酸素発生剤の投入により、従来にないストイキオメトリー組成で単結晶性に優れた高純度な高品質酸化亜鉛単結晶が、シンプルで工業的かつ経済性の高い製造法で得ることができ、産業上極めて有用である。
The present invention has the following effects.
(1) The zinc oxide single crystal of the present invention and the substrate for epitaxial growth obtained therefrom are zinc oxide having an unprecedented stoichiometric composition, have high electrical specific resistance, and have excellent single crystallinity. Is a good quality single crystal with very few crystal defects. Therefore, the zinc oxide single crystal and the substrate obtained therefrom are very useful as a blue LED, LD, and their substrates that can achieve high performance.
(2) The method for producing the zinc oxide single crystal of the present invention and the substrate for epitaxial growth obtained therefrom is based on a growth method under high temperature and high pressure using an autoclave apparatus. Using high-purity, high-quality zinc oxide single-crystal with an unprecedented stoichiometric composition by using a solution treated with hydrogen peroxide in water, using a gold growth vessel, and introducing an oxygen generator. Crystals can be obtained by a simple, industrial and economical production method, and are extremely useful industrially.

以下、本発明の実施例、比較例を示すが、本発明はこれらにより何等限定されるものではない。また、部,%およびppmは重量に基づくものである。   Examples of the present invention and comparative examples are shown below, but the present invention is not limited to these examples. Parts,% and ppm are based on weight.

(実施例1)
オートクレーブ装置を用いた水熱法による単結晶製造において、単結晶育成容器に金製の育成容器を用い、酸化亜鉛粉末より得られた焼結体を100部と、水酸化カリウム水溶液3mol/Lと水酸化リチウム水溶液1.5mol/Lの混合水溶液125部、そして酸素発生剤として過酸化バリウム2.4部とを仕込み、種結晶として酸化亜鉛単結晶のc軸に垂直な(0001)面の板状小片を懸垂させ、この金製容器を密閉し、370℃、100MPa下で2週間かけて酸化亜鉛単結晶(A)を育成した。尚、原料として用いた酸化亜鉛粉末より得られた焼結体は、予め、オートクレーブ装置を用いて、金製容器に100部仕込むとともに、30%過酸化水素水溶液0.8部と水125部とを投入し、この金製容器を密閉して、370℃、100MPa下で2日間かけて処理したものを用いた。次に、該単結晶(A)より亜鉛終端面側に(0001)面で厚さ1mmに切り出し、基板(A)を作成した。尚、酸化亜鉛単結晶は結晶学的に六方晶系・ウルツ鉱型であり、c軸に垂直な面で亜鉛からなる層と酸素からなる層の繰り返しから構成される層状構造を有し、酸化亜鉛単結晶の(0001)面において終端面が亜鉛のものと酸素のものがある。
Example 1
In single crystal production by a hydrothermal method using an autoclave apparatus, a gold growth vessel is used as a single crystal growth vessel, 100 parts of a sintered body obtained from zinc oxide powder, 3 mol / L of potassium hydroxide aqueous solution, A (0001) plane plate perpendicular to the c-axis of a zinc oxide single crystal as a seed crystal was charged with 125 parts of a 1.5 mol / L aqueous lithium hydroxide solution and 2.4 parts of barium peroxide as an oxygen generator. A small piece was suspended, this gold container was sealed, and a zinc oxide single crystal (A) was grown at 370 ° C. under 100 MPa for 2 weeks. The sintered body obtained from the zinc oxide powder used as a raw material was previously charged in a gold container using an autoclave apparatus, and 100 parts of a 30% hydrogen peroxide aqueous solution and 125 parts of water were added. The gold container was sealed and treated at 370 ° C. under 100 MPa for 2 days. Next, the substrate (A) was prepared by cutting out from the single crystal (A) to the thickness of 1 mm on the (0001) plane on the zinc termination surface side. The zinc oxide single crystal is crystallographically hexagonal and wurtzite, and has a layered structure composed of repeating layers composed of zinc and oxygen on a plane perpendicular to the c-axis. In the (0001) plane of zinc single crystal, there are zinc termination and oxygen termination.

そして、基板(A)について、電気抵抗を測定し、電気比抵抗を求めた。電気抵抗測定は、電流電圧計を用い、インジウム−ガリウム電極を設けた酸化亜鉛単結晶基板を暗箱に入れ、直流電流−電圧二端子法にて、酸化亜鉛タ結晶基板の(0001)方位に沿って測定した。尚、電極はインジウム−ガリウムを用い電流電圧特性によりオーミックを確認して行った。   And about a board | substrate (A), the electrical resistance was measured and the electrical specific resistance was calculated | required. For the electrical resistance measurement, a zinc oxide single crystal substrate provided with an indium-gallium electrode is placed in a dark box using an ampere meter, and along the (0001) orientation of the zinc oxide crystal substrate by a direct current-voltage two-terminal method. Measured. In addition, the electrode used indium-gallium and confirmed ohmic by the current-voltage characteristic.

基板(A)の電気比抵抗は9×1010Ω・cmであり、以下の比較例1で示す基板(B)との差は明確であった。 The electrical resistivity of the substrate (A) was 9 × 10 10 Ω · cm, and the difference from the substrate (B) shown in Comparative Example 1 below was clear.

また、下記条件でX線回折・X線ロッキングカーブ測定を行った。
<X線回折装置と条件>
基板測定格子面:(0004)
測定装置:ATX−E
X線源:回転対陰極Cuターゲット(50kV−300mA)
測定光学系:入射光学系・人工多層膜ミラー+Ge440−4結晶光学系
受光光学系・Ge220−2結晶アナライザー
その結果、基板(A)の(0004)ピーク半値幅は15秒と非常にシャープで単結晶性に優れていることが判った。一方、以下の比較例1で示す基板(B)は26秒と基板(A)に比べ単結晶性が劣った。
また、基板(A)のICP測定(装置:セイコーインスツルメンツ製,SPS1200A PlasmaSpectrometer)による不純物分析を行った。
その結果、単結晶溶媒として用いたアルカリ金属水酸化物由来のLi,Kは合計で1ppm未満、また単結晶育成容器由来のAu,そしてPtも検出されず、1ppm未満であった。
(比較例1)
実施例1の操作において、酸素発生剤としての過酸化バリウムを投入しない以外はすべて同様の操作により、酸化亜鉛単結晶(B)を得、これより亜鉛終端面側に(0001)面で厚さ1mmに切り出した基板(B)を作成した。
Further, X-ray diffraction / X-ray rocking curve measurement was performed under the following conditions.
<X-ray diffractometer and conditions>
Substrate measurement lattice plane: (0004)
Measuring device: ATX-E
X-ray source: rotating counter cathode Cu target (50 kV-300 mA)
Measurement optical system: incident optical system, artificial multilayer mirror + Ge440-4 crystal optical system
Light receiving optical system / Ge220-2 crystal analyzer As a result, it was found that the (0004) peak half-value width of the substrate (A) was as sharp as 15 seconds and excellent in single crystallinity. On the other hand, the substrate (B) shown in Comparative Example 1 below was inferior in single-crystal property to the substrate (A) for 26 seconds.
Further, impurity analysis was performed by ICP measurement of the substrate (A) (apparatus: SPS1200A Plasma Spectrometer, manufactured by Seiko Instruments Inc.).
As a result, Li and K derived from the alkali metal hydroxide used as the single crystal solvent were less than 1 ppm in total, and Au and Pt derived from the single crystal growth vessel were not detected and were less than 1 ppm.
(Comparative Example 1)
In the operation of Example 1, a zinc oxide single crystal (B) was obtained by the same operation except that barium peroxide as an oxygen generating agent was not added. A substrate (B) cut out to 1 mm was prepared.

そして、基板(B)について、実施例1と同様に電気抵抗を測定し、電気比抵抗を求めたところ、2×10Ω・cmであり、上記の実施例1による基板(A)との差は明確であった。 And about the board | substrate (B), when electrical resistance was measured similarly to Example 1 and the electrical specific resistance was calculated | required, it was 2 * 10 < 5 > ohm * cm, and it is with the board | substrate (A) by said Example 1 above. The difference was clear.

また、実施例1と同じ条件でX線回折・X線ロッキングカーブ測定を行ったところ、基板(B)の(0004)ピーク半値幅は26秒となり、上記の実施例1による基板(A)に比べ単結晶性が劣った。   Further, when X-ray diffraction / X-ray rocking curve measurement was performed under the same conditions as in Example 1, the (0004) peak half-value width of the substrate (B) was 26 seconds, and the substrate (A) according to Example 1 described above was found. The single crystallinity was inferior.

また、基板(B)を実施例1と同様に、ICP測定を行った結果、Li,Kは合計で1ppm未満、Au,そしてPtも検出されず1ppm未満であった。   Further, as a result of ICP measurement of the substrate (B) in the same manner as in Example 1, Li and K were less than 1 ppm in total, and Au and Pt were not detected, and were less than 1 ppm.

以上の実施例1と比較例1との結果から、酸化亜鉛基板の不純物含有量は低く、同程度であるにもかかわらず、電気比抵抗が大きく異なるのは、酸素欠損量に由来するものと考えられ、実施例1による基板(A)では酸素欠損が極めて少なく、単結晶に優れるストイキオメトリーな酸化亜鉛単結晶であることが示唆された。   From the results of Example 1 and Comparative Example 1 described above, the specific content of the electrical resistivity is greatly different from the amount of oxygen deficiency even though the impurity content of the zinc oxide substrate is low and similar. The substrate (A) according to Example 1 was considered to be a stoichiometric zinc oxide single crystal having very few oxygen vacancies and excellent in single crystal.

(実施例2)
酸素発生剤として過酸化バリウム8部を投入する以外は実施例1と同様の操作で酸化亜鉛単結晶を得、これより亜鉛終端面側に(0001)面で切り出した基板を得た。該基板の電気比抵抗は6×1012Ω・cmであった。
(Example 2)
A zinc oxide single crystal was obtained in the same manner as in Example 1 except that 8 parts of barium peroxide was added as an oxygen generator, and a substrate cut out from the (0001) plane on the zinc termination surface side was obtained. The electrical resistivity of the substrate was 6 × 10 12 Ω · cm.

(実施例3)
酸素発生剤として過酸化バリウム0.8部を投入する以外は実施例1と同様の操作で酸化亜鉛単結晶を得、これより亜鉛終端面側に(0001)面で切り出した基板を得た。該基板の電気比抵抗は3×10Ω・cmであった。
(Example 3)
A zinc oxide single crystal was obtained in the same manner as in Example 1 except that 0.8 part of barium peroxide was added as an oxygen generator, and a substrate cut out from the (0001) plane on the zinc termination surface side was obtained. The electrical resistivity of the substrate was 3 × 10 9 Ω · cm.

(実施例4)
酸素発生剤として過酸化水素0.8部を投入した以外は実施例1と同様の操作で酸化亜鉛単結晶を得、これより亜鉛終端面側に(0001)面で切り出した基板を得た。該基板の電気比抵抗は1×10Ω・cmであった。
Example 4
A zinc oxide single crystal was obtained in the same manner as in Example 1 except that 0.8 part of hydrogen peroxide was added as an oxygen generator, and a substrate cut out from the (0001) plane on the zinc termination surface side was obtained. The electrical resistivity of the substrate was 1 × 10 9 Ω · cm.

(実施例5)
酸素発生剤として過酸化バリウム1.2部と過酸化水素1.2部を併用して投入した以外は実施例1と同様の操作で酸化亜鉛単結晶を得、これより亜鉛終端面側に(0001)面で切り出した基板を得た。該基板の電気比抵抗は4×1010Ω・cmであった。
(Example 5)
A zinc oxide single crystal was obtained in the same manner as in Example 1 except that 1.2 parts of barium peroxide and 1.2 parts of hydrogen peroxide were added as oxygen generators. A substrate cut out in the (0001) plane was obtained. The electrical resistivity of the substrate was 4 × 10 10 Ω · cm.

(比較例2)
単結晶育成容器として白金製容器を用いた以外は実施例1と同様の操作で酸化亜鉛単結晶を得、これより亜鉛終端面側に(0001)面で切り出した基板を得た。該基板の電気比抵抗は7×1010Ω・cmであった。しかし、Pt容器は変色し腐食が激しかった。さらに、該基板のICPによる不純物分析で、Ptが1ppm以上検出され、白金製容器が腐食して酸化亜鉛単結晶へPtがコンタミした原因となった。
(Comparative Example 2)
A zinc oxide single crystal was obtained in the same manner as in Example 1 except that a platinum vessel was used as the single crystal growth vessel, and a substrate cut out from the (0001) plane on the zinc termination surface side was obtained. The electrical resistivity of the substrate was 7 × 10 10 Ω · cm. However, the Pt container changed color and was severely corroded. Furthermore, the impurity analysis by ICP of the substrate detected Pt of 1 ppm or more, which caused the platinum container to corrode and cause Pt contamination to the zinc oxide single crystal.

(比較例3)
単結晶育成容器として白金製容器を用い、酸素発生剤として過酸化水素2.4部を投入した以外は実施例1と同様の操作で酸化亜鉛単結晶を得、これより亜鉛終端面側に(0001)面で切り出した基板を得た。該基板の電気比抵抗は6×10Ω・cmであった。しかし、Pt容器は変色し腐食が激しかった。さらに、該基板のICPによる不純物分析で、Ptが1ppm以上検出され、腐食したPtが酸化亜鉛単結晶へのコンタミ原因となった。
(Comparative Example 3)
A zinc oxide single crystal was obtained in the same manner as in Example 1 except that a platinum vessel was used as a single crystal growth vessel and 2.4 parts of hydrogen peroxide was added as an oxygen generator. A substrate cut out in the (0001) plane was obtained. The electrical resistivity of the substrate was 6 × 10 9 Ω · cm. However, the Pt container changed color and was severely corroded. Furthermore, the impurity analysis of the substrate by ICP detected Pt of 1 ppm or more, and the corroded Pt caused contamination of the zinc oxide single crystal.

以上の実施例1〜5及び比較例1〜3の操作条件及び結果を表1にまとめて示した。   The operating conditions and results of Examples 1 to 5 and Comparative Examples 1 to 3 are summarized in Table 1.

Figure 2006225213
(実施例6)
実施例1で得た酸化亜鉛単結晶基板を、管状炉を用いて、800℃で2時間、酸素気流下で熱処理した。酸化亜鉛基板は鏡面状の(111)イットリウム安定化ジルコニア(YSZ)単結晶で挟んで、周囲には酸化亜鉛粉末を堆積した。熱処理した該基板の電気比抵抗は4×1011Ω・cmであった。また、実施例1記載と同条件で、X線回折・X線ロッキングカーブ測定した結果、熱処理した該基板の(0004)ピーク半値幅は14.8秒と極めてシャープだった。
Figure 2006225213
(Example 6)
The zinc oxide single crystal substrate obtained in Example 1 was heat-treated at 800 ° C. for 2 hours under an oxygen stream using a tubular furnace. The zinc oxide substrate was sandwiched between mirror-like (111) yttrium-stabilized zirconia (YSZ) single crystals, and zinc oxide powder was deposited around it. The electrical resistivity of the heat-treated substrate was 4 × 10 11 Ω · cm. Further, as a result of X-ray diffraction / X-ray rocking curve measurement under the same conditions as described in Example 1, the (0004) peak half-value width of the heat-treated substrate was extremely sharp at 14.8 seconds.

(実施例7)
熱処理の雰囲気を窒素気流下とする以外は、すべて実施例5と同じ操作で酸化亜鉛単結晶基板の熱処理を行った。熱処理後の電気比抵抗は1×1011Ω・cmであった。
(Example 7)
The zinc oxide single crystal substrate was heat-treated in the same manner as in Example 5 except that the heat treatment atmosphere was changed to a nitrogen stream. The electrical specific resistance after the heat treatment was 1 × 10 11 Ω · cm.

(実施例8)
熱処理温度を1,200℃とする以外は、すべて実施例5と同じ操作で酸化亜鉛単結晶基板の熱処理を行った。熱処理後の電気比抵抗は8×1011Ω・cmであった。
(Example 8)
Except that the heat treatment temperature was 1200 ° C., the zinc oxide single crystal substrate was heat treated in the same manner as in Example 5. The electrical specific resistance after the heat treatment was 8 × 10 11 Ω · cm.

(比較例4)
熱処理温度を600℃とする以外は、すべて実施例5と同じ操作で酸化亜鉛単結晶基板の熱処理を行った。熱処理後の電気比抵抗は9×1010Ω・cmであった。
(Comparative Example 4)
Except that the heat treatment temperature was 600 ° C., the zinc oxide single crystal substrate was heat treated in the same manner as in Example 5. The electrical specific resistance after the heat treatment was 9 × 10 10 Ω · cm.

以上の実施例6〜8及び比較例4の操作条件及び結果を表2にまとめて示した。   The operating conditions and results of Examples 6 to 8 and Comparative Example 4 are summarized in Table 2.

Figure 2006225213
Figure 2006225213

Claims (9)

酸素と亜鉛とが実質的に化学量論的に等量の組成であり、電気比抵抗が1×10Ω・cm以上である酸化亜鉛単結晶。 A zinc oxide single crystal having a composition in which oxygen and zinc are substantially stoichiometrically equal and having an electrical resistivity of 1 × 10 9 Ω · cm or more. 酸化亜鉛単結晶の原料として用いる酸化亜鉛粉末焼結体が、過酸化水素水溶液中でオートクレーブ装置を用いて水熱処理したものである、請求項1記載の酸化亜鉛単結晶。 The zinc oxide single crystal according to claim 1, wherein the zinc oxide powder sintered body used as a raw material for the zinc oxide single crystal is hydrothermally treated in an aqueous hydrogen peroxide solution using an autoclave apparatus. 単結晶育成容器の下部に原料として酸化亜鉛粉末焼結体を仕込み、上部に種結晶として酸化亜鉛単結晶の小片を吊り下げるとともに、アルカリ金属水酸化物水溶液と過酸化バリウム、過酸化カルシウム、過酸化水素、過炭酸ナトリウム、過炭酸カリウム、過炭酸リチウム及び過ホウ酸ナトリウムからなる群より選ばれる1種または2種以上の酸素発生剤とを投入して、オートクレーブ装置を用いて高温高圧下で酸化亜鉛単結晶を育成させる、請求項1又は請求項2記載の酸化亜鉛単結晶の製造方法。 A zinc oxide powder sintered body is charged at the bottom of the single crystal growth container as a raw material, and a small piece of zinc oxide single crystal is suspended as a seed crystal at the top, while an alkali metal hydroxide aqueous solution and barium peroxide, calcium peroxide, One or more oxygen generators selected from the group consisting of hydrogen oxide, sodium percarbonate, potassium percarbonate, lithium percarbonate, and sodium perborate are added, and the autoclave apparatus is used under high temperature and high pressure. The method for producing a zinc oxide single crystal according to claim 1 or 2, wherein the zinc oxide single crystal is grown. 酸素発生剤が、過酸化バリウム又は、過酸化バリウム及び過酸化水素である、請求項3記載の酸化亜鉛単結晶の製造方法。 The method for producing a zinc oxide single crystal according to claim 3, wherein the oxygen generator is barium peroxide or barium peroxide and hydrogen peroxide. 単結晶育成用容器の材質が金製である請求項3又は請求項4記載の酸化亜鉛単結晶の製造方法。 The method for producing a zinc oxide single crystal according to claim 3 or 4, wherein the material for growing the single crystal is gold. 酸化亜鉛単結晶を、酸素および/または窒素ガス中、800℃以上の温度で熱処理する、請求項3〜5のいずれかに記載の酸化亜鉛単結晶の製造方法。 The method for producing a zinc oxide single crystal according to any one of claims 3 to 5, wherein the zinc oxide single crystal is heat-treated at a temperature of 800 ° C or higher in oxygen and / or nitrogen gas. 請求項1又は請求項2記載の酸化亜鉛単結晶より得られるエピタキシャル成長用基板。 An epitaxial growth substrate obtained from the zinc oxide single crystal according to claim 1. 酸化亜鉛単結晶の原料として用いる酸化亜鉛粉末焼結体が、過酸化水素水溶液中でオートクレーブ装置を用いて水熱処理したものである、請求項7記載のエピタキシャル成長用基板。 The epitaxial growth substrate according to claim 7, wherein the zinc oxide powder sintered body used as a raw material for the zinc oxide single crystal is hydrothermally treated in an aqueous hydrogen peroxide solution using an autoclave apparatus. 請求項7又は請求項8記載のエピタキシャル成長用基板を、さらに酸素および/または窒素ガス中、800℃以上の温度で熱処理するエピタキシャル成長用基板の製造方法。
A method for producing an epitaxial growth substrate, wherein the epitaxial growth substrate according to claim 7 or 8 is further heat-treated in oxygen and / or nitrogen gas at a temperature of 800 ° C or higher.
JP2005043360A 2005-02-21 2005-02-21 Method for producing zinc oxide single crystal Expired - Fee Related JP4677796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005043360A JP4677796B2 (en) 2005-02-21 2005-02-21 Method for producing zinc oxide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005043360A JP4677796B2 (en) 2005-02-21 2005-02-21 Method for producing zinc oxide single crystal

Publications (2)

Publication Number Publication Date
JP2006225213A true JP2006225213A (en) 2006-08-31
JP4677796B2 JP4677796B2 (en) 2011-04-27

Family

ID=36986903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005043360A Expired - Fee Related JP4677796B2 (en) 2005-02-21 2005-02-21 Method for producing zinc oxide single crystal

Country Status (1)

Country Link
JP (1) JP4677796B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009130987A1 (en) * 2008-04-26 2009-10-29 ユーエムケー・テクノロジー株式会社 Process for production of zinc oxide single crystal substrate, single crystal substrate grown by the process, and semiconductor light-emitting device comprising the substrate and film formed thereon
JP2009286856A (en) * 2008-05-27 2009-12-10 Fukuda Crystal Laboratory Scintillator material, method for manufacturing the same, and ionizing radiation detector

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570286A (en) * 1991-09-13 1993-03-23 Lion Corp Production of transparent zinc oxide
JPH06122595A (en) * 1992-10-14 1994-05-06 Ngk Insulators Ltd Growth of zinc oxide single crystal
JPH10182290A (en) * 1996-12-20 1998-07-07 Sekisui Plastics Co Ltd Ultraviolet-ray detecting element and detection of ultraviolet rays, using the same
JP2001048698A (en) * 1999-08-13 2001-02-20 Japan Science & Technology Corp LOW RESISTANCE p-TYPE SINGLE CRYSTAL OF ZINC OXIDE AND ITS PRODUCTION
JP2004315361A (en) * 2003-04-03 2004-11-11 Tokyo Denpa Co Ltd Zinc oxide single crystal
JP2004359499A (en) * 2003-06-04 2004-12-24 Tokyo Denpa Co Ltd Single crystal growing vessel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570286A (en) * 1991-09-13 1993-03-23 Lion Corp Production of transparent zinc oxide
JPH06122595A (en) * 1992-10-14 1994-05-06 Ngk Insulators Ltd Growth of zinc oxide single crystal
JPH10182290A (en) * 1996-12-20 1998-07-07 Sekisui Plastics Co Ltd Ultraviolet-ray detecting element and detection of ultraviolet rays, using the same
JP2001048698A (en) * 1999-08-13 2001-02-20 Japan Science & Technology Corp LOW RESISTANCE p-TYPE SINGLE CRYSTAL OF ZINC OXIDE AND ITS PRODUCTION
JP2004315361A (en) * 2003-04-03 2004-11-11 Tokyo Denpa Co Ltd Zinc oxide single crystal
JP2004359499A (en) * 2003-06-04 2004-12-24 Tokyo Denpa Co Ltd Single crystal growing vessel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009130987A1 (en) * 2008-04-26 2009-10-29 ユーエムケー・テクノロジー株式会社 Process for production of zinc oxide single crystal substrate, single crystal substrate grown by the process, and semiconductor light-emitting device comprising the substrate and film formed thereon
JP5519492B2 (en) * 2008-04-26 2014-06-11 森 竜平 Zinc oxide single crystal substrate manufacturing method, single crystal substrate grown by the method, and semiconductor light emitting device formed on the substrate
JP2009286856A (en) * 2008-05-27 2009-12-10 Fukuda Crystal Laboratory Scintillator material, method for manufacturing the same, and ionizing radiation detector

Also Published As

Publication number Publication date
JP4677796B2 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
Galazka β-Ga2O3 for wide-bandgap electronics and optoelectronics
JP5276769B2 (en) Hexagonal wurtzite single crystal, method for producing the same, and hexagonal wurtzite single crystal substrate
US8878230B2 (en) Semi-insulating group III metal nitride and method of manufacture
KR20050110708A (en) Zinc oxide single crystal
Liu et al. Low-temperature and catalyst-free synthesis of well-aligned ZnO nanorods on Si (100)
Kling et al. Analysis of ZnO and ZnMgO nanopillars grown by self-organization
WO2004074556A2 (en) β-Ga2O3 SINGLE CRYSTAL GROWING METHOD, THIN-FILM SINGLE CRYSTAL GROWING METHOD, Ga2O3 LIGHT-EMITTING DEVICE, AND ITS MANUFACTURING METHOD
WO2008047637A1 (en) Process for producing nitride semiconductor, crystal growth rate enhancement agent, nitride single crystal, wafer and device
US20030084838A1 (en) Mineralizer composition and method for growing zinc oxide crystals, films and powders
US8133319B2 (en) Production process of periodic table group 13 metal nitride crystal and production method of semiconductor device using the same
JP4719788B2 (en) Method for producing group 13 element nitrogen compound crystal
Zhang et al. ZnO microrod arrays grown on a curved sphere surface and their optical properties
JP4677796B2 (en) Method for producing zinc oxide single crystal
JP2009013028A (en) Aluminum oxide-gallium oxide solid solution and method for producing the same
JP2009096700A (en) Method for producing zinc oxide fine wire in large quantity
JP2004315361A (en) Zinc oxide single crystal
US8512673B2 (en) Magnesium oxide powder of high purity
JP4609207B2 (en) Periodic table group 13 metal nitride crystal manufacturing method and semiconductor device manufacturing method using the same
JP4806251B2 (en) Oxidation catalyst, ionic conductor and method for producing the same
JP6339069B2 (en) Gallium nitride crystal growth method, composite substrate, light emitting element manufacturing method, and crystal growth apparatus
WO2009119411A1 (en) Process for producing zno single crystal, self-supporting zno single-crystal wafer obtained by the same, self-supporting wafer of mg-containing zno mixed single crystal, and process for producing mg-containing zno mixed single crystal for use in the same
JP2009234824A (en) METHOD FOR MANUFACTURING SELF-SUPPORTING WAFER OF Mg CONTAINING ZnO MIXED SINGLE CRYSTAL AND Mg CONTAINING ZnO MIXED SINGLE CRYSTAL USED FOR IT
JP2011126731A (en) Sapphire single crystal and method for producing the same
Choi et al. Growth of wurtzite CdTe nanowires on fluorine-doped tin oxide glass substrates and room-temperature bandgap parameter determination
WO2022209170A1 (en) Sputtering target

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20050317

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees