WO2009130987A1 - Process for production of zinc oxide single crystal substrate, single crystal substrate grown by the process, and semiconductor light-emitting device comprising the substrate and film formed thereon - Google Patents

Process for production of zinc oxide single crystal substrate, single crystal substrate grown by the process, and semiconductor light-emitting device comprising the substrate and film formed thereon Download PDF

Info

Publication number
WO2009130987A1
WO2009130987A1 PCT/JP2009/056980 JP2009056980W WO2009130987A1 WO 2009130987 A1 WO2009130987 A1 WO 2009130987A1 JP 2009056980 W JP2009056980 W JP 2009056980W WO 2009130987 A1 WO2009130987 A1 WO 2009130987A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc oxide
single crystal
crystal
growth
oxide single
Prior art date
Application number
PCT/JP2009/056980
Other languages
French (fr)
Japanese (ja)
Inventor
森 信行
丑田 隆史
清水 信宏
登 坂上
Original Assignee
ユーエムケー・テクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユーエムケー・テクノロジー株式会社 filed Critical ユーエムケー・テクノロジー株式会社
Priority to JP2010509129A priority Critical patent/JP5519492B2/en
Publication of WO2009130987A1 publication Critical patent/WO2009130987A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/005Epitaxial layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/10Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/28Materials of the light emitting region containing only elements of Group II and Group VI of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to a method for producing a zinc oxide single crystal substrate, a single crystal substrate grown by the method, and a semiconductor light emitting device formed on the substrate.
  • the energy band width of a direct transition type and a forbidden band is large (ZnO: 3.37 eV), and exciton binding energy (ZnO: 60 meV) is used as another compound semiconductor. Because it is very large compared to the materials used (GaN: 26 meV, ZnSe: 17 meV, etc.), it can be used as a highly efficient light-emitting device, and it can be expected to have excellent characteristics such as a relatively high operating temperature. Zinc oxide single crystals are attracting attention.
  • a substrate for forming the zinc oxide single crystals is required, but conventionally, zinc oxide single crystals having a crystal structure having no defects cannot be grown. Instead, attempts have been made to use a sapphire substrate or the like for crystal layer formation. However, since the crystal structure is originally different, a zinc oxide single crystal layer cannot be formed directly on the sapphire substrate, and it is not possible to form a zinc oxide single crystal layer without crystal defects even through a buffer layer. It was difficult.
  • any of the crystal substrates conventionally tried such as a sapphire substrate is insulative, but zinc oxide can be made conductive by adding a dopant, which makes it convenient as a substrate for a semiconductor element. It has special characteristics.
  • Non-Patent Documents 1 and 2 a sintered body of zinc oxide as a starting material and a seed crystal are respectively arranged at the lower and upper parts of a container such as platinum, filled with an aqueous solution of potassium hydroxide and lithium hydroxide, and used as an oxygen generator.
  • the region temperature where the starting material is disposed is set to the region where the seed material is disposed.
  • a zinc oxide single crystal is grown on a seed crystal at a high temperature of 10 to 15 ° C.
  • lithium hydroxide promotes growth in the a-axis and m-axis directions and improves crystallinity while suppressing crystal growth in the c-axis direction of zinc oxide crystals. Furthermore, based on these reports, proposals of the following Patent Documents 1 to 5 were made, and water was used instead of the above lithium hydroxide as a mineralizer with the aim of promoting crystal growth in the a-axis and m-axis directions. Attempts have been made to use ammonium oxide (NH4OH), sodium hydroxide (NaOH), sodium carbonate (NaCO3), LiNO2, or NaNO2.
  • NH4OH ammonium oxide
  • NaOH sodium hydroxide
  • NaCO3 sodium carbonate
  • LiNO2 LiNO2
  • NaNO2 NaNO2
  • Non-Patent Documents 1 and 2 described above add hydrogen peroxide to the solvent to maintain the oxygen partial pressure, prevent oxygen vacancies, and make the zinc and oxygen atoms stoichiometrically 1: 1.
  • Patent Document 6 instead of hydrogen peroxide, it is proposed to use barium peroxide, calcium peroxide, sodium percarbonate, or potassium percarbonate as an oxygen generator (Patent Document 6), and the stoichiometric composition is achieved.
  • the substrate has a resistance value of 1 ⁇ 10 9 ⁇ cm or more and a thickness of 1 mm, and the light transmittance is 75 to 80% or more. The degree of crystal defects and the influence of other impurities have not been clarified. The evaluation of is not clear.
  • Li is easy to enter the crystal lattice and has a large influence such as diffusion to the zinc oxide single crystal thin film layer formed on the substrate and affecting the operation of a semiconductor element such as a light emitting diode.
  • Some light-emitting diodes are not affected by a very small amount of Li contamination, but it is necessary to avoid Li contamination as much as possible except for these applications.
  • the problem to be solved is Improves crystallinity not only in the a-axis and m-axis directions but also in the c-axis direction. Furthermore, the stoichiometric composition is suitable for semiconductor elements such as LEDs and LDs that do not contain defects and impurities that start with Li.
  • an alkaline aqueous solution containing KOH as a mineralizing agent to which an oxidizing agent is added is used to produce a seed at a temperature difference ⁇ T between a zinc oxide dissolution zone and a zinc oxide single crystal growth zone under supercritical conditions.
  • a zinc oxide seed crystal cut out in a plane perpendicular to the c-axis direction is used as the seed crystal, and ⁇ T is maintained in the range of 3 to 7 ° C.
  • a method for growing a zinc oxide single crystal substrate comprising growing a single crystal while suppressing growth in the c-axis direction of As a mineral containing no mineralizer other than KOH as the mineralizer, a single crystal that does not contain harmful Li in a light emitting device,
  • the above oxidizing agent is H 2 O 2
  • the stoichiometric composition is achieved by suppressing the decomposition of H 2 O 2 by cooling the starting materials and the solvent during the addition,
  • the stoichiometric composition is achieved by using crystal grains in which zinc oxide as the starting material is precipitated by hydrothermal synthesis using a zinc oxide powder sintered body as a raw material.
  • the present invention is a zinc oxide for a starting material for growing a zinc oxide single crystal by a hydrothermal synthesis method, characterized by comprising crystal grains precipitated by hydrothermal synthesis in an alkaline aqueous solution to which an oxidizing agent is added, It is a starting material that achieves stoichiometric composition in the growth of zinc oxide single crystals by hydrothermal synthesis.
  • an alkaline aqueous solution containing KOH as a mineralizer to which an oxidizing agent is added on the seed crystal at a temperature difference ⁇ T between a zinc oxide dissolution zone and a zinc oxide single crystal growth zone under supercritical conditions.
  • a method for growing a single crystal While adding LiOH to the alkaline aqueous solution and suppressing crystal growth in the c-axis direction by KOH, the crystal growth in the a-axis and m-axis directions is promoted, Next, the single crystal is grown in the c-axis direction of the zinc oxide crystal by KOH by maintaining ⁇ T in the range of 3 to 7 ° C. in an alkaline aqueous solution not containing LiOH and containing only KOH as a mineralizer.
  • a method of growing a zinc oxide single crystal substrate characterized by growing a single crystal while suppressing the crystallinity improvement and efficient single crystal growth in a zinc oxide single crystal growth that does not strictly require Li-free conditions. Achieve crystal growth.
  • the temperature difference ⁇ T between the zinc oxide dissolution zone and the zinc oxide single crystal growth zone under supercritical conditions A single crystal grown on a seed crystal
  • the seed crystal is a zinc oxide seed crystal cut in a plane perpendicular to the c-axis direction,
  • ⁇ T in the range of 3 to 7 ° C., it consists of a zinc oxide single crystal formed while suppressing the growth in the c-axis direction of the zinc oxide crystal by KOH
  • the green band emission output of the wavelength of 1.4 to 3.2 eV is A zinc oxide single crystal substrate characterized by having a characteristic that the emission intensity is 0.1% or less, The single crystal substrate is formed
  • the present invention provides a temperature difference between a zinc oxide dissolution zone and a zinc oxide single crystal growth zone under supercritical conditions in an alkaline aqueous solution containing KOH as a mineralizer to which an oxidizing agent is added.
  • a single crystal grown on a seed crystal at ⁇ T The seed crystal is a zinc oxide seed crystal cut in a plane perpendicular to the c-axis direction, By maintaining ⁇ T in the range of 3 to 7 ° C., it consists of a zinc oxide single crystal formed while suppressing the growth in the c-axis direction of the zinc oxide crystal by KOH, With respect to the emission output of the intrinsic emission wavelength having the peak emission at the wavelength of 3.37 eV in the photoluminescence light by the irradiation of the light of the wavelength of 325.0 nm at the temperature of 11 ° K, the green band emission output of the wavelength of 1.4 to 3.2 eV is A semiconductor light emitting device comprising a zinc oxide single crystal having a light emission intensity of 0.1% or less as
  • the present invention suppresses crystal growth in the c-axis direction under strict temperature control in which ⁇ T is in the range of 3 to 7 ° C., regardless of the crystallinity improvement accompanied by the crystal growth suppressing effect in the c-axis direction by LiOH.
  • the most important feature is to improve sex.
  • the growth of zinc oxide crystals by these hydrothermal synthesis methods uses an alkaline aqueous solution containing KOH and LiOH as a solvent, a dissolved region of zinc oxide as a starting material, and a region in which single crystal growth is performed on a zinc oxide seed crystal.
  • a certain temperature difference ⁇ T is provided between them to crystallize the zinc oxide transported to the single crystal growth region, and ⁇ T is generally performed in the range of 10 to 25 ° C. It is said that KOH and LiOH as alkalis generally act as mineralizers for crystal growth in the c-axis direction of crystals and LiOH in the a- and m-axis directions. It is said that the effect of promoting crystal growth in the c-axis direction is large. For this reason, according to the above-mentioned Patent Document 7, in the zinc oxide single crystal growth method by the hydrothermal synthesis method, crystal growth in the c-axis direction is promoted by an aqueous potassium hydroxide solution, and then potassium hydroxide and lithium hydroxide are added.
  • a single crystal is efficiently grown by mainly performing crystal growth in the a- and m-axis directions in the aqueous solution.
  • KOH has a large crystal growth effect as a mineralizer, it tends to cause crystal defects, and LiOH as a mineralizer in the a-axis and m-axis directions suppresses the action of KOH and improves crystallinity. It is thought that. Accordingly, the crystallinity in the c-axis direction cannot be improved by such a method.
  • KOH not only acts as a solvent but also has a remarkably large effect as a mineralizer, affecting the crystallinity.
  • LiOH is a mineral in the a and m-axis directions. In addition to the agent, it is thought that the growth of these crystal axes is balanced by suppressing the action of KOH as a mineralizer.
  • Li easily enters the zinc oxide single crystal, and further penetrates into the functional layer formed on the substrate as a mobile ion, and causes a harmful effect on the characteristics of the LED, LD, and the like.
  • Patent Document 6 in order to obtain a stoichiometric composition, in a reaction in which crystal growth is performed in an alkaline aqueous solution containing LiOH and KOH, when ⁇ T exceeds 10 ° C., zinc oxide As the supersaturation degree of C may collapse at a stretch and nucleation may occur and the efficient growth of seed crystals may be inhibited, it is 10 ° C. or less, preferably 8 ° C. or less, more preferably 6 ° C. or less and 1 ° C. or more. In addition, when the temperature is lower than 1 ° C., the seed crystal is melted or the growth of the seed crystal is rapidly slowed down, and the productivity is inferior.
  • ⁇ T is set in the range of 6 ° C. to 1 ° C. to achieve both the crystallinity and the crystal growth rate.
  • These conditions are conditions for coexistence of LiOH and KOH, and are used as a mineralizing agent for LiOH. It is said that the stoichiometric composition has been achieved with respect to these crystal growth effects, but there is no detail about crystallinity.
  • a significant improvement in crystallinity was obtained by maintaining the value of ⁇ T within the range of 3 to 7 ° C. under the condition that KOH alone does not contain LiOH. .
  • a Li-free zinc oxide single crystal can be grown by not including LiOH.
  • the second feature of the present invention is a hydrothermal synthesis in which zinc oxide, which is a starting material, is used instead of a sintered body of zinc oxide powder that has been widely used in order to achieve a stoichiometric composition and reduce crystal defects. This is because the granular zinc oxide precipitated by the above method is used.
  • Sintered bodies made from zinc oxide powder are used, including Non-Patent Documents 1 and 2, and these sintered bodies release powdered zinc oxide as the dissolution progresses, and the single crystal growth region It has been regarded as a problem that it has an influence such as intruding into the crystal and adhering to crystals during the growth process.
  • Patent Document 6 describes that oxygen vacancies are generated in zinc oxide as a raw material due to these sintering, and it is described that the sintered body is previously hydrothermally treated in an aqueous solution containing hydrogen peroxide.
  • these problems have not been solved. Due to the nature of zinc oxide that is inherently prone to oxygen vacancies, the present inventors have produced strong oxygen vacancies in the sintered zinc oxide, and it is difficult to compensate for the vacancies even when an oxidizing agent is added during the crystal growth process.
  • the idea was to start with zinc oxide that satisfies the stoichiometric composition without oxygen deficiency.
  • a zinc oxide powder sintered body is used as a raw material, dissolved in an aqueous solution containing an oxidant, and precipitated as zinc oxide by hydrothermal synthesis, and grown until it has a preferred particle size (diameter 2 to 5 mm) in terms of dissolution characteristics.
  • the zinc oxide grains as a starting material for growing a single crystal, oxygen deficiency derived from the starting material in the grown single crystal can be eliminated, and scattering of powdered zinc oxide can also be eliminated. It goes without saying that these zinc oxides may be formed as a bulk and then crushed and used as particles of an appropriate size.
  • the vessel is sealed without the decomposition of hydrogen peroxide progressing. It can be performed.
  • the oxygen partial pressure in the single crystal growth vessel is properly maintained, the generation of oxygen vacancies in the grown single crystal is effectively suppressed, and the oxygen vacancies are increased in the growth of the single crystal in the c-axis direction. Therefore, it is possible to grow a complete single crystal while suppressing the occurrence of crystal defects due to the occurrence of the defect.
  • the zinc oxide single crystal substrate of the present invention has very few crystal defects in the crystal structure grown in the c-axis direction, has improved stoichiometric composition and crystallinity, and is suitable as a substrate for various semiconductor elements, In addition, since it is Li-free, it can exhibit characteristics suitable as a substrate for LEDs and LDs.
  • FIG. 1 (A) shows a zinc oxide single crystal growing apparatus 11 and FIG. 1 (B) shows a zinc oxide single crystal growing vessel 31 used in the apparatus.
  • the single crystal growing apparatus 11 comprises a high pressure autoclave 12 that can be in a supercritical condition, and heaters 21 and 22 for controlling temperature conditions along the growing process of the present invention.
  • the entire apparatus is shut off from the outside by a heat insulating material 23 in order to keep the temperature condition constant.
  • the autoclave 12 is a pressure-resistant container, and a single crystal growing container 31 is set in the accommodating portion 13, and the opening is closed by the lid 16 to seal the inside.
  • the lid includes a packing member 15, and the autoclave main body 14 and the lid 16 are firmly fastened with screws 17 to maintain a sealed state under high pressure.
  • the upper and lower portions of the outer periphery of the autoclave 12 are kept under a constant temperature condition by the heaters 21 and 22 arranged above and below.
  • the single crystal growing vessel 31 is formed of a material that does not elute impurities under the internal reaction conditions, such as platinum (Pt) or gold (Au), and the inside is a single crystal in which a seed crystal is set.
  • the two regions are divided by an internal baffle plate 34, and the flow of the solvent is controlled by a large number of holes provided in the baffle plate 34.
  • seed crystals 41a to 41d are suspended and set inside the container by a suspension made up of a frame 32 made of platinum or the like and a support 33 so as not to elute impurities.
  • a lid 37 for sealing the container after setting starting materials and the like is provided at the upper end of the container.
  • the lid is provided with a minute opening 38 for injecting a solvent, an oxidizing agent or the like. Further, a baffle ring 35 having a circulation hole is similarly provided on the outer periphery of the container, and the container is supported in the autoclave accommodating portion 13.
  • a cleaned single crystal growth container main body 36 and a lid 37 are prepared, and a raw material region is filled with zinc oxide 51 as a starting material from the container main body opening in a clean room, and then an internal baffle plate 34 is set.
  • the suspension with the seed crystals 41a to 41d suspended is set in the single crystal growth region.
  • the single crystal growth vessel 36 is covered with a lid 37 and welded.
  • an alkaline aqueous solution is injected from the solution injection micro-opening 38 on the upper surface of the lid, and the entire single crystal growth vessel is immersed in liquid nitrogen and cooled. After injecting the oxygen generator with the aqueous solution in a frozen state, the minute openings are sealed by welding.
  • the container 31 that has been prepared as described above is set in a state of being suspended by the external buffer ring 35 in the accommodating portion 13 in the autoclave 12.
  • a space 18 of the accommodating portion 13 in the autoclave 12 is filled with pure water having a filling rate (70 to 75%) corresponding to the pressurizing condition, sealed with a packing member 15, and the lid 16 is firmly screwed.
  • Seed crystal Size of seed crystal: flaky seed crystal cut in a direction perpendicular to the c-axis having a diameter of 1 to 2 inches and a thickness of 0.5 to 1.0 mm.
  • Zinc oxide starting material Granular oxidation deposited by hydrothermal synthesis method under supercritical conditions in alkaline aqueous solution using zinc oxide powder sintered body as raw material of zinc oxide starting material and adding hydrogen peroxide as oxidizing agent Zinc (diameter 2-5mm).
  • the form of the zinc oxide single crystal (substrate) thus obtained is a hexagonal crystal structure reflecting the crystal structure as shown in FIG. 2 and FIG.
  • a single crystal of zinc oxide is grown on each of the + c plane (c-axis direction zinc plane) and the ⁇ c plane (c-axis direction oxygen plane) of the seed crystal 41.
  • the zinc oxide single crystal grows in the c-axis direction with respect to the seed crystal 41, whereas large crystal growth occurs in the a-axis direction and the m-axis direction perpendicular to this. I can't see.
  • c-axis direction crystal growth it can be seen that the crystal growth in the + c plane is larger than the crystal growth in the -c plane.
  • the appearance of the obtained zinc oxide single crystal shows that the seed crystal obtained by hydrothermal synthesis in the presence of lithium hydroxide becomes a yellow colored crystal due to Li contained as an impurity in the crystal. It can be seen that the grown zinc oxide single crystal is colorless and highly transparent.
  • the zinc oxide single crystals 52 and 53 are compared with each other in terms of the crystallinity of a single crystal substrate thinly sliced by a high-power microscope, and the zinc oxide single crystal 52 formed on the + c plane of the seed crystal 41 has a c-axis direction.
  • the presence of defects could not be recognized in the zinc oxide single crystal 53 formed on the ⁇ c plane of the seed crystal 41. This is because when the single crystal is grown on the seed crystal 41 using the single crystal growth apparatus 11 shown in FIG. 1A, the crystal growth rate of the + c plane of the seed crystal 41 is the crystal growth rate of the ⁇ c plane. It is thought that it was larger than that.
  • ⁇ T T 4 -T 3
  • ⁇ T T 4 -T 3
  • the entire crystal growth rate of the zinc oxide single crystals 52 and 53 with respect to the crystal 41 is slowed, or a baffle plate that selectively slows the crystal growth is arranged on the + c plane side of the seed crystal 41, etc. It is conceivable to slow the crystal growth rate of the zinc oxide single crystal 52. As can be seen from these, a slight difference in crystal growth affects the crystallinity.
  • ⁇ T is smaller than 3 ° C.
  • the crystal growth rate is remarkably lowered due to a decrease in transport efficiency or the like.
  • ⁇ T exceeds 7 ° C.
  • the crystallinity is affected and it becomes difficult to grow a good single crystal. Therefore, from these conditions, the value of ⁇ T is limited to a narrow range of 3 to 7 ° C. Within this range, the temperature range can be adjusted / changed according to other crystal growth conditions, or the optimum value can be selected empirically.
  • the zinc oxide single crystal 53 on the ⁇ c plane of the zinc oxide single crystal obtained under the above growth conditions is 0.5 to 1 mm in a direction perpendicular to the c axis (c plane and horizontal direction) by a diamond cutter or a wire cutter.
  • a zinc oxide single crystal substrate 54 shown in FIG. 2C is formed.
  • the zinc oxide single crystal substrate 54 has a step terrace structure with a surface roughness on the c-plane of 1 nm or less, and its diameter (a-axis or m-axis direction) is substantially the same as that of the seed substrate 41.
  • the lithium content of the formed zinc oxide single crystal substrate 54 was about three orders of magnitude lower than the lithium content of about 1 ppm contained as the seed crystal 41. It can be said that the zinc oxide single crystal substrate 54 containing only this level of lithium essentially does not contain lithium. Further, the zinc oxide single crystal 54 obtained as shown in FIG. 2 (c) is used as the seed crystal 41, and the zinc oxide single crystal growing step by hydrothermal synthesis shown in FIG. It is also possible to grow zinc oxide single crystals with a smaller lithium content. Therefore, the zinc oxide single crystal substrate obtained by the present invention is essentially free of lithium.
  • a seed crystal 41 having substantially the same diameter as the single crystal substrate 54 in the a-axis and m-axis directions is formed. It is necessary to prepare. A method for producing the seed crystal 41 having such a diameter will be additionally described. Such a seed crystal 41 may be produced by using the equipment described in FIGS. 1A to 1C in the method for producing the zinc oxide single crystal substrate 54 of the present invention described above and performing the same steps.
  • a method for producing the seed crystal 41 will be described with reference to FIGS.
  • LiOH was further added to the alkaline aqueous solution for obtaining the zinc oxide single crystal substrate 54 as the composition of the alkaline aqueous solution injected into the single crystal growth vessel 31.
  • An alkaline aqueous solution of the composition is used.
  • the zinc oxide raw material may be zinc oxide crystal grains having a purity of 7N or higher grown by hydrothermal synthesis, but a zinc oxide sintered body having a purity of 7N or higher may be used.
  • the heaters 21 and 22 may be driven so that ⁇ T (T 4 ⁇ T 3 ) is about 10 ° C.
  • the seed crystal 61 for forming the seed crystal 41 has a c-axis direction and a direction perpendicular to the c-axis (a Zinc oxide single crystals 42 and 43 crystal-grown in the axial and m-axis directions) can be obtained. If this is sliced with a diamond cutter or a wire cutter in the same manner as described above and washed, the diameter in the direction perpendicular to the c-axis direction required for the zinc oxide single crystal substrate 54 of the present invention as shown in FIG. For example, the seed crystal 41 having the same size as 1 inch or 2 inches can be formed.
  • the surface of the seed crystal 41 is dissolved at the initial stage of the single crystal growth step by hydrothermal synthesis shown in FIG. 1 for producing the zinc oxide single crystal substrate 54 of the present invention, and the surface treatment is performed. Because it is done.
  • the seed crystal 41 formation step lithium hydroxide is used for the alkaline aqueous solution, and a temperature difference of about 10 ° C. is used as ⁇ T, so that the needle is good in the a-axis and m-axis directions perpendicular to the c-axis (the needle is The crystal growth (which does not occur) is performed, the diameter in this direction can be increased, and a zinc oxide single crystal with few crystal defects is grown.
  • the obtained seed crystal 41 contains about 1 ppm of lithium as an impurity, and becomes a transparent but colored yellow single crystal. The lithium contained as an impurity in the seed crystal 41 cannot be precipitated if it exists between the sites of the zinc oxide crystal.
  • the zinc oxide single crystal 52 shown in FIG. And 53 in the hydrothermal synthesis process for annealing or annealing. Therefore, lithium contained in a very small amount in the zinc oxide single crystal substrate 54 of the present invention dissolves the seed crystal 41 with an alkaline aqueous solution in a supercritical state by hydrothermal synthesis for forming the substrate 54 (at the initial growth stage). It is considered that the surface of the seed crystal and dissolution of the seed crystal during the growth period) were slightly dissolved in the alkaline aqueous solution and mixed into the grown zinc oxide single crystal.
  • the zinc oxide single crystal growth by the hydrothermal synthesis described above is performed using the zinc oxide single crystal substrate 54 essentially free of lithium as a seed crystal as described above, the zinc oxide of the present invention obtained thereby is obtained. Even if the single crystal substrate does not contain lithium or contains lithium, an extremely small amount of zinc oxide single crystal substrate can be formed.
  • the c-axis direction zinc oxide single crystal is maintained in a range of 3 to 7 ° C. with an aqueous solution containing only the above-mentioned Li and containing only KOH as a mineralizer. By performing the growth, a zinc oxide single crystal having improved crystallinity in the c-axis direction can be efficiently grown.
  • the zinc oxide single crystal substrate 54 formed according to the present invention is essentially free of lithium, is a colorless transparent crystal, and is essentially free of defects and impurities in the crystal surface and crystal.
  • the zinc oxide single crystal having a stoichiometric composition without oxygen vacancies is formed on the formed zinc oxide single crystal substrate 54. This can be confirmed by performing a luminescence inspection.
  • FIG. 4 is a diagram showing the results of photoluminescence inspection of the zinc oxide single crystal substrate 54 (shown as A) and the currently available zinc oxide single crystal substrates (shown as B and C) of the present invention.
  • each of the substrates (A, B and C) is irradiated with light of 325.0 nm by a He—Cd laser at a temperature of 11 ° K, photoluminescence light is obtained from the zinc oxide single crystal substrate.
  • emission intensity vertical axis is logarithmically expressed
  • generated from each substrate (A, B, and C) is emitted at a band edge emission wavelength (370 nm: 3.37 eV) showing steep emission characteristics.
  • the extremely broad light emission characteristics in green light emission are based on these combined causes.
  • the emission intensity of the green band emission is significantly smaller than the emission intensity of the band edge emission wavelength (370 nm: 3.37 eV) ( The emission intensity ratio is 0.1% or less), and the values measured in these regions are almost noise levels and there is almost no green band emission. According to this, it can be said that the zinc oxide single crystal substrate 54 of the present invention is a single crystal with very few defects and impurities.
  • the zinc oxide single crystal substrate can be used as a substrate on which a functional thin film constituting a semiconductor element such as a light emitting diode is formed.
  • a zinc oxide single crystal substrate is required to form a semiconductor element using a zinc oxide single crystal thin film.
  • a crystal structure of In addition to being the same zinc oxide it is essential that the substrate itself is free of harmful impurities and crystal defects.
  • the zinc oxide single crystal obtained by the method of the present invention uses high-purity zinc as a starting material.
  • the crystal growth rate is controlled by selecting the crystal axis and the mineralizer, oxygen
  • the above characteristics were achieved by a method of adding H 2 O 2 for suppressing defects and a growth method using zinc oxide grains from which oxygen defects were eliminated as a starting material. That is, since the above-mentioned green band emission intensity is extremely low and has been reduced to almost the noise level, this zinc oxide single crystal has almost no crystal defects and impurities to hinder the operation of the semiconductor element. It can be said that it has been resolved.
  • a light-emitting element having high emission wavelength purity that is not affected by green band light emission can be formed using this substrate. Further, as described above, the absence of contamination by Li eliminates an important obstacle in the characteristics of the zinc oxide functional thin film operating as a light emitting diode.
  • zinc oxide single crystal substrate as a functional semiconductor single crystal thin film to be formed on the substrate, in addition to zinc oxide, so-called zinc oxide based compounds such as ZnMgO, ZnCdO, ZnSeO, or ZnSO have been proposed so far. These can be applied, and both of them have the same crystal structure and the same lattice constant or the difference between them is extremely small, so that they are excellent single crystal growth substrates.
  • the inventors of the present invention confirmed the emission characteristics by laminating a zinc oxide single crystal thin film, which is the basic structure of a light emitting diode, using the zinc oxide single crystal substrate obtained as described above.
  • the present inventors realized a high-quality laminated thin film with few crystal defects by performing homoepitaxial growth on the above-described zinc oxide single crystal substrate using the RS-MBE method.
  • the characteristics of these functional single crystal thin films basically depend on the crystal structure and quality of the substrate, and the substrate is the basic of the functional single crystal thin film that becomes the semiconductor element formed thereon. The quality is defined, and the device is integrated.
  • FIG. 6 shows the basic configuration of a light emitting diode whose emission was confirmed using the zinc oxide single crystal substrate 54 formed as described above.
  • an n-type cladding layer 301 made of ZnO: Ga doped with gallium as an n-type impurity an active layer 302 made of ZnO: Cd doped with cadmium, and a p-type impurity.
  • a p-type cladding layer 303 made of ZnO: N doped with nitrogen is stacked. Since the clad layers 301 and 303 need to confine carriers in the active layer 302, the clad layers 301 and 303 are selected so as to have a forbidden band width larger than that of the active layer 302.
  • 304 and 305 are electrode layers.
  • the zinc oxide single crystal of the present invention as a substrate, not only the light emitting element structure described above but also a layer structure in which a light emitting element made of a zinc oxide based semiconductor is formed, a semiconductor element exhibiting excellent characteristics is formed. can do.
  • Thin films formed on a zinc oxide single crystal substrate as exemplified above include zinc oxide semiconductors such as ZnO, ZnMgO compounds, ZnCdO compounds, ZnSeO compounds, and ZnSO compounds.
  • ZnO-based thin film in which a semiconductor element is formed by stacking a plurality of the above thin films by homojunction on a zinc oxide single crystal substrate.
  • the lattice constant between the zinc oxide single crystal substrate and the ZnO thin film or the ZnO compound thin film, between the ZnO thin film and the ZnO compound thin film, and between the different types of ZnO compound thin films is the same or almost the same, and Since there is no difference in thermal expansion coefficient between them, the crystallinity of the ZnO-based thin film formed by stacking can be improved, and the optical and electrical characteristics and reliability of the semiconductor element can be remarkably improved.
  • the method for producing a zinc oxide single crystal substrate according to the present invention is excellent in crystallinity, free from crystal defects, has a stoichiometric composition and does not contain harmful Li, such as a light emitting element. It is possible to provide a substrate on which various semiconductor elements are formed, and contribute greatly to the industry together with the semiconductor elements formed on the substrate.
  • Autoclave (A) and zinc oxide single crystal growth vessel (B) used in the present invention The figure which shows the external appearance of the zinc oxide single crystal obtained by the hydrothermal synthesis method of this invention.
  • crystallization The characteristic view of the zinc oxide single crystal obtained by the hydrothermal synthesis method of this invention, and the zinc oxide single crystal of a prior art example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

In a hydrothermal synthesis process of growing a zinc oxide single crystal on a zinc oxide seed crystal under supercritical conditions by using an aqueous KOH solution as the solvent, the stoichiometric composition is attained by cutting a zinc oxide seed crystal in the direction perpendicular to the c-axis; using the c-face as single crystal growth face; using, as the mineralizer, only KOH which has an effect of growing a single crystal in the direction of c-axis; adjusting the temperature difference (ΔT) between dissolution zone (into which zinc oxide is fed) and single crystal zone to 3 to 7° to suppress the mineralizing action of KOH; adding hydrogen peroxide as an oxidizer for attaining the stoichiometric composition; cooling the inside of a single crystal growth vessel prior to the addition to inhibit the decomposition of hydrogen peroxide and thus control the oxygen partial pressure; and using, as the starting zinc oxide, zinc oxide particles which are precipitated by hydrothermal synthesis in an aqueous alkaline solution containing an oxidizer.

Description

酸化亜鉛単結晶基板の製造方法及びその方法により育成された単結晶基板並びにその基板上に成膜した半導体発光素子Zinc oxide single crystal substrate manufacturing method, single crystal substrate grown by the method, and semiconductor light emitting device formed on the substrate
 本発明は、酸化亜鉛単結晶基板の製造方法及びその方法により育成された単結晶基板並びにその基板上に成膜した半導体発光素子に関する。 The present invention relates to a method for producing a zinc oxide single crystal substrate, a single crystal substrate grown by the method, and a semiconductor light emitting device formed on the substrate.
 近年、半導体素子を含む電子デバイスを構成する素材として、直接遷移型で禁制帶域のエネルギーバンド幅が大きく(ZnO:3.37eV)、励起子束縛エネルギー(ZnO:60meV)が他の化合物半導体として用いられている材料に比較して非常に大きく(GaN:26meV、 ZnSe:17meVなど)、効率の高い発光デバイスとでき、作動温度も比較的高温に耐える等、優れた特性が期待されることから、酸化亜鉛単結晶が注目されている。
 これらの酸化亜鉛単結晶による半導体素子を作成するには、酸化亜鉛単結晶を形成するための基板が必要であるが、従来は欠陥のない結晶構造の酸化亜鉛単結晶を育成することができないため、それに代わってサファイア基板等を結晶層形成に使用することが試みられていた。しかしながら、本来結晶構造が異なることから、直接サファイア基板上に酸化亜鉛単結晶層を形成することができず、また、バッファ層を介しても結晶欠陥のない酸化亜鉛単結晶層を形成することは困難であった。
In recent years, as a material constituting an electronic device including a semiconductor element, the energy band width of a direct transition type and a forbidden band is large (ZnO: 3.37 eV), and exciton binding energy (ZnO: 60 meV) is used as another compound semiconductor. Because it is very large compared to the materials used (GaN: 26 meV, ZnSe: 17 meV, etc.), it can be used as a highly efficient light-emitting device, and it can be expected to have excellent characteristics such as a relatively high operating temperature. Zinc oxide single crystals are attracting attention.
In order to create a semiconductor element using these zinc oxide single crystals, a substrate for forming the zinc oxide single crystals is required, but conventionally, zinc oxide single crystals having a crystal structure having no defects cannot be grown. Instead, attempts have been made to use a sapphire substrate or the like for crystal layer formation. However, since the crystal structure is originally different, a zinc oxide single crystal layer cannot be formed directly on the sapphire substrate, and it is not possible to form a zinc oxide single crystal layer without crystal defects even through a buffer layer. It was difficult.
 このため、これら酸化亜鉛、或いは酸化亜鉛型と称される材料からなる半導体素子を実現するためには、本来結晶構造の同じ酸化亜鉛からなる単結晶基板が望まれていた。
 また、これら半導体素子用基板として、サファイア基板など従来試みられていた結晶基板はいずれも絶縁性であるが、酸化亜鉛はドーパントの添加により導電性とすることができるなど、半導体素子用基板として好都合な特性を備える。
For this reason, in order to realize a semiconductor element made of a material called zinc oxide or a zinc oxide type, a single crystal substrate originally made of zinc oxide having the same crystal structure has been desired.
In addition, as a substrate for a semiconductor element, any of the crystal substrates conventionally tried such as a sapphire substrate is insulative, but zinc oxide can be made conductive by adding a dopant, which makes it convenient as a substrate for a semiconductor element. It has special characteristics.
 しかしながら、結晶欠陥のない、不純物濃度が極めて少ない、半導体素子製造に適したサイズの酸化亜鉛単結晶基板を製造することは、困難であった。
 酸化亜鉛単結晶育成について、結晶欠陥の少ない方法として水熱合成法による方法が提案されており、本発明者の一人により非特許文献1及び2に依る方法が報告されている。
 それに依れば、出発原料である酸化亜鉛の焼結体と種結晶を白金等の容器の下部と上部にそれぞれ配置し、水酸化カリウム及び水酸化リチウムの水溶液を充填し、酸素発生剤として過酸化水素を加えて容器内の温度を370~400℃、圧力70~100mPa(700~1000kg/cm2)の超臨界条件において、種結晶を配置した領域に対して出発原料を配置した領域温度を10~15℃高く設定して、種結晶上に酸化亜鉛単結晶を育成させるものである。
However, it has been difficult to produce a zinc oxide single crystal substrate having no crystal defects, having a very low impurity concentration, and having a size suitable for semiconductor device production.
As a method for growing zinc oxide single crystals, a method using a hydrothermal synthesis method has been proposed as a method with few crystal defects, and a method according to Non-Patent Documents 1 and 2 has been reported by one of the present inventors.
According to this, a sintered body of zinc oxide as a starting material and a seed crystal are respectively arranged at the lower and upper parts of a container such as platinum, filled with an aqueous solution of potassium hydroxide and lithium hydroxide, and used as an oxygen generator. Under supercritical conditions where hydrogen oxide is added and the temperature in the container is 370 to 400 ° C. and the pressure is 70 to 100 mPa (700 to 1000 kg / cm 2 ), the region temperature where the starting material is disposed is set to the region where the seed material is disposed. A zinc oxide single crystal is grown on a seed crystal at a high temperature of 10 to 15 ° C.
特開平6-279192号公報JP-A-6-279192 特開2003-146657号公報JP 2003-146657 A 特開2003-335516号公報JP 2003-335516 A 特開2005-225740号公報JP 2005-225740 A 特開2003-221298号公報JP 2003-221298 A 特開2006-225213号公報JP 2006-225213 A 特開平7-242496号公報Japanese Patent Application Laid-Open No. 7-242496
 また、水熱合成法により育成された酸化亜鉛単結晶は、酸素原子が結晶格子から欠落したいわゆる酸素欠損が生じやすく、それに起因する結晶欠陥となる。
 前述の非特許文献1及び2はこれに対して溶媒中に過酸化水素を添加して酸素分圧を保ち、酸素欠損を防止して亜鉛原子と酸素原子が化学量論的に1:1となる、いわゆるストイキオメトリー組成となるようにしているが、化学的に不安定な過酸化水素を容器内の実際の反応条件下でこのような関係に保つことは困難である。
 過酸化水素に替えて、酸素発生剤として過酸化バリウム、過酸化カルシウム、過炭酸ナトリウム、或いは過炭酸カリウムを用いることが提案(特許文献6)され、ストイキオメトリー組成を達成したとしているが、抵抗値1×109Ωcm以上、厚さ1mmの基板の光透過率75~80%以上というに止まり、結晶欠陥の程度やその他の不純物の影響などは明らかにされておらず、単結晶基板としての評価は明らかでない。
In addition, a zinc oxide single crystal grown by a hydrothermal synthesis method is prone to so-called oxygen vacancies in which oxygen atoms are missing from the crystal lattice, resulting in crystal defects.
Non-Patent Documents 1 and 2 described above, on the other hand, add hydrogen peroxide to the solvent to maintain the oxygen partial pressure, prevent oxygen vacancies, and make the zinc and oxygen atoms stoichiometrically 1: 1. However, it is difficult to keep the chemically unstable hydrogen peroxide in such a relationship under the actual reaction conditions in the container.
Instead of hydrogen peroxide, it is proposed to use barium peroxide, calcium peroxide, sodium percarbonate, or potassium percarbonate as an oxygen generator (Patent Document 6), and the stoichiometric composition is achieved. The substrate has a resistance value of 1 × 10 9 Ωcm or more and a thickness of 1 mm, and the light transmittance is 75 to 80% or more. The degree of crystal defects and the influence of other impurities have not been clarified. The evaluation of is not clear.
 さらに、半導体素子基板として、これらの結晶性のほか不純物を極度に低減する必要がある。出発材料はもとより、単結晶育成過程においても育成環境からの汚染を極力低減しなければならないが、上記した結晶育成において使用されたアルカリ材料中の元素もその例外ではない。特に、Liは結晶格子中に入りやすく、基板上に形成される酸化亜鉛単結晶薄膜層にも拡散して発光ダイオードなどの半導体素子の動作に影響を与えるなど影響が大きい。
 発光ダイオード以外には微量のLi汚染があまり影響しないものもあるが、これらの用途以外では極力Liの汚染を回避することが必要となる。
Further, as a semiconductor element substrate, it is necessary to extremely reduce impurities in addition to these crystallinities. Contamination from the growth environment must be reduced as much as possible not only in the starting material but also in the single crystal growth process, and the elements in the alkali material used in the crystal growth described above are no exception. In particular, Li is easy to enter the crystal lattice and has a large influence such as diffusion to the zinc oxide single crystal thin film layer formed on the substrate and affecting the operation of a semiconductor element such as a light emitting diode.
Some light-emitting diodes are not affected by a very small amount of Li contamination, but it is necessary to avoid Li contamination as much as possible except for these applications.
 解決しようとする問題点は
a軸及びm軸方向のみでなく、c軸方向における結晶性を向上し、さらに、ストイキオメトリー組成として、欠陥及びLiを筆頭とする不純物を含まない、LED、LD等の半導体素子に適した酸化亜鉛単結晶(基板)を製造する方法及び基板並びにこれら半導体素子の提供。
The problem to be solved is
Improves crystallinity not only in the a-axis and m-axis directions but also in the c-axis direction. Furthermore, the stoichiometric composition is suitable for semiconductor elements such as LEDs and LDs that do not contain defects and impurities that start with Li. A method and a substrate for producing a zinc oxide single crystal (substrate) and a semiconductor element thereof.
 本発明は、 酸化剤を添加した、鉱化剤としてKOHを含むアルカリ水溶液中で、超臨界条件下で出発材料である酸化亜鉛の溶解域と酸化亜鉛単結晶育成域との温度差ΔTにおいて種結晶上に単結晶を育成する方法において、上記種結晶としてc軸方向に垂直な面で切り出した酸化亜鉛種結晶とし、ΔTを3~7℃の範囲に維持することにより、KOHによる酸化亜鉛結晶のc軸方向の成長を抑制しつつ単結晶を育成することを特徴とする、酸化亜鉛単結晶基板育成方法であり、
 上記鉱化剤としてKOH以外の鉱化剤を含まないものとして、発光素子などにおいて有害なLiを含まない単結晶とし、
  上記酸化剤をH2O2とし、その添加時に出発原料及び溶媒を冷却することによりH2O2の分解を抑制してストイキオメトリー組成を達成し、
さらに、上記出発材料としての酸化亜鉛が酸化亜鉛粉末焼結体を原料として水熱合成により析出せしめた結晶粒を用いることにより、ストイキオメトリー組成を達成する。
In the present invention, an alkaline aqueous solution containing KOH as a mineralizing agent to which an oxidizing agent is added is used to produce a seed at a temperature difference ΔT between a zinc oxide dissolution zone and a zinc oxide single crystal growth zone under supercritical conditions. In the method for growing a single crystal on a crystal, a zinc oxide seed crystal cut out in a plane perpendicular to the c-axis direction is used as the seed crystal, and ΔT is maintained in the range of 3 to 7 ° C. A method for growing a zinc oxide single crystal substrate, comprising growing a single crystal while suppressing growth in the c-axis direction of
As a mineral containing no mineralizer other than KOH as the mineralizer, a single crystal that does not contain harmful Li in a light emitting device,
The above oxidizing agent is H 2 O 2, and the stoichiometric composition is achieved by suppressing the decomposition of H 2 O 2 by cooling the starting materials and the solvent during the addition,
Furthermore, the stoichiometric composition is achieved by using crystal grains in which zinc oxide as the starting material is precipitated by hydrothermal synthesis using a zinc oxide powder sintered body as a raw material.
 また、本発明は、酸化剤を添加したアルカリ水溶液中の水熱合成により析出した結晶粒からなることを特徴とする水熱合成法による酸化亜鉛単結晶育成の出発原料用酸化亜鉛であって、水熱合成による酸化亜鉛単結晶育成においてストイキオメトリー組成を達成する出発材料である。
 また、酸化剤を添加した、鉱化剤としてKOHを含むアルカリ水溶液中で、超臨界条件下で出発材料である酸化亜鉛の溶解域と酸化亜鉛単結晶育成域との温度差ΔTにおいて種結晶上に単結晶を育成する方法において、
 該アルカリ水溶液にLiOHを加えてKOHによるc軸方向の結晶育成を抑制しつつ、a軸及びm軸方向の結晶育成を促進して行い、
 次いで、該単結晶をLiOHを含まず、鉱化剤としてKOHのみを含むアルカリ水溶液中で、ΔTを3~7℃の範囲に維持することにより、KOHによる酸化亜鉛結晶のc軸方向の成長を抑制しつつ単結晶を育成することを特徴とする、酸化亜鉛単結晶基板育成する方法であって、Liフリーの条件を厳密に要求されない酸化亜鉛単結晶育成において、結晶性向上と効率的な単結晶育成を達成する。
Further, the present invention is a zinc oxide for a starting material for growing a zinc oxide single crystal by a hydrothermal synthesis method, characterized by comprising crystal grains precipitated by hydrothermal synthesis in an alkaline aqueous solution to which an oxidizing agent is added, It is a starting material that achieves stoichiometric composition in the growth of zinc oxide single crystals by hydrothermal synthesis.
In addition, in an alkaline aqueous solution containing KOH as a mineralizer to which an oxidizing agent is added, on the seed crystal at a temperature difference ΔT between a zinc oxide dissolution zone and a zinc oxide single crystal growth zone under supercritical conditions. In a method for growing a single crystal,
While adding LiOH to the alkaline aqueous solution and suppressing crystal growth in the c-axis direction by KOH, the crystal growth in the a-axis and m-axis directions is promoted,
Next, the single crystal is grown in the c-axis direction of the zinc oxide crystal by KOH by maintaining ΔT in the range of 3 to 7 ° C. in an alkaline aqueous solution not containing LiOH and containing only KOH as a mineralizer. A method of growing a zinc oxide single crystal substrate characterized by growing a single crystal while suppressing the crystallinity improvement and efficient single crystal growth in a zinc oxide single crystal growth that does not strictly require Li-free conditions. Achieve crystal growth.
 さらに、本発明は酸化剤を添加した、鉱化剤としてKOHを含むアルカリ水溶液中で、超臨界条件下で出発材料である酸化亜鉛の溶解域と酸化亜鉛単結晶育成域との温度差ΔTにおいて種結晶上に育成された単結晶であって、
上記種結晶がc軸方向に垂直な面で切り出した酸化亜鉛種結晶であり、
ΔTを3~7℃の範囲に維持することにより、KOHによる酸化亜鉛結晶のc軸方向の成長を抑制しつつ形成した酸化亜鉛単結晶からなり、
 温度11°Kにおける波長325.0nm光照射によるフォトルミネッセンス光における波長3.37eVにピーク発光を有する固有発光波長の発光出力に対して、波長1.4~3.2eVのグリーンバンド発光出力が、発光強度において0.1%以下である特性を有することを特徴とする酸化亜鉛単結晶基板であり、
 上記単結晶基板が鉱化剤としてLiOHを含まない条件で形成されたものであって、実質上Liを含まず、また、上記酸化剤がH2O2であり、さらに、上記出発材料としての酸化亜鉛に酸化亜鉛粉末焼結体を原料として水熱合成により析出せしめた結晶粒を用いて、ストイキオメトリー組成を達成し、結晶性を向上した酸化亜鉛単結晶基板である。
Further, in the present invention, in an alkaline aqueous solution containing KOH as a mineralizer to which an oxidizing agent is added, the temperature difference ΔT between the zinc oxide dissolution zone and the zinc oxide single crystal growth zone under supercritical conditions A single crystal grown on a seed crystal,
The seed crystal is a zinc oxide seed crystal cut in a plane perpendicular to the c-axis direction,
By maintaining ΔT in the range of 3 to 7 ° C., it consists of a zinc oxide single crystal formed while suppressing the growth in the c-axis direction of the zinc oxide crystal by KOH,
With respect to the emission output of the intrinsic emission wavelength having the peak emission at the wavelength of 3.37 eV in the photoluminescence light by the irradiation of the light of the wavelength of 325.0 nm at the temperature of 11 ° K, the green band emission output of the wavelength of 1.4 to 3.2 eV is A zinc oxide single crystal substrate characterized by having a characteristic that the emission intensity is 0.1% or less,
The single crystal substrate is formed under a condition that does not contain LiOH as a mineralizer, substantially does not contain Li, the oxidizing agent is H 2 O 2 , and further, This is a zinc oxide single crystal substrate that achieves a stoichiometric composition and improves crystallinity using crystal grains precipitated by hydrothermal synthesis using zinc oxide powder sintered body as a raw material in zinc oxide.
 またさらに、本発明は、酸化剤を添加した、鉱化剤としてKOHを含むアルカリ水溶液中で、超臨界条件下で出発材料である酸化亜鉛の溶解域と酸化亜鉛単結晶育成域との温度差ΔTにおいて種結晶上に育成された単結晶であって、
上記種結晶がc軸方向に垂直な面で切り出した酸化亜鉛種結晶であり、
ΔTを3~7℃の範囲に維持することにより、KOHによる酸化亜鉛結晶のc軸方向の成長を抑制しつつ形成した酸化亜鉛単結晶からなり、
 温度11°Kにおける波長325.0nm光照射によるフォトルミネッセンス光における波長3.37eVにピーク発光を有する固有発光波長の発光出力に対して、波長1.4~3.2eVのグリーンバンド発光出力が、発光強度において0.1%以下である特性を有する酸化亜鉛単結晶を基板として、その上に機能性単結晶層を成膜してなることを特徴とする半導体発光素子であり、上記酸化剤がH2O2であり、さらに、上記出発材料としての酸化亜鉛に酸化亜鉛粉末焼結体を原料として水熱合成により析出せしめた結晶粒を用いて、ストイキオメトリー組成を達成し、結晶性を向上して高機能を達成する半導体発光素子である。
Furthermore, the present invention provides a temperature difference between a zinc oxide dissolution zone and a zinc oxide single crystal growth zone under supercritical conditions in an alkaline aqueous solution containing KOH as a mineralizer to which an oxidizing agent is added. A single crystal grown on a seed crystal at ΔT,
The seed crystal is a zinc oxide seed crystal cut in a plane perpendicular to the c-axis direction,
By maintaining ΔT in the range of 3 to 7 ° C., it consists of a zinc oxide single crystal formed while suppressing the growth in the c-axis direction of the zinc oxide crystal by KOH,
With respect to the emission output of the intrinsic emission wavelength having the peak emission at the wavelength of 3.37 eV in the photoluminescence light by the irradiation of the light of the wavelength of 325.0 nm at the temperature of 11 ° K, the green band emission output of the wavelength of 1.4 to 3.2 eV is A semiconductor light emitting device comprising a zinc oxide single crystal having a light emission intensity of 0.1% or less as a substrate and a functional single crystal layer formed thereon, wherein the oxidant is a H 2 O 2, further using the crystal grains was allowed deposited by hydrothermal synthesis of zinc oxide powder sintered zinc oxide as the starting material as a raw material, to achieve a stoichiometric composition, the crystalline It is a semiconductor light emitting device that improves and achieves high functionality.
 本発明は、LiOHによるc軸方向の結晶育成抑制作用を伴う結晶性向上によらず、ΔTを3~7℃の範囲とする厳密な温度管理下でc軸方向の結晶成長を抑制して結晶性を改善することを最も主要な特徴とする。
 一般にこれらの水熱合成法による酸化亜鉛結晶育成は、KOH及びLiOHを含むアルカリ水溶液を溶媒として、出発材料である酸化亜鉛の溶解領域と酸化亜鉛種結晶に対して単結晶育成を行わせる領域との間に一定の温度差ΔTを設けて、単結晶育成領域に輸送された酸化亜鉛を結晶化させて行われ、一般にΔTは10~25℃の範囲で行われる。
 このアルカリとしてのKOHとLiOHは、一般にKOHが結晶のc軸方向に、LiOHがa及びm軸方向の結晶育成の鉱化剤として作用するとされているが、その作用はKOHが溶媒としてのほかc軸方向の結晶育成の促進作用が大きいとされる。
 このため、前記の特許文献7によれば、水熱合成法による酸化亜鉛単結晶育成法において、水酸化カリウム水溶液により、c軸方向の結晶成長を促進し、次いで水酸化カリウムと水酸化リチウムを含む水溶液中で主としてa及びm軸方向の結晶成長を行わせて、単結晶を効率的に育成するとしている。
 しかしながら、KOHは、鉱化剤として結晶育成作用が大きい反面、結晶性欠陥を生じやすく、LiOHはa軸及びm軸方向の鉱化剤としてのほかKOHの作用を抑制して結晶性を向上していると考えられる。
 従って、このような方法ではc軸方向の結晶性を向上することはできない。
The present invention suppresses crystal growth in the c-axis direction under strict temperature control in which ΔT is in the range of 3 to 7 ° C., regardless of the crystallinity improvement accompanied by the crystal growth suppressing effect in the c-axis direction by LiOH. The most important feature is to improve sex.
In general, the growth of zinc oxide crystals by these hydrothermal synthesis methods uses an alkaline aqueous solution containing KOH and LiOH as a solvent, a dissolved region of zinc oxide as a starting material, and a region in which single crystal growth is performed on a zinc oxide seed crystal. A certain temperature difference ΔT is provided between them to crystallize the zinc oxide transported to the single crystal growth region, and ΔT is generally performed in the range of 10 to 25 ° C.
It is said that KOH and LiOH as alkalis generally act as mineralizers for crystal growth in the c-axis direction of crystals and LiOH in the a- and m-axis directions. It is said that the effect of promoting crystal growth in the c-axis direction is large.
For this reason, according to the above-mentioned Patent Document 7, in the zinc oxide single crystal growth method by the hydrothermal synthesis method, crystal growth in the c-axis direction is promoted by an aqueous potassium hydroxide solution, and then potassium hydroxide and lithium hydroxide are added. A single crystal is efficiently grown by mainly performing crystal growth in the a- and m-axis directions in the aqueous solution.
However, although KOH has a large crystal growth effect as a mineralizer, it tends to cause crystal defects, and LiOH as a mineralizer in the a-axis and m-axis directions suppresses the action of KOH and improves crystallinity. It is thought that.
Accordingly, the crystallinity in the c-axis direction cannot be improved by such a method.
 本発明者らの実験に依れば、KOHは溶媒としてのみでなく、その鉱化剤としての作用が著しく大きいことが結晶性に影響を与えており、LiOHはa、及びm軸方向に対する鉱化剤としてのほか、KOHの鉱化剤としての作用を抑制してこれらの結晶軸への成長を平衡させていると考えられる。
 一方でLiは酸化亜鉛単結晶中に入り込みやすく、さらに可動性イオンとして基板上に形成した機能性層に侵入して、LEDやLD等の特性上害を及ぼす。したがって、KOHのみであれば、これらの汚染は回避できるが、KOH単独とすると上記したようにc軸方向の結晶が進行して結晶性がよくない。
 ところで、これらの結晶生成反応は天然において熱水鉱床として知られているが、これらの反応は極めて長時間で進行する。鉱床の規模は巨大であるから鉱床中の温度差は小さく、地質学的時間で反応が進行して、いわば平衡条件を長期間に亘って保ちつつ結晶が育成される。本発明が目指す単結晶育成の水熱過程も本質的にはこれらと変わらないものであるから、結晶生成の平衡条件に近づけることによって、結晶性の向上が図れるという観点から、KOHに依る鉱化剤としての作用をこれら平衡条件に近づけることによって、制御することを試みた。
 すなわち、溶媒中の溶解度は温度に依存するから、これらの平衡条件の影響に関してはΔTの影響が最も大きいと考えられる。
 本発明者らの確認したところに依れば、最適なΔTは通常採用されていたよりも遙かに小さく、3~7℃の範囲内であった。この温度範囲上限の範囲を外れても従来行われていたとおり単結晶はできるが、結晶欠陥の発生は十分に抑制できておらず、その結晶性は満足できるものとはならなかった。また、この温度範囲下限の範囲を外れると単結晶育成が起こらない。すなわち、上記特許文献7には、ΔTとして5~25℃の範囲が挙げられているが、それよりも遙かに小さく、許容される温度幅は4℃にすぎない。
According to the experiments by the present inventors, KOH not only acts as a solvent but also has a remarkably large effect as a mineralizer, affecting the crystallinity. LiOH is a mineral in the a and m-axis directions. In addition to the agent, it is thought that the growth of these crystal axes is balanced by suppressing the action of KOH as a mineralizer.
On the other hand, Li easily enters the zinc oxide single crystal, and further penetrates into the functional layer formed on the substrate as a mobile ion, and causes a harmful effect on the characteristics of the LED, LD, and the like. Therefore, if only KOH is used, these contaminations can be avoided, but if KOH alone is used, the crystal in the c-axis direction proceeds and the crystallinity is not good as described above.
By the way, although these crystal formation reactions are known as hydrothermal deposits in nature, these reactions proceed in a very long time. Since the scale of the deposit is huge, the temperature difference in the deposit is small, and the reaction proceeds in geological time, so to speak, crystals are grown while maintaining the equilibrium condition for a long period of time. Since the hydrothermal process of single crystal growth aimed at by the present invention is essentially the same as these, mineralization by KOH from the viewpoint that the crystallinity can be improved by approaching the equilibrium condition for crystal formation. Attempts were made to control the action of the agent by bringing it closer to these equilibrium conditions.
That is, since the solubility in the solvent depends on the temperature, it is considered that ΔT has the largest influence on the influence of these equilibrium conditions.
According to the confirmation of the present inventors, the optimum ΔT was much smaller than that usually employed and was in the range of 3 to 7 ° C. Even if outside the upper limit of the temperature range, a single crystal can be produced as conventionally performed, but the generation of crystal defects has not been sufficiently suppressed, and the crystallinity has not been satisfactory. Further, if the temperature falls outside the lower limit of the temperature range, single crystal growth does not occur. That is, Patent Document 7 mentions a range of 5 to 25 ° C. as ΔT, which is much smaller than that and the allowable temperature range is only 4 ° C.
 これらのΔTについては、前記特許文献6には、ストイキオメトリー組成とするため、LiOHとKOHとを含むアルカリ水溶液中で結晶成長を行う反応おいて、ΔTに関しては、10℃を超えると酸化亜鉛の過飽和度が一気に崩壊して核発生が起こり種結晶の効率的な成長を阻害してしまうことがあるとして、10℃以下、好ましくは8℃以下、さらに好ましくは6℃以下でかつ1℃以上であるとし、また、1℃より低くなると、種結晶が溶けたり、種結晶の成長が急速に遅くなり、生産性が劣るとしている。
 すなわち、ΔTを6℃~1℃の範囲として結晶性と結晶成長速度との両立を図るというのであるが、これらの条件は、LiOHとKOHとの共存条件であってLiOHの鉱化剤としての作用の下で導かれたもので、これらの結晶成長効果についてはストイキオメトリー組成を達成できたとされているが、結晶性について詳細はない。
 これに対して、本発明者らの研究に依れば、ΔTの値は、KOH単独でLiOHを含まない条件下で3~7℃の範囲に保つことにより結晶性の著しい向上が得られた。
 すなわち、これらの温度域自体は、上記従来の試みと重複するが、その範囲は極めて小さく、c軸方向の結晶成長の抑制効果として効果を発揮するのである。
 また、その結果本発明においては、LiOHを含まないことによって、Liフリーの酸化亜鉛単結晶を育成することができる。
With respect to these ΔTs, in Patent Document 6, in order to obtain a stoichiometric composition, in a reaction in which crystal growth is performed in an alkaline aqueous solution containing LiOH and KOH, when ΔT exceeds 10 ° C., zinc oxide As the supersaturation degree of C may collapse at a stretch and nucleation may occur and the efficient growth of seed crystals may be inhibited, it is 10 ° C. or less, preferably 8 ° C. or less, more preferably 6 ° C. or less and 1 ° C. or more. In addition, when the temperature is lower than 1 ° C., the seed crystal is melted or the growth of the seed crystal is rapidly slowed down, and the productivity is inferior.
That is, ΔT is set in the range of 6 ° C. to 1 ° C. to achieve both the crystallinity and the crystal growth rate. These conditions are conditions for coexistence of LiOH and KOH, and are used as a mineralizing agent for LiOH. It is said that the stoichiometric composition has been achieved with respect to these crystal growth effects, but there is no detail about crystallinity.
On the other hand, according to the study by the present inventors, a significant improvement in crystallinity was obtained by maintaining the value of ΔT within the range of 3 to 7 ° C. under the condition that KOH alone does not contain LiOH. .
That is, although these temperature ranges themselves overlap with the above-described conventional attempts, the range is extremely small, and the effect is exhibited as an effect of suppressing crystal growth in the c-axis direction.
As a result, in the present invention, a Li-free zinc oxide single crystal can be grown by not including LiOH.
 本発明の第2の特徴は、ストイキオメトリー組成を達成し、結晶欠陥を低減するために出発材料である酸化亜鉛を従来広く用いられていた酸化亜鉛粉末の焼結体に代えて水熱合成によって析出させた結晶粒状酸化亜鉛を用いたことにある。
 前記非特許文献1及び2を始めとして、酸化亜鉛粉末から作成した焼結体が用いられているが、これらの焼結体は溶解が進むにつれて粉末状の酸化亜鉛が遊離して単結晶育成域に侵入し、育成過程の結晶に付着するなどの影響を及ぼすことが問題とされてきた。さらに、上記特許文献6にはこれらの焼結により原料としての酸化亜鉛に酸素欠損が生じていることが問題とされ、焼結体を過酸化水素を含む水溶液中で予め水熱処理することが記載されているが、焼結体を用いる限りではこれらの問題を解決するに至っていない。
 本発明者らは、本来酸素欠損の生じやすい酸化亜鉛の性質上、酸化亜鉛焼結体には強度の酸素欠損を生じており、結晶育成過程で酸化剤を加えてもその欠損の補償は困難であると考え、予め酸素欠損のないストイキオメトリー組成の条件を満たす酸化亜鉛を出発材料とすることを着想した。
 すなわち、酸化亜鉛粉末焼結体を原料として用い、酸化剤を含む水溶液中でこれを溶解して水熱合成により酸化亜鉛として析出させ、溶解特性上好ましい粒度(径2~5mm)となるまで育成した酸化亜鉛粒を単結晶育成用出発材料とすることにより、育成される単結晶における出発材料由来の酸素欠損を解消し、併せて粉状の酸化亜鉛の散乱を解消することができる。これらの酸化亜鉛は、バルクとして形成した後破砕して適宜サイズの粒状として用いてもよいことは無論である。
 さらに、ストイキオメトリー組成の達成には厳密な酸素分圧の制御が必要であると考えられるが、過酸化水素水は純度を維持する上で優れているものの、化学的に活発で分解しやすいため、水溶液に添加すると同時に分解反応が進行する。このため、添加した水溶液から気体酸素として速やかに脱出して育成容器から失われやすく、計算のとおりの酸素分圧を達成するように正確な添加量を制御することが困難である。
 そこで、本発明者らは、原料酸化亜鉛及びアルカリ水溶液を充填後、育成容器を冷却し、過酸化水素の分解反応を抑制した。具体的には、育成容器を液体窒素に浸漬して水溶液を凍結し、その上から過酸化水素水を注入して添加することにより、過酸化水素の分解が進行することなく該容器の密閉作業を行うことができる。
 以上の方法により、単結晶育成容器内の酸素分圧は適正に維持され、育成される単結晶における酸素欠損の発生は効果的に抑制され、c軸方向への単結晶の成長において、酸素欠損がなく、それに起因する結晶欠陥の発生を抑制して完全な単結晶の育成が可能となる。
The second feature of the present invention is a hydrothermal synthesis in which zinc oxide, which is a starting material, is used instead of a sintered body of zinc oxide powder that has been widely used in order to achieve a stoichiometric composition and reduce crystal defects. This is because the granular zinc oxide precipitated by the above method is used.
Sintered bodies made from zinc oxide powder are used, including Non-Patent Documents 1 and 2, and these sintered bodies release powdered zinc oxide as the dissolution progresses, and the single crystal growth region It has been regarded as a problem that it has an influence such as intruding into the crystal and adhering to crystals during the growth process. Furthermore, Patent Document 6 describes that oxygen vacancies are generated in zinc oxide as a raw material due to these sintering, and it is described that the sintered body is previously hydrothermally treated in an aqueous solution containing hydrogen peroxide. However, as long as the sintered body is used, these problems have not been solved.
Due to the nature of zinc oxide that is inherently prone to oxygen vacancies, the present inventors have produced strong oxygen vacancies in the sintered zinc oxide, and it is difficult to compensate for the vacancies even when an oxidizing agent is added during the crystal growth process. As a starting material, the idea was to start with zinc oxide that satisfies the stoichiometric composition without oxygen deficiency.
That is, a zinc oxide powder sintered body is used as a raw material, dissolved in an aqueous solution containing an oxidant, and precipitated as zinc oxide by hydrothermal synthesis, and grown until it has a preferred particle size (diameter 2 to 5 mm) in terms of dissolution characteristics. By using the zinc oxide grains as a starting material for growing a single crystal, oxygen deficiency derived from the starting material in the grown single crystal can be eliminated, and scattering of powdered zinc oxide can also be eliminated. It goes without saying that these zinc oxides may be formed as a bulk and then crushed and used as particles of an appropriate size.
Furthermore, although it is thought that strict control of oxygen partial pressure is necessary to achieve the stoichiometric composition, although hydrogen peroxide solution is excellent in maintaining purity, it is chemically active and easily decomposed. Therefore, the decomposition reaction proceeds simultaneously with the addition to the aqueous solution. For this reason, it escapes rapidly as gaseous oxygen from the added aqueous solution and is easily lost from the growth vessel, and it is difficult to accurately control the added amount so as to achieve the calculated oxygen partial pressure.
Therefore, the present inventors cooled the growth vessel after filling the raw material zinc oxide and the alkaline aqueous solution, and suppressed the decomposition reaction of hydrogen peroxide. Specifically, by immersing the growth vessel in liquid nitrogen, freezing the aqueous solution, and adding and injecting hydrogen peroxide water thereon, the vessel is sealed without the decomposition of hydrogen peroxide progressing. It can be performed.
By the above method, the oxygen partial pressure in the single crystal growth vessel is properly maintained, the generation of oxygen vacancies in the grown single crystal is effectively suppressed, and the oxygen vacancies are increased in the growth of the single crystal in the c-axis direction. Therefore, it is possible to grow a complete single crystal while suppressing the occurrence of crystal defects due to the occurrence of the defect.
 本発明の酸化亜鉛単結晶基板は、c軸方向に成長した結晶構造に結晶欠陥が極めて少なく、ストイキオメトリー組成及び結晶性を向上しており、各種の半導体素子の基板として好適であって、またLiフリーであることから、LEDやLD用などの基板として好適な特性を発揮することができる。 The zinc oxide single crystal substrate of the present invention has very few crystal defects in the crystal structure grown in the c-axis direction, has improved stoichiometric composition and crystallinity, and is suitable as a substrate for various semiconductor elements, In addition, since it is Li-free, it can exhibit characteristics suitable as a substrate for LEDs and LDs.
 以下、図面の記載に基づいて、水熱合成法による本発明の酸化亜鉛単結晶基板の製造方法を説明する。
〔実施例1〕
Hereinafter, based on description of drawing, the manufacturing method of the zinc oxide single crystal substrate of this invention by a hydrothermal synthesis method is demonstrated.
[Example 1]
 図1(A)は、酸化亜鉛単結晶育成装置11、図1(B)は該装置に使用する酸化亜鉛単結晶育成容器31を示す。
 図1(A)において、単結晶育成装置11は、超臨界条件とすることのできる高圧用オートクレーブ12と温度条件を本発明の育成過程に沿って制御するためのヒーター21、22とからなり、装置全体は、温度条件を一定に保つため断熱材23によって外界と遮断されている。
 オートクレーブ12は、耐圧容器であって収容部13内に単結晶育成容器31をセットし、蓋体16により開口を閉じて内部を密閉する。蓋体はパッキン部材15を具え、オートクレーブ本体14と蓋体16との間をねじ17により強固に締結して、高圧下に密閉状態を保持する。
 オートクレーブ12外周上部及び下部は、上下に配置された上記ヒーター21及び22によって一定の温度条件下に保たれる。
FIG. 1 (A) shows a zinc oxide single crystal growing apparatus 11 and FIG. 1 (B) shows a zinc oxide single crystal growing vessel 31 used in the apparatus.
In FIG. 1 (A), the single crystal growing apparatus 11 comprises a high pressure autoclave 12 that can be in a supercritical condition, and heaters 21 and 22 for controlling temperature conditions along the growing process of the present invention. The entire apparatus is shut off from the outside by a heat insulating material 23 in order to keep the temperature condition constant.
The autoclave 12 is a pressure-resistant container, and a single crystal growing container 31 is set in the accommodating portion 13, and the opening is closed by the lid 16 to seal the inside. The lid includes a packing member 15, and the autoclave main body 14 and the lid 16 are firmly fastened with screws 17 to maintain a sealed state under high pressure.
The upper and lower portions of the outer periphery of the autoclave 12 are kept under a constant temperature condition by the heaters 21 and 22 arranged above and below.
 単結晶育成容器31は、図1(B)に示すように、内部の反応条件で不純物を溶出しない材料、白金(Pt)、金(Au)などで形成し、内部は種結晶をセットする単結晶育成領域と出発材料を配置する原料領域とに分けられ、これら2つの領域は内部バッフル板34よって仕切られ、バッフル板34に設けられた多数の孔によって溶媒の流通が制御される。
 該容器内部には同様に不純物を溶出しないよう白金などで形成したフレーム32と支持具33とからなる懸架具により種結晶41a~41dを吊り下げてセットする。容器上端には出発材料などをセットした後容器を封止する蓋37が設けられ、該蓋には溶媒や酸化剤などを注入する微少開口38が設けられている。
 また、容器外周は、同様に流通孔を有するバッフルリング35が設けられて、上記オートクレーブ収容部13内で該容器を支持する。
As shown in FIG. 1B, the single crystal growing vessel 31 is formed of a material that does not elute impurities under the internal reaction conditions, such as platinum (Pt) or gold (Au), and the inside is a single crystal in which a seed crystal is set. The two regions are divided by an internal baffle plate 34, and the flow of the solvent is controlled by a large number of holes provided in the baffle plate 34.
Similarly, seed crystals 41a to 41d are suspended and set inside the container by a suspension made up of a frame 32 made of platinum or the like and a support 33 so as not to elute impurities. At the upper end of the container, a lid 37 for sealing the container after setting starting materials and the like is provided. The lid is provided with a minute opening 38 for injecting a solvent, an oxidizing agent or the like.
Further, a baffle ring 35 having a circulation hole is similarly provided on the outer periphery of the container, and the container is supported in the autoclave accommodating portion 13.
 次に本発明の酸化亜鉛単結晶基板育成方法を説明する。
 まず、清浄にされた単結晶育成容器本体36及び蓋体37を準備し、クリーンルーム内で容器本体開口から出発材料の酸化亜鉛51を原料領域に充填し、次に内部バッフル板34をセットし、種結晶41a~41dが吊り下げられた懸架具を単結晶育成領域にセットする。
 単結晶育成容器36に蓋体37を被せて溶接し、次いで該蓋体上面の溶液注入用微小開口38から、アルカリ水溶液を注入し、該単結晶育成容器全体を液体窒素に浸漬して冷却し、内部の水溶液を凍結状態として酸素発生剤を注入して後、該微小開口を溶接封止する。
Next, the method for growing a zinc oxide single crystal substrate of the present invention will be described.
First, a cleaned single crystal growth container main body 36 and a lid 37 are prepared, and a raw material region is filled with zinc oxide 51 as a starting material from the container main body opening in a clean room, and then an internal baffle plate 34 is set. The suspension with the seed crystals 41a to 41d suspended is set in the single crystal growth region.
The single crystal growth vessel 36 is covered with a lid 37 and welded. Then, an alkaline aqueous solution is injected from the solution injection micro-opening 38 on the upper surface of the lid, and the entire single crystal growth vessel is immersed in liquid nitrogen and cooled. After injecting the oxygen generator with the aqueous solution in a frozen state, the minute openings are sealed by welding.
 上記の準備の完了した容器31は、オートクレーブ12内の収容部13に外部バッファリング35によって懸架された状態でセットされる。オートクレーブ12内の収容部13の空間18は、加圧条件に応じた充填率(70~75%)の純水で満たされ、パッキング部材15で封止され、蓋体16が強固にねじ止めされる。
 この後、オートクレーブ内の圧力は、ヒーター21及び22により加熱されて単結晶育成に適した温度の380℃近傍に達すると、収容部空間18内の流体(純水)の圧力と育成容器内の圧力が共に上昇して育成容器内外で平衡を保って、該容器内に充填された反応材料を超臨界状態の圧力の100MPa(1000kg/cm2)とする。
 この単結晶育成反応の条件は、次のとおりであった。
温度条件
 オートクレーブ上部温度T1:415℃
 オートクレーブ下部温度T2:430℃
 単結晶育成領域温度T3:380℃
 単結晶原料域温度T4:384~385℃
 ΔT=T4-T3=4~5℃
圧力条件:育成容器内圧力:100MPa(1000kg/cm2
種結晶:種結晶のサイズ:径1~2インチ、厚さ0.5~1.0mmのc軸に垂直な方向に切り出した薄片状種結晶。
酸化亜鉛出発材料:酸化亜鉛出発材料の原料として酸化亜鉛粉末焼結体を用い、過酸化水素を酸化剤として添加したアルカリ水溶液中の超臨界条件で行う水熱合成法によって析出せしめた結晶粒状酸化亜鉛(径2~5mm)。
 酸化亜鉛出発材料となる結晶粒状酸化亜鉛の析出を行う水熱合成は、以下に説明する酸化亜鉛単結晶育成と同様の条件で行うが、酸素欠損のないストイキオメトリー組成の出発材料を得るという趣旨から、種結晶の形態やΔTに関しては厳密な制約はなく、種結晶に代えて白金ターゲットを使用し、ΔTに関しても従来用いられていた範囲でよい。
溶媒:KOH4mol/Lを純水に溶解したアルカリ水溶液
充填率:育成容器内の原材料、バッフル板、種結晶及び懸架具などを除く空間に対する溶媒の容積率:83%
 この充填率は、ヒーター21,22により加熱された育成容器内の環境が結晶育成温度:380℃において内圧が100MPa(1000kg/cm2)となるように調整される。
ストイキオメトリー組成を達成するため酸素発生剤が添加されるが、代表的な酸素発生剤である過酸化水素水(30%)を使用した。育成容器内に不純物を導入しないため、過酸化水素が最も好ましい。
 過酸化水素水の添加量は、厳密にストイキオメトリー組成となるよう秤量され、上記アルカリ水溶液に対して、0.03~0.04mol/L添加した。
単結晶の育成は、上記の反応条件に達するまでほぼ3時間程度を要し、その後安定して上記条件を保って45日間育成し、酸化亜鉛単結晶を得た。
The container 31 that has been prepared as described above is set in a state of being suspended by the external buffer ring 35 in the accommodating portion 13 in the autoclave 12. A space 18 of the accommodating portion 13 in the autoclave 12 is filled with pure water having a filling rate (70 to 75%) corresponding to the pressurizing condition, sealed with a packing member 15, and the lid 16 is firmly screwed. The
Thereafter, when the pressure in the autoclave is heated by the heaters 21 and 22 and reaches a temperature suitable for single crystal growth of about 380 ° C., the pressure of the fluid (pure water) in the housing space 18 and the growth container Both the pressures rise and the equilibrium is maintained inside and outside the growth vessel, and the reaction material filled in the vessel is brought to a supercritical pressure of 100 MPa (1000 kg / cm 2 ).
The conditions for this single crystal growth reaction were as follows.
Temperature conditions Autoclave top temperature T1: 415 ° C
Autoclave lower temperature T2: 430 ° C
Single crystal growth region temperature T3: 380 ° C.
Single crystal raw material region temperature T4: 384 to 385 ° C.
ΔT = T4-T3 = 4-5 ° C
Pressure condition: pressure in the growth vessel: 100 MPa (1000 kg / cm 2 )
Seed crystal: Size of seed crystal: flaky seed crystal cut in a direction perpendicular to the c-axis having a diameter of 1 to 2 inches and a thickness of 0.5 to 1.0 mm.
Zinc oxide starting material: Granular oxidation deposited by hydrothermal synthesis method under supercritical conditions in alkaline aqueous solution using zinc oxide powder sintered body as raw material of zinc oxide starting material and adding hydrogen peroxide as oxidizing agent Zinc (diameter 2-5mm).
Hydrothermal synthesis in which crystalline zinc oxide, which is the starting material for zinc oxide, is precipitated, is performed under the same conditions as those for the growth of zinc oxide single crystal described below, but a starting material having a stoichiometric composition without oxygen deficiency is obtained. For the purpose, there is no strict restriction on the form of the seed crystal and ΔT, a platinum target is used instead of the seed crystal, and ΔT may be in the range conventionally used.
Solvent: Alkaline aqueous solution with 4 mol / L of KOH dissolved in pure water Filling ratio: Volume ratio of solvent to the space excluding raw materials, baffle plates, seed crystals, suspensions, etc. in the growth vessel: 83%
This filling rate is adjusted so that the internal pressure is 100 MPa (1000 kg / cm 2 ) when the environment in the growth vessel heated by the heaters 21 and 22 is crystal growth temperature: 380 ° C.
An oxygen generator is added to achieve a stoichiometric composition, but hydrogen peroxide (30%), which is a typical oxygen generator, was used. Hydrogen peroxide is most preferred because it does not introduce impurities into the growth vessel.
The amount of hydrogen peroxide solution added was weighed so as to have a stoichiometric composition strictly, and 0.03-0.04 mol / L was added to the alkaline aqueous solution.
The growth of the single crystal took about 3 hours to reach the above reaction conditions, and thereafter, the crystal was grown for 45 days stably maintaining the above conditions to obtain a zinc oxide single crystal.
 このようにして得られた酸化亜鉛単結晶(基板)の形態は、図2及び図5に示すとおり、結晶構造を反映して、六方晶系の結晶構造を示し、その平面を示す図2(A)のように種結晶41の+c面(c軸方向の亜鉛面)及び-c面(c軸方向の酸素面)のおのおのに酸化亜鉛単結晶が育成された結晶となっている。
 図2から明らかなように、種結晶41に対してc軸方向に酸化亜鉛単結晶が成長しているのに対して、これとは垂直方向のa軸方向及びm軸方向には大きな結晶成長を見ることはできない。そして、c軸方向結晶成長に関しては、+c面における結晶成長が-c面における結晶成長に比して大きいことがわかる。
 得られた酸化亜鉛単結晶の外観は、水酸化リチウムの存在下による水熱合成により得られた種結晶は、結晶中に不純物として含まれるLiにより、黄色に着色した結晶となるが、本発明の方法により、育成された酸化亜鉛単結晶は無色で透明性が高いことが解る。
The form of the zinc oxide single crystal (substrate) thus obtained is a hexagonal crystal structure reflecting the crystal structure as shown in FIG. 2 and FIG. As shown in A), a single crystal of zinc oxide is grown on each of the + c plane (c-axis direction zinc plane) and the −c plane (c-axis direction oxygen plane) of the seed crystal 41.
As is clear from FIG. 2, the zinc oxide single crystal grows in the c-axis direction with respect to the seed crystal 41, whereas large crystal growth occurs in the a-axis direction and the m-axis direction perpendicular to this. I can't see. As for c-axis direction crystal growth, it can be seen that the crystal growth in the + c plane is larger than the crystal growth in the -c plane.
The appearance of the obtained zinc oxide single crystal shows that the seed crystal obtained by hydrothermal synthesis in the presence of lithium hydroxide becomes a yellow colored crystal due to Li contained as an impurity in the crystal. It can be seen that the grown zinc oxide single crystal is colorless and highly transparent.
 酸化亜鉛単結晶52及び53は、後述するごとくこれから薄くスライスした単結晶基板における高倍率顕微鏡による結晶性を比較すると、種結晶41の+c面に形成された酸化亜鉛単結晶52にはc軸方向に僅かな欠陥が認められたのに対して、種結晶41の-c面に形成された酸化亜鉛単結晶53には欠陥の存在を認めることができなかった。これは、図1(A)に示す単結晶育成装置11を用いて種結晶41に単結晶育成を行ったときに、種結晶41の+c面の結晶成長速度が、-c面の結晶成長速度に比して大きかったことが原因と考えられる。従って、種結晶の+c面に形成された酸化亜鉛単結晶52における僅かな欠陥をなくするためには、例えば、ΔT(T4-T3)を最小値である3℃に限りなく近づけて種結晶41に対する酸化亜鉛単結晶52及び53の結晶成長速度全体を遅くするか、種結晶41の+c面側に結晶成長を選択的に遅くする邪魔板を配置するなど種結晶41の+c面側の酸化亜鉛単結晶52の結晶成長速度を遅くさせることが考えられる。
 これらから解るようにわずかな結晶成長の差が結晶性に影響するのであるが、上記のΔTが3℃より小さくなると輸送効率の低下などから結晶成長速度が著しく低下するようになるため好ましくない。また、ΔTが7℃を超えると結晶性への影響が表れて良好な単結晶を育成することが困難となる。従って、これらの条件から、ΔTの値は、3~7℃の狭い範囲に限定される。
 この範囲内であれば、その他の結晶育成条件に応じて温度範囲を調整・変更し、或いは経験的に最適値を選択することができる。
As will be described later, the zinc oxide single crystals 52 and 53 are compared with each other in terms of the crystallinity of a single crystal substrate thinly sliced by a high-power microscope, and the zinc oxide single crystal 52 formed on the + c plane of the seed crystal 41 has a c-axis direction. However, the presence of defects could not be recognized in the zinc oxide single crystal 53 formed on the −c plane of the seed crystal 41. This is because when the single crystal is grown on the seed crystal 41 using the single crystal growth apparatus 11 shown in FIG. 1A, the crystal growth rate of the + c plane of the seed crystal 41 is the crystal growth rate of the −c plane. It is thought that it was larger than that. Therefore, in order to eliminate a slight defect in the zinc oxide single crystal 52 formed on the + c plane of the seed crystal, for example, ΔT (T 4 -T 3 ) is brought close to the minimum value of 3 ° C. as much as possible. The entire crystal growth rate of the zinc oxide single crystals 52 and 53 with respect to the crystal 41 is slowed, or a baffle plate that selectively slows the crystal growth is arranged on the + c plane side of the seed crystal 41, etc. It is conceivable to slow the crystal growth rate of the zinc oxide single crystal 52.
As can be seen from these, a slight difference in crystal growth affects the crystallinity. However, if the above ΔT is smaller than 3 ° C., the crystal growth rate is remarkably lowered due to a decrease in transport efficiency or the like. On the other hand, when ΔT exceeds 7 ° C., the crystallinity is affected and it becomes difficult to grow a good single crystal. Therefore, from these conditions, the value of ΔT is limited to a narrow range of 3 to 7 ° C.
Within this range, the temperature range can be adjusted / changed according to other crystal growth conditions, or the optimum value can be selected empirically.
 以上の育成条件で得られた酸化亜鉛単結晶の-c面の酸化亜鉛単結晶53をc軸とは垂直な方向(c面と水平方向)にダイヤモンドカッター或いはワイヤーカッターによって0.5乃至1mmの厚さにスライスし、研磨及びCMPし、更に、超純水で洗浄することにより、図2(C)に示す酸化亜鉛単結晶基板54が形成される。酸化亜鉛単結晶基板54は、c面における表面粗さが1nm以下で、ステップテラス構造を呈しており、その径(a軸或いはm軸方向)は種基板41とほぼ同径である。 The zinc oxide single crystal 53 on the −c plane of the zinc oxide single crystal obtained under the above growth conditions is 0.5 to 1 mm in a direction perpendicular to the c axis (c plane and horizontal direction) by a diamond cutter or a wire cutter. By slicing to a thickness, polishing and CMP, and cleaning with ultrapure water, a zinc oxide single crystal substrate 54 shown in FIG. 2C is formed. The zinc oxide single crystal substrate 54 has a step terrace structure with a surface roughness on the c-plane of 1 nm or less, and its diameter (a-axis or m-axis direction) is substantially the same as that of the seed substrate 41.
 形成された酸化亜鉛単結晶基板54のリチウム含有量は、種結晶41として含まれていた1ppm程度のリチウム含有量に比して、3桁程度低いリチウム含有量であることが確認された。この程度のリチウムのみが含有される酸化亜鉛単結晶基板54は、本質的にリチウムを含まないと言える。そして、更に図2(c)として得られた酸化亜鉛単結晶54を種結晶41として用いて図1に示す水熱合成による酸化亜鉛単結晶育成工程を再度行うことにより、リチウム含有のない(或いは更に小さなリチウム含有量の)酸化亜鉛単結晶を育成することが可能である。従って、本発明によって得られた酸化亜鉛単結晶基板は、本質的にリチウムが含まれないものとなる。 It was confirmed that the lithium content of the formed zinc oxide single crystal substrate 54 was about three orders of magnitude lower than the lithium content of about 1 ppm contained as the seed crystal 41. It can be said that the zinc oxide single crystal substrate 54 containing only this level of lithium essentially does not contain lithium. Further, the zinc oxide single crystal 54 obtained as shown in FIG. 2 (c) is used as the seed crystal 41, and the zinc oxide single crystal growing step by hydrothermal synthesis shown in FIG. It is also possible to grow zinc oxide single crystals with a smaller lithium content. Therefore, the zinc oxide single crystal substrate obtained by the present invention is essentially free of lithium.
 図2(C)に示す本発明の酸化亜鉛単結晶基板54を形成するためには、まず、当該単結晶基板54とa軸及びm軸方向においてほぼ同径の大きさを有する種結晶41を準備する必要がある。このような径を有する種結晶41の作成方法について付言する。このような種結晶41の作成方法は、前述した本発明における酸化亜鉛単結晶基板54の製造方法における図1(A)~(C)に記載した設備を用い、同様な工程を行えばよい。 In order to form the zinc oxide single crystal substrate 54 of the present invention shown in FIG. 2C, first, a seed crystal 41 having substantially the same diameter as the single crystal substrate 54 in the a-axis and m-axis directions is formed. It is necessary to prepare. A method for producing the seed crystal 41 having such a diameter will be additionally described. Such a seed crystal 41 may be produced by using the equipment described in FIGS. 1A to 1C in the method for producing the zinc oxide single crystal substrate 54 of the present invention described above and performing the same steps.
 そこで、図1(A)~(C)を参照して種結晶41の製造方法について説明する。
 種結晶41の製造にあっては、単結晶育成容器31内に注入されるアルカリ水溶液の組成として、前記酸化亜鉛単結晶基板54を得るためのアルカリ水溶液に、更にLiOHが1mol/L添加された組成のアルカリ水溶液が用いられる。また、酸化亜鉛原料としては水熱合成によって育成された純度7N以上の酸化亜鉛結晶粒体であってもよいが、純度7N以上の酸化亜鉛焼結体を用いてもよい。更に、ΔT(T4-T3)として、10℃前後となるようにヒーター21及び22を駆動すればよい。他の条件は、本発明の酸化亜鉛単結晶基板54を製造する際の条件と本質的に変わるものではない。
 これにより、この種結晶41形成のための種結晶61に対し、図3(A)及び(B)に示すように、種結晶61に比してc軸方向及びc軸と垂直な方向(a軸及びm軸方向)に結晶成長された酸化亜鉛単結晶42及び43を得ることができる。これを前記と同様にダイヤモンドカッター或いはワイヤーカッターでスライスし、洗浄すれば、図3(C)に示すごとく本発明の酸化亜鉛単結晶基板54に要求されるc軸方向と垂直な方向の径、例えば1インチ或いは2インチと同じ大きさの種結晶41を形成することができる。
 但し、この種結晶41を得るためには、本発明の酸化亜鉛単結晶基板54のように研磨及びCMP処理を施すことは必ずしも必要ではない。その理由は、本発明の酸化亜鉛単結晶基板54を作成するための図1に示す水熱合成による単結晶育成工程の初期において、種結晶41表面の溶解が行われて、その表面処理が実行されるからである。
A method for producing the seed crystal 41 will be described with reference to FIGS.
In the production of the seed crystal 41, LiOH was further added to the alkaline aqueous solution for obtaining the zinc oxide single crystal substrate 54 as the composition of the alkaline aqueous solution injected into the single crystal growth vessel 31. An alkaline aqueous solution of the composition is used. The zinc oxide raw material may be zinc oxide crystal grains having a purity of 7N or higher grown by hydrothermal synthesis, but a zinc oxide sintered body having a purity of 7N or higher may be used. Furthermore, the heaters 21 and 22 may be driven so that ΔT (T 4 −T 3 ) is about 10 ° C. Other conditions are not essentially different from the conditions for producing the zinc oxide single crystal substrate 54 of the present invention.
As a result, as shown in FIGS. 3A and 3B, the seed crystal 61 for forming the seed crystal 41 has a c-axis direction and a direction perpendicular to the c-axis (a Zinc oxide single crystals 42 and 43 crystal-grown in the axial and m-axis directions) can be obtained. If this is sliced with a diamond cutter or a wire cutter in the same manner as described above and washed, the diameter in the direction perpendicular to the c-axis direction required for the zinc oxide single crystal substrate 54 of the present invention as shown in FIG. For example, the seed crystal 41 having the same size as 1 inch or 2 inches can be formed.
However, in order to obtain the seed crystal 41, it is not always necessary to perform polishing and CMP treatment like the zinc oxide single crystal substrate 54 of the present invention. The reason is that the surface of the seed crystal 41 is dissolved at the initial stage of the single crystal growth step by hydrothermal synthesis shown in FIG. 1 for producing the zinc oxide single crystal substrate 54 of the present invention, and the surface treatment is performed. Because it is done.
 かかる種結晶41形成工程においては、アルカリ水溶液に水酸化リチウムが用いられ、かつΔTとして10℃前後の温度差が用いられるので、c軸と垂直なa軸及びm軸方向に良好な(ニードルが発生することのない)結晶成長が行われて、この方向の径を大きくすることができ、更に、結晶欠陥が少ない酸化亜鉛単結晶が育成されることになる。
 但し、得られた種結晶41には不純物としてリチウムが1ppm程度含まれ、透明ではあるが黄色く着色した単結晶となる。この種結晶41に不純物として含まれるリチウムは、これが酸化亜鉛結晶のサイト間に存在するのであれば析出できないが、これが酸化亜鉛結晶の格子間に存在すれば、図1に示す酸化亜鉛単結晶52及び53の育成のための水熱合成工程或いはアニーリング等にて析出する。
 そこで、本発明の酸化亜鉛単結晶基板54中に極く微量含有したリチウムは、当該基板54の形成のための水熱合成による超臨界状態にあるアルカリ水溶液による種結晶41の溶解(育成初期の種結晶表面の溶解及び育成期間中における種結晶の溶解)により、アルカリ水溶液に僅かながら溶け出し、これが育成された酸化亜鉛単結晶中に混入したものと考えられる。従って、前記したように種結晶としてリチウムを本質的に含まない酸化亜鉛単結晶基板54を用いて前記した水熱合成による酸化亜鉛単結晶育成を行えば、それによって得られた本発明の酸化亜鉛単結晶基板にはリチウムを含まないか或いは含んだとしても更に極く微量な酸化亜鉛単結晶基板を形成することが可能である。
 また、以上の酸化亜鉛種結晶の育成後、前記のLiを含まず、鉱化剤としてKOHのみを含む水溶液により、ΔTを3~7℃の範囲に保ってc軸方向の酸化亜鉛単結晶の育成を行うことにより、c軸方向に結晶性の向上した酸化亜鉛単結晶を効率的に育成することができる。
In the seed crystal 41 formation step, lithium hydroxide is used for the alkaline aqueous solution, and a temperature difference of about 10 ° C. is used as ΔT, so that the needle is good in the a-axis and m-axis directions perpendicular to the c-axis (the needle is The crystal growth (which does not occur) is performed, the diameter in this direction can be increased, and a zinc oxide single crystal with few crystal defects is grown.
However, the obtained seed crystal 41 contains about 1 ppm of lithium as an impurity, and becomes a transparent but colored yellow single crystal. The lithium contained as an impurity in the seed crystal 41 cannot be precipitated if it exists between the sites of the zinc oxide crystal. However, if it exists between the lattices of the zinc oxide crystal, the zinc oxide single crystal 52 shown in FIG. And 53 in the hydrothermal synthesis process for annealing or annealing.
Therefore, lithium contained in a very small amount in the zinc oxide single crystal substrate 54 of the present invention dissolves the seed crystal 41 with an alkaline aqueous solution in a supercritical state by hydrothermal synthesis for forming the substrate 54 (at the initial growth stage). It is considered that the surface of the seed crystal and dissolution of the seed crystal during the growth period) were slightly dissolved in the alkaline aqueous solution and mixed into the grown zinc oxide single crystal. Therefore, when the zinc oxide single crystal growth by the hydrothermal synthesis described above is performed using the zinc oxide single crystal substrate 54 essentially free of lithium as a seed crystal as described above, the zinc oxide of the present invention obtained thereby is obtained. Even if the single crystal substrate does not contain lithium or contains lithium, an extremely small amount of zinc oxide single crystal substrate can be formed.
In addition, after the growth of the above zinc oxide seed crystal, the c-axis direction zinc oxide single crystal is maintained in a range of 3 to 7 ° C. with an aqueous solution containing only the above-mentioned Li and containing only KOH as a mineralizer. By performing the growth, a zinc oxide single crystal having improved crystallinity in the c-axis direction can be efficiently grown.
 以上詳細に説明したとおり、本発明により形成された酸化亜鉛単結晶基板54は、リチウムを本質的に含まず、無色透明の結晶で、結晶表面及び結晶中に本質的に欠陥及び不純物を含まず、酸素欠損のないストイキオメトリー組成の酸化亜鉛単結晶により形成されたものであるが、このような酸化亜鉛単結晶が形成されていることについては、形成された酸化亜鉛単結晶基板54にフォトルミネセンス検査を行うことにより確認することができる。 As described in detail above, the zinc oxide single crystal substrate 54 formed according to the present invention is essentially free of lithium, is a colorless transparent crystal, and is essentially free of defects and impurities in the crystal surface and crystal. The zinc oxide single crystal having a stoichiometric composition without oxygen vacancies is formed on the formed zinc oxide single crystal substrate 54. This can be confirmed by performing a luminescence inspection.
 これを図4に基づいて説明する。
 図4は、本発明の酸化亜鉛単結晶基板54(Aとして示す)及び現在入手可能な酸化亜鉛単結晶基板(B及びCとして示す)のフォトルミネセンス検査の結果を示す図である。
 上記基板(A、B及びC)の各々に対して、温度11°Kで、He-Cdレーザーにより325.0nmの光照射を行うと、当該酸化亜鉛単結晶基板からフォトルミネセンス光が得られる。
 図4においては、各基板(A、B及びC)から発生した発光強度(縦軸は対数表示されている)を、急峻な発光特性を示すバンド端発光波長(370nm:3.37eV)の発光強度で規格化し、この固有発光波長以外の発光強度の相違を示している。
 現在入手可能な酸化亜鉛単結晶基板(B及びC)においては、急峻な発光特性を示すバンド端発光波長(370nm:3.37eV)の発光と、波長470nm付近から700nm付近(2.9~1.4eV)にかけてブロードな特性で緑波長(500nm~600nm)に中心を有する発光が検出される。この緑発光(グリーンバンド発光)の発光メカニズムは必ずしも明らかとはなっていないが、侵入型Zn、酸素欠損、格子間亜鉛、格子間酸素、各種不純物の混入等に起因する複数の点欠陥の組み合わせによって発生するといわれている。緑発光(グリーンバンド発光)における極めてブロードな発光特性は、これらの複合の原因に基づくものと考えられる。
 これに対して、本発明の酸化亜鉛単結晶基板54(A)においては、バンド端発光波長(370nm:3.37eV)の発光強度に比して、グリーンバンド発光の発光強度が著しく小さな値(発光強度比で、0.1%以下)を示しており、これらの領域で測定された値はほぼノイズレベルであってグリーンバンド発光が殆どない。これによれば、本発明の酸化亜鉛単結晶基板54は、欠陥及び不純物が非常に少ない単結晶であると言うことができる。
This will be described with reference to FIG.
FIG. 4 is a diagram showing the results of photoluminescence inspection of the zinc oxide single crystal substrate 54 (shown as A) and the currently available zinc oxide single crystal substrates (shown as B and C) of the present invention.
When each of the substrates (A, B and C) is irradiated with light of 325.0 nm by a He—Cd laser at a temperature of 11 ° K, photoluminescence light is obtained from the zinc oxide single crystal substrate. .
In FIG. 4, emission intensity (vertical axis is logarithmically expressed) generated from each substrate (A, B, and C) is emitted at a band edge emission wavelength (370 nm: 3.37 eV) showing steep emission characteristics. Normalized by intensity, the difference in emission intensity other than the intrinsic emission wavelength is shown.
Currently available zinc oxide single crystal substrates (B and C) emit light with a band edge emission wavelength (370 nm: 3.37 eV) exhibiting steep emission characteristics, and a wavelength range from about 470 nm to about 700 nm (2.9 to 1). .4 eV), and emission having a center at a green wavelength (500 nm to 600 nm) is detected with a broad characteristic. The light emission mechanism of this green light emission (green band light emission) is not always clear, but a combination of multiple point defects caused by interstitial Zn, oxygen deficiency, interstitial zinc, interstitial oxygen, various impurities, etc. It is said that it is caused by. It is considered that the extremely broad light emission characteristics in green light emission (green band light emission) are based on these combined causes.
In contrast, in the zinc oxide single crystal substrate 54 (A) of the present invention, the emission intensity of the green band emission is significantly smaller than the emission intensity of the band edge emission wavelength (370 nm: 3.37 eV) ( The emission intensity ratio is 0.1% or less), and the values measured in these regions are almost noise levels and there is almost no green band emission. According to this, it can be said that the zinc oxide single crystal substrate 54 of the present invention is a single crystal with very few defects and impurities.
 上記酸化亜鉛単結晶基板は、その上に発光ダイオードなどの半導体素子を構成する機能性薄膜を形成する基板として用いることができる。
 前記したように、近年酸化亜鉛単結晶薄膜による半導体素子を形成するために、酸化亜鉛単結晶基板が必要であるが、半導体素子として動作する酸化亜鉛単結晶薄膜を形成するためには結晶構造の同じ酸化亜鉛であるというだけではなく、基板自身に有害な不純物及び結晶欠陥がないことが不可欠である。
 上記本発明の方法によって得られた酸化亜鉛単結晶は、出発材料として高純度亜鉛を用いることは無論であるが、結晶育成過程において結晶軸と鉱化剤を選定した結晶育成速度の制御、酸素欠損を抑制するためのH22添加方法、及び出発材料として酸素欠損の解消された酸化亜鉛粒を用いる育成方法によって、上記の特性を達成した。
 すなわち、上記のグリーンバンド発光強度が極めて低く、ほぼノイズレベルにまで低減していることから、この酸化亜鉛単結晶はほぼ結晶欠陥及び不純物を半導体素子の動作上支障を来すことがないまでに解消したということができる。
また、グリーンバンド発光に影響されない、発光波長の純度の高い発光素子がこの基板により作成可能である。
 さらに、前記したように、Liによる汚染がないことは、これら発光ダイオードとして動作する酸化亜鉛機能性薄膜の特性上の重要な障害を解消したものである。
The zinc oxide single crystal substrate can be used as a substrate on which a functional thin film constituting a semiconductor element such as a light emitting diode is formed.
As described above, in recent years, a zinc oxide single crystal substrate is required to form a semiconductor element using a zinc oxide single crystal thin film. However, in order to form a zinc oxide single crystal thin film that operates as a semiconductor element, a crystal structure of In addition to being the same zinc oxide, it is essential that the substrate itself is free of harmful impurities and crystal defects.
Of course, the zinc oxide single crystal obtained by the method of the present invention uses high-purity zinc as a starting material. However, in the crystal growth process, the crystal growth rate is controlled by selecting the crystal axis and the mineralizer, oxygen The above characteristics were achieved by a method of adding H 2 O 2 for suppressing defects and a growth method using zinc oxide grains from which oxygen defects were eliminated as a starting material.
That is, since the above-mentioned green band emission intensity is extremely low and has been reduced to almost the noise level, this zinc oxide single crystal has almost no crystal defects and impurities to hinder the operation of the semiconductor element. It can be said that it has been resolved.
In addition, a light-emitting element having high emission wavelength purity that is not affected by green band light emission can be formed using this substrate.
Further, as described above, the absence of contamination by Li eliminates an important obstacle in the characteristics of the zinc oxide functional thin film operating as a light emitting diode.
 上記酸化亜鉛単結晶基板によれば、基板上に形成する機能性半導体単結晶薄膜として、酸化亜鉛のほかこれまで提案されてきた、ZnMgO、ZnCdO,ZnSeO、或いはZnSO等のいわゆる酸化亜鉛系化合物が適用可能であり、これらはいずれも同じ結晶構造であって、格子定数が同じか、その差が極めて小さいことから優れた単結晶育成基板となる。
 本発明者らは、上記によって得られた酸化亜鉛単結晶基板を用いて発光ダイオードの基本構造となる酸化亜鉛系単結晶薄膜を積層形成して、発光特性を確認した。
 ここで、本発明者らは、上記した酸化亜鉛単結晶基板上に、RS-MBE法を用いてホモエピタキシアル成長を行うことにより、結晶欠陥の少ない高品質の積層薄膜を実現した。
 要は、これらの機能性単結晶薄膜の特性は、基本的に基板の結晶構造・品質の如何に依存するのであり、基板はその上に形成された半導体素子となる機能性単結晶薄膜の基本的品質を規定し、素子としても一体の構成をなすのである。
According to the zinc oxide single crystal substrate, as a functional semiconductor single crystal thin film to be formed on the substrate, in addition to zinc oxide, so-called zinc oxide based compounds such as ZnMgO, ZnCdO, ZnSeO, or ZnSO have been proposed so far. These can be applied, and both of them have the same crystal structure and the same lattice constant or the difference between them is extremely small, so that they are excellent single crystal growth substrates.
The inventors of the present invention confirmed the emission characteristics by laminating a zinc oxide single crystal thin film, which is the basic structure of a light emitting diode, using the zinc oxide single crystal substrate obtained as described above.
Here, the present inventors realized a high-quality laminated thin film with few crystal defects by performing homoepitaxial growth on the above-described zinc oxide single crystal substrate using the RS-MBE method.
In short, the characteristics of these functional single crystal thin films basically depend on the crystal structure and quality of the substrate, and the substrate is the basic of the functional single crystal thin film that becomes the semiconductor element formed thereon. The quality is defined, and the device is integrated.
 図6に、上記のようにして形成された酸化亜鉛単結晶基板54を用いて発光を確認した発光ダイオードの原理的構成を示す。
 これは、酸化亜鉛単結晶基板54上に、n型不純物としてのガリウムがドープされたZnO:Gaからなるn型クラッド層301、カドミウムがドープされたZnO:Cdからなる活性層302及びp型不純物としての窒素がドープされたZnO:Nからなるp型クラッド層303が積層されている。クラッド層301及び303はキャリアを活性層302に閉じ込める必要があることから、活性層302よりも禁制帯幅が大きくなるような関係に選択される。
 図中、304及び305は電極層である。
FIG. 6 shows the basic configuration of a light emitting diode whose emission was confirmed using the zinc oxide single crystal substrate 54 formed as described above.
This is because, on a zinc oxide single crystal substrate 54, an n-type cladding layer 301 made of ZnO: Ga doped with gallium as an n-type impurity, an active layer 302 made of ZnO: Cd doped with cadmium, and a p-type impurity. A p-type cladding layer 303 made of ZnO: N doped with nitrogen is stacked. Since the clad layers 301 and 303 need to confine carriers in the active layer 302, the clad layers 301 and 303 are selected so as to have a forbidden band width larger than that of the active layer 302.
In the figure, 304 and 305 are electrode layers.
 また、本発明の酸化亜鉛単結晶を基板として、上記の発光素子構造に限らず酸化亜鉛系半導体からなる発光素子の成膜した層構造とすることにより、優れた特性を発揮する半導体素子を形成することができる。
 上記に例示したような酸化亜鉛単結晶基板上に形成される薄膜には、ZnO、ZnMgO系化合物、ZnCdO系化合物、ZnSeO系化合物、ZnSO系化合物等の酸化亜鉛系半導体がある。さらに、酸化亜鉛単結晶基板上に上記薄膜をホモ接合で複数積層して半導体素子を形成したZnO系薄膜がある。勿論、酸化亜鉛単結晶基板とZnO薄膜或いはZnO化合物薄膜相互間、ZnO薄膜とZnO化合物系薄膜相互間、及び異種のZnO化合物薄膜相互間は、その格子定数が同じか或いは殆ど差がなく、また両者の熱膨張係数にも差がないので積層されて形成されるZnO系薄膜の結晶性が向上し、半導体素子の光学的・電気的特性や信頼性を格段に向上することができる。
Further, by using the zinc oxide single crystal of the present invention as a substrate, not only the light emitting element structure described above but also a layer structure in which a light emitting element made of a zinc oxide based semiconductor is formed, a semiconductor element exhibiting excellent characteristics is formed. can do.
Thin films formed on a zinc oxide single crystal substrate as exemplified above include zinc oxide semiconductors such as ZnO, ZnMgO compounds, ZnCdO compounds, ZnSeO compounds, and ZnSO compounds. Furthermore, there is a ZnO-based thin film in which a semiconductor element is formed by stacking a plurality of the above thin films by homojunction on a zinc oxide single crystal substrate. Of course, the lattice constant between the zinc oxide single crystal substrate and the ZnO thin film or the ZnO compound thin film, between the ZnO thin film and the ZnO compound thin film, and between the different types of ZnO compound thin films is the same or almost the same, and Since there is no difference in thermal expansion coefficient between them, the crystallinity of the ZnO-based thin film formed by stacking can be improved, and the optical and electrical characteristics and reliability of the semiconductor element can be remarkably improved.
 本発明の酸化亜鉛単結晶基板の製造方法は晶性に優れ、結晶欠陥がなく、ストイキオメトリー組成であって、発光素子など有害なLiを含まないものが製造できるため、発光ダイオードを始めとする各種の半導体素子を形成する基板を提供でき、該基板に形成された半導体素子と共に産業上貢献するところが大きい。 The method for producing a zinc oxide single crystal substrate according to the present invention is excellent in crystallinity, free from crystal defects, has a stoichiometric composition and does not contain harmful Li, such as a light emitting element. It is possible to provide a substrate on which various semiconductor elements are formed, and contribute greatly to the industry together with the semiconductor elements formed on the substrate.
本発明に用いたオートクレーブ(A)及び酸化亜鉛単結晶育成容器(B)。Autoclave (A) and zinc oxide single crystal growth vessel (B) used in the present invention. 本発明の水熱合成法により得られた酸化亜鉛単結晶の外観を示す図。The figure which shows the external appearance of the zinc oxide single crystal obtained by the hydrothermal synthesis method of this invention. 本発明の水熱合成法に用いる種結晶とその結晶の外観を示す図。The figure which shows the external appearance of the seed crystal used for the hydrothermal synthesis method of this invention, and the crystal | crystallization. 本発明の水熱合成法により得られた酸化亜鉛単結晶と従来例の酸化亜鉛単結晶の特性図。The characteristic view of the zinc oxide single crystal obtained by the hydrothermal synthesis method of this invention, and the zinc oxide single crystal of a prior art example. 本発明の酸化亜鉛単結晶外観。The zinc oxide single crystal appearance of the present invention. 本発明の発光素子の基本構成。The basic structure of the light emitting element of this invention.
 11 単結晶育成装置
 12 オートクレーブ
 13 単結晶育成容器収容部
 14 オートクレーブ本体
 15 パッキング部材
 16 蓋体
 17 ねじ
 18 内部空間
 21、22 ヒーター
 23 断熱材
 31 単結晶育成容器
 32 フレーム
 33 種結晶支持具
 34 内部バッフル板
 35 外部バッファリング
 36 容器本体
 37 育成容器蓋体
 38 注入用微少開口
 41a~41d 種結晶
 42 酸化亜鉛単結晶
 43 酸化亜鉛単結晶
 51 酸化亜鉛単結晶
 52 酸化亜鉛単結晶
 53 酸化亜鉛単結晶
 54 酸化亜鉛単結晶基板
 61 酸亜鉛種結晶
 301 ZnO:Gaからなるn型クラッド層
 302 ZnO:Cdからなる活性層
 303 ZnO:Nからなるp型クラッド層303
 304 電極
 305 電極
DESCRIPTION OF SYMBOLS 11 Single crystal growth apparatus 12 Autoclave 13 Single crystal growth container accommodating part 14 Autoclave main body 15 Packing member 16 Cover body 17 Screw 18 Internal space 21, 22 Heater 23 Heat insulating material 31 Single crystal growth container 32 Frame 33 Seed crystal support 34 Internal baffle Plate 35 External buffering 36 Container body 37 Growth vessel lid 38 Small opening for injection 41a to 41d Seed crystal 42 Zinc oxide single crystal 43 Zinc oxide single crystal 51 Zinc oxide single crystal 52 Zinc oxide single crystal 53 Zinc oxide single crystal 54 Oxide Zinc single crystal substrate 61 Zinc acid seed crystal 301 n-type cladding layer made of ZnO: Ga 302 Active layer made of ZnO: Cd 303 p-type cladding layer 303 made of ZnO: N
304 electrode 305 electrode

Claims (13)

  1.  酸化剤を添加した、鉱化剤としてKOHを含むアルカリ水溶液中で、超臨界条件下で出発材料である酸化亜鉛の溶解域と酸化亜鉛単結晶育成域との温度差ΔTにおいて種結晶上に単結晶を育成する方法において、
    上記種結晶としてc軸方向に垂直な面で切り出した酸化亜鉛種結晶とし、
    ΔTを3~7℃の範囲に維持することにより、KOHによる酸化亜鉛結晶のc軸方向の成長を抑制しつつ単結晶を育成することを特徴とする、酸化亜鉛単結晶基板育成方法。
    In an alkaline aqueous solution containing KOH as a mineralizer to which an oxidizing agent is added, a single crystal is formed on the seed crystal at a temperature difference ΔT between the zinc oxide dissolution zone and the zinc oxide single crystal growth zone under supercritical conditions. In the method for growing crystals,
    A zinc oxide seed crystal cut out in a plane perpendicular to the c-axis direction as the seed crystal,
    A method for growing a zinc oxide single crystal substrate, wherein a single crystal is grown while suppressing growth in the c-axis direction of a zinc oxide crystal by KOH by maintaining ΔT in a range of 3 to 7 ° C.
  2.  上記鉱化剤としてKOH以外の鉱化剤を含まないことを特徴とする、請求項1記載の酸化亜鉛単結晶基板育成方法。 The method for growing a zinc oxide single crystal substrate according to claim 1, wherein the mineralizer contains no mineralizer other than KOH.
  3.   上記酸化剤がH2O2であり、その添加時に出発原料及び溶媒を冷却することによりH2O2の分解を抑制することを特徴とする請求項1又は2記載の酸化亜鉛単結晶基板育成方法。 The zinc oxide single crystal substrate growth according to claim 1 or 2, wherein the oxidizing agent is H 2 O 2 and the decomposition of H 2 O 2 is suppressed by cooling the starting material and the solvent at the time of addition. Method.
  4.  上記出発材料としての酸化亜鉛が酸化亜鉛粉末焼結体を原料として水熱合成により析出せしめた結晶粒であることを特徴とする請求項1乃至3記載の酸化亜鉛単結晶基板育成方法。 The method for growing a zinc oxide single crystal substrate according to any one of claims 1 to 3, wherein the zinc oxide as the starting material is a crystal grain precipitated by hydrothermal synthesis using a zinc oxide powder sintered body as a raw material.
  5.  酸化剤を添加したアルカリ水溶液中の水熱合成により析出した結晶粒からなることを特徴とする水熱合成法による酸化亜鉛単結晶育成の出発材料用酸化亜鉛。 A zinc oxide for starting material for growing a zinc oxide single crystal by a hydrothermal synthesis method, characterized by comprising crystal grains precipitated by hydrothermal synthesis in an alkaline aqueous solution to which an oxidizing agent is added.
  6.  酸化剤を添加した、鉱化剤としてKOHを含むアルカリ水溶液中で、超臨界条件下で出発材料である酸化亜鉛の溶解域と酸化亜鉛単結晶育成域との温度差ΔTにおいて種結晶上に単結晶を育成する方法において、
     該アルカリ水溶液にLiOHを加えてKOHによるc軸方向の結晶育成を抑制しつつ、a軸及びm軸方向の結晶育成を促進して行い、
    次いで、該単結晶をLiOHを含まず、鉱化剤としてKOHのみを含むアルカリ水溶液中で、ΔTを3~7℃の範囲に維持することにより、KOHによる酸化亜鉛結晶のc軸方向の成長を抑制しつつ単結晶を育成することを特徴とする、酸化亜鉛単結晶基板育成方法。
    In an alkaline aqueous solution containing KOH as a mineralizer to which an oxidizing agent is added, a single crystal is formed on the seed crystal at a temperature difference ΔT between the dissolution zone of the starting zinc oxide and the zinc oxide single crystal growth zone under supercritical conditions. In the method for growing crystals,
    While adding LiOH to the alkaline aqueous solution and suppressing crystal growth in the c-axis direction by KOH, the crystal growth in the a-axis and m-axis directions is promoted,
    Next, the single crystal is grown in the c-axis direction of the zinc oxide crystal by KOH by maintaining ΔT in the range of 3 to 7 ° C. in an alkaline aqueous solution not containing LiOH and containing only KOH as a mineralizer. A method for growing a zinc oxide single crystal substrate, wherein the single crystal is grown while being suppressed.
  7.  酸化剤を添加した、鉱化剤としてKOHを含むアルカリ水溶液中で、超臨界条件下で出発材料である酸化亜鉛の溶解域と酸化亜鉛単結晶育成域との温度差ΔTにおいて種結晶上に育成された単結晶であって、
    上記種結晶がc軸方向に垂直な面で切り出した酸化亜鉛種結晶であり、
    ΔTを3~7℃の範囲に維持することにより、KOHによる酸化亜鉛結晶のc軸方向の成長を抑制しつつ形成した酸化亜鉛単結晶からなり、
    温度11°Kにおける波長325.0nm光照射によるフォトルミネッセンス光における波長3.37eVにピーク発光を有する固有発光波長の発光出力に対して、波長1.4~3.2eVのグリーンバンド発光出力が、発光強度において0.1%以下である特性を有することを特徴とする酸化亜鉛単結晶基板。
    Grown on seed crystal in temperature difference ΔT between zinc oxide dissolution zone and zinc oxide single crystal growth zone under supercritical conditions in alkaline aqueous solution containing KOH as mineralizer with oxidizing agent added A single crystal,
    The seed crystal is a zinc oxide seed crystal cut in a plane perpendicular to the c-axis direction,
    By maintaining ΔT in the range of 3 to 7 ° C., it consists of a zinc oxide single crystal formed while suppressing the growth in the c-axis direction of the zinc oxide crystal by KOH,
    With respect to the emission output of the intrinsic emission wavelength having the peak emission at the wavelength of 3.37 eV in the photoluminescence light by the irradiation of the light of the wavelength of 325.0 nm at the temperature of 11 ° K, the green band emission output of the wavelength of 1.4 to 3.2 eV is A zinc oxide single crystal substrate characterized by having a characteristic that the emission intensity is 0.1% or less.
  8.  鉱化剤としてLiOHを含まない条件で形成されたことを特徴とする、
    請求項7記載の酸化亜鉛単結晶基板。
    It is characterized by being formed under conditions that do not contain LiOH as a mineralizer,
    The zinc oxide single crystal substrate according to claim 7.
  9.  上記酸化剤がH2O2であることを特徴とする請求項7又は8記載の酸化亜鉛単結晶基板。 The zinc oxide single crystal substrate according to claim 7 or 8, wherein the oxidizing agent is H 2 O 2 .
  10.  上記出発材料としての酸化亜鉛が酸化亜鉛粉末焼結体を原料として水熱合成により析出せしめた結晶粒であることを特徴とする請求項7乃至9記載の酸化亜鉛単結晶基板。 10. The zinc oxide single crystal substrate according to claim 7, wherein the zinc oxide as the starting material is a crystal grain precipitated by hydrothermal synthesis using a zinc oxide powder sintered body as a raw material.
  11.  酸化剤を添加した、鉱化剤としてLiOHを含まず、KOHを含むアルカリ水溶液中で、
    超臨界条件下で出発材料である酸化亜鉛の溶解域と酸化亜鉛単結晶育成域との温度差ΔTにおいて種結晶上に育成された単結晶であって、
    上記種結晶がc軸方向に垂直な面で切り出した酸化亜鉛種結晶であり、
    ΔTを3~7℃の範囲に維持することにより、KOHによる酸化亜鉛結晶のc軸方向の成長を抑制しつつ形成した酸化亜鉛単結晶からなり、
     温度11°Kにおける波長325.0nm光照射によるフォトルミネッセンス光における波長3.37eVにピーク発光を有する固有発光波長の発光出力に対して、波長1.4~3.2eVのグリーンバンド発光出力が、発光強度において0.1%以下である特性を有する酸化亜鉛単結晶を基板として、その上に機能性単結晶層を成膜してなることを特徴とする半導体発光素子。
    In an alkaline aqueous solution containing an oxidizing agent, not containing LiOH as a mineralizer and containing KOH,
    A single crystal grown on a seed crystal at a temperature difference ΔT between a dissolution region of zinc oxide as a starting material and a zinc oxide single crystal growth region under supercritical conditions,
    The seed crystal is a zinc oxide seed crystal cut in a plane perpendicular to the c-axis direction,
    By maintaining ΔT in the range of 3 to 7 ° C., it consists of a zinc oxide single crystal formed while suppressing the growth in the c-axis direction of the zinc oxide crystal by KOH,
    With respect to the emission output of the intrinsic emission wavelength having the peak emission at the wavelength of 3.37 eV in the photoluminescence light by the irradiation of the light of the wavelength of 325.0 nm at the temperature of 11 ° K, the green band emission output of the wavelength of 1.4 to 3.2 eV is A semiconductor light emitting device comprising a zinc oxide single crystal having a light emission intensity of 0.1% or less as a substrate and a functional single crystal layer formed thereon.
  12.  上記酸化剤がH2O2であることを特徴とする請求項11記載の半導体発光素子。 The semiconductor light emitting device according to claim 11, wherein the oxidizing agent is H 2 O 2 .
  13.  上記出発材料としての酸化亜鉛が酸化亜鉛粉末焼結体を原料として水熱合成により析出せしめた結晶粒であることを特徴とする請求項11又は12記載の半導体発光素子。 13. The semiconductor light emitting device according to claim 11, wherein the zinc oxide as the starting material is a crystal grain precipitated by hydrothermal synthesis using a zinc oxide powder sintered body as a raw material.
PCT/JP2009/056980 2008-04-26 2009-04-03 Process for production of zinc oxide single crystal substrate, single crystal substrate grown by the process, and semiconductor light-emitting device comprising the substrate and film formed thereon WO2009130987A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010509129A JP5519492B2 (en) 2008-04-26 2009-04-03 Zinc oxide single crystal substrate manufacturing method, single crystal substrate grown by the method, and semiconductor light emitting device formed on the substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-116476 2008-04-26
JP2008116476 2008-04-26

Publications (1)

Publication Number Publication Date
WO2009130987A1 true WO2009130987A1 (en) 2009-10-29

Family

ID=41216725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056980 WO2009130987A1 (en) 2008-04-26 2009-04-03 Process for production of zinc oxide single crystal substrate, single crystal substrate grown by the process, and semiconductor light-emitting device comprising the substrate and film formed thereon

Country Status (2)

Country Link
JP (1) JP5519492B2 (en)
WO (1) WO2009130987A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202454A (en) * 2009-03-03 2010-09-16 Asahi Kasei Electronics Co Ltd Hexagonal system wurtzite type compound single crystal and production method of the same
CN102642862A (en) * 2012-04-25 2012-08-22 中南大学 Method for performing hydrothemal regulation and control on refractory and fine-grained vulcanization slag to optimize flotation behavior thereof
EP2589641A1 (en) * 2010-07-01 2013-05-08 Daishinku Corporation Scintillator material and scintillation detector
JP2016204213A (en) * 2015-04-23 2016-12-08 株式会社福田結晶技術研究所 Production method of zinc oxide crystal, zinc oxide crystal, scintillator material and scintillator detector
JPWO2014192578A1 (en) * 2013-05-31 2017-02-23 日本碍子株式会社 Zinc oxide free-standing substrate and manufacturing method thereof
US20180264504A1 (en) * 2017-03-14 2018-09-20 Tokyo Electron Limited Substrate processing apparatus and substrate processing method
US10190952B2 (en) 2012-09-07 2019-01-29 Japan Science And Technology Agency Guest-compound-enveloping polymer-metal-complex crystal, method for producing same, method for preparing crystal structure analysis sample, and method for determining molecular structure of organic compound
CN112079375A (en) * 2020-09-04 2020-12-15 中山大学 Nitric oxide annealing process and device for removing lithium in zinc oxide gap

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279192A (en) * 1993-03-29 1994-10-04 Ngk Insulators Ltd Piezoelectric semiconductor and its production
JPH07242496A (en) * 1994-03-03 1995-09-19 Ngk Insulators Ltd Method for growing zinc oxide single crystal
JP2006225213A (en) * 2005-02-21 2006-08-31 Tosoh Corp Zinc oxide single crystal, substrate for epitaxial growth obtained from the same, and methods for manufacturing them

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279192A (en) * 1993-03-29 1994-10-04 Ngk Insulators Ltd Piezoelectric semiconductor and its production
JPH07242496A (en) * 1994-03-03 1995-09-19 Ngk Insulators Ltd Method for growing zinc oxide single crystal
JP2006225213A (en) * 2005-02-21 2006-08-31 Tosoh Corp Zinc oxide single crystal, substrate for epitaxial growth obtained from the same, and methods for manufacturing them

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202454A (en) * 2009-03-03 2010-09-16 Asahi Kasei Electronics Co Ltd Hexagonal system wurtzite type compound single crystal and production method of the same
EP2589641A1 (en) * 2010-07-01 2013-05-08 Daishinku Corporation Scintillator material and scintillation detector
EP2589641A4 (en) * 2010-07-01 2014-05-21 Daishinku Corp Scintillator material and scintillation detector
CN102642862A (en) * 2012-04-25 2012-08-22 中南大学 Method for performing hydrothemal regulation and control on refractory and fine-grained vulcanization slag to optimize flotation behavior thereof
US10684198B2 (en) 2012-09-07 2020-06-16 Japan Science And Technology Agency Guest-compound-enveloping polymer-metal-complex crystal, method for producing same, method for preparing crystal structure analysis sample, and method for determining molecular structure of organic compound
US10190952B2 (en) 2012-09-07 2019-01-29 Japan Science And Technology Agency Guest-compound-enveloping polymer-metal-complex crystal, method for producing same, method for preparing crystal structure analysis sample, and method for determining molecular structure of organic compound
JPWO2014192578A1 (en) * 2013-05-31 2017-02-23 日本碍子株式会社 Zinc oxide free-standing substrate and manufacturing method thereof
US10156024B2 (en) 2013-05-31 2018-12-18 Ngk Insulators, Ltd. Zinc oxide free-standing substrate and method for manufacturing same
JP2016204213A (en) * 2015-04-23 2016-12-08 株式会社福田結晶技術研究所 Production method of zinc oxide crystal, zinc oxide crystal, scintillator material and scintillator detector
US20180264504A1 (en) * 2017-03-14 2018-09-20 Tokyo Electron Limited Substrate processing apparatus and substrate processing method
US10576493B2 (en) * 2017-03-14 2020-03-03 Tokyo Electron Limited Substrate processing apparatus and substrate processing method
CN112079375A (en) * 2020-09-04 2020-12-15 中山大学 Nitric oxide annealing process and device for removing lithium in zinc oxide gap
CN112079375B (en) * 2020-09-04 2021-08-20 中山大学 Nitric oxide annealing process and device for removing lithium in zinc oxide gap

Also Published As

Publication number Publication date
JPWO2009130987A1 (en) 2011-08-18
JP5519492B2 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
JP5519492B2 (en) Zinc oxide single crystal substrate manufacturing method, single crystal substrate grown by the method, and semiconductor light emitting device formed on the substrate
JP3679097B2 (en) Light emitting element
KR100960834B1 (en) Hexagonal wurtzite type single crystal, process for producing the same, and hexagonal wurtzite type single crystal substrate
CN100370065C (en) B-ga2o3 single crystal growing method, thin-film single crystal growing method, ga2o3 light-emitting device, and its manufacturing method
US7905958B2 (en) Group III-nitride semiconductor crystal and manufacturing method thereof, and group III-nitride semiconductor device
EP2267194B1 (en) Method of growing a beta-Ga2O3 single crystal thin film
JP5026271B2 (en) Method for producing hexagonal nitride single crystal, method for producing hexagonal nitride semiconductor crystal and hexagonal nitride single crystal wafer
US8231726B2 (en) Semiconductor light emitting element, group III nitride semiconductor substrate and method for manufacturing such group III nitride semiconductor substrate
JP4831940B2 (en) Manufacturing method of semiconductor device
JP5638772B2 (en) Method for growing zinc oxide based semiconductor and method for manufacturing semiconductor light emitting device
JP5355221B2 (en) Method for growing zinc oxide based semiconductor and method for manufacturing semiconductor light emitting device
JP4597534B2 (en) Method for manufacturing group III nitride substrate
JP2002093822A (en) MANUFACTURING METHOD OF SEMICONDUCTOR DEVICE HAVING ZnO-BASED OXIDE SEMICONDUCTOR LAYER
Hong et al. ZnO and related materials: Plasma-Assisted molecular beam epitaxial growth, characterization and application
JP2004304166A (en) ZnO SEMICONDUCTOR DEVICE
JP2004335559A (en) Semiconductor element using group iii nitride substrate
WO2004086520A1 (en) ZnO SEMICONDUCTOR ELEMENT AND PROCESS FOR PRODUCING THE SAME
JP3980035B2 (en) LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
JP2005350297A (en) Method of growing zinc oxide material
JP5721016B2 (en) Zinc oxide based semiconductor light emitting device and ZnO based single crystal layer growth method
Ichinose et al. β-Ga 2 O 3 single crystal growing method including crystal growth method
JP5424476B2 (en) Single crystal substrate, manufacturing method thereof, semiconductor thin film formed on the single crystal substrate, and semiconductor structure
JP2006069840A (en) Zinc oxide material growth method
JP2006069844A (en) Zinc oxide material growth method and apparatus using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09735380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010509129

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09735380

Country of ref document: EP

Kind code of ref document: A1