JP4719788B2 - Method for producing group 13 element nitrogen compound crystal - Google Patents

Method for producing group 13 element nitrogen compound crystal Download PDF

Info

Publication number
JP4719788B2
JP4719788B2 JP2008335283A JP2008335283A JP4719788B2 JP 4719788 B2 JP4719788 B2 JP 4719788B2 JP 2008335283 A JP2008335283 A JP 2008335283A JP 2008335283 A JP2008335283 A JP 2008335283A JP 4719788 B2 JP4719788 B2 JP 4719788B2
Authority
JP
Japan
Prior art keywords
oxygen
gan
alloy
additive
examples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008335283A
Other languages
Japanese (ja)
Other versions
JP2010155751A (en
Inventor
一男 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2008335283A priority Critical patent/JP4719788B2/en
Publication of JP2010155751A publication Critical patent/JP2010155751A/en
Application granted granted Critical
Publication of JP4719788B2 publication Critical patent/JP4719788B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、酸素不純物の少ない高純度で良質な13族元素窒素化合物結晶の製造方法に関する。   The present invention relates to a high-purity and high-quality group 13 element nitrogen compound crystal with less oxygen impurities.

GaNを代表とする13族元素窒素化合物結晶は、発光ダイオード(LED)や半導体レーザー(LD)用途に用いられている。このような発光デバイスは、Al、Ga、Inなどの13族元素からなるAlN、GaN、InNなどの13族元素窒素化合物の結晶、又はおよび2若しくは3種の13族元素を含む混合型の13族元素の窒化物を使用している。発光デバイスの窒化物薄膜は、一般に、サファイア基板や炭化ケイ素基板にヘテロエピタキシャル成長で作製されるが、サファイア基板や炭化ケイ素基板の格子定数と窒化物膜の格子定数の間に差があるため、窒化物膜に転移欠陥などの欠陥が生じて、発光デバイスの特性を低下させている。純度の高い良質な13族元素窒素化合物結晶が得られれば、それを基板として用いることで、基板の上に格子定数差が無い薄膜成長が可能であり、13族元素窒素化合物結晶半導体の光デバイスの高効率化や、パワー半導体用途などへの展開も期待できる。   A group 13 element nitrogen compound crystal represented by GaN is used for a light emitting diode (LED) or a semiconductor laser (LD). Such a light emitting device is a crystal of a group 13 element nitrogen compound such as AlN, GaN, InN or the like composed of a group 13 element such as Al, Ga, In, or a mixed type 13 containing two or three types of group 13 elements. Group element nitrides are used. Nitride thin films for light-emitting devices are generally fabricated by heteroepitaxial growth on sapphire substrates and silicon carbide substrates, but there is a difference between the lattice constants of sapphire and silicon carbide substrates and the nitride film. Defects such as transition defects are generated in the material film, which deteriorates the characteristics of the light emitting device. If a high-quality, high-quality group 13 element nitrogen compound crystal is obtained, it can be used as a substrate, so that a thin film can be grown on the substrate without a difference in lattice constant. It can be expected that the system will be more efficient and deployed for power semiconductor applications.

バルク結晶の13族元素窒素化合物結晶、特にGaNバルク結晶を作製する方法として、高温高圧法、HPVE(Hydride Vapor Phase Epitaxy)法、フラックス法、昇華法などが報告されている。しかしながら、GaNを主とする13族元素窒素化合物結晶の育成が困難なことから、汎用されるには至っていない。HPVE法によるGaN基板の市販品も出てきているが、価格がかなり高い上に、GaNを成長させる基板との剥離方法やGaN基板自体の反りなどの問題があり、実用的なレベルに至っていない。   As a method for producing a bulk group 13 element nitrogen compound crystal, particularly a GaN bulk crystal, a high-temperature and high-pressure method, a HPPE (Hydride Vapor Phase Epitaxy) method, a flux method, a sublimation method, and the like have been reported. However, since it is difficult to grow a group 13 element nitrogen compound crystal mainly composed of GaN, it has not been widely used. A commercial product of a GaN substrate by the HPVE method has come out, but the price is quite high and there are problems such as a peeling method from the substrate on which GaN is grown and the warpage of the GaN substrate itself, and it has not reached a practical level. .

GaNのバルク結晶は、以下の特許文献1に記載されている結晶シード上での選択的結晶化により、超臨界アンモニア含有溶液から得られている。また、以下の非特許文献1には、Yuji Kagamitaniらによって、アンモニアにハロゲン化アンモニウムを含ませた超臨界アンモニア含有溶液を用いて、GaNを結晶成長させる方法が報告されている。これらのアンモニア超臨界を用いた13族元素窒素化合物結晶の作製方法は、アモノサーマル法(Ammonothermal method)又は安熱法などと呼ばれて広まっている。   A bulk crystal of GaN is obtained from a supercritical ammonia-containing solution by selective crystallization on a crystal seed described in Patent Document 1 below. Non-Patent Document 1 below reports a method of crystal growth of GaN using a supercritical ammonia-containing solution in which ammonium halide is contained in ammonia by Yuji Kagamitani et al. A method for producing a group 13 element nitrogen compound crystal using ammonia supercriticality is widely called an ammonothermal method or an thermal method.

バルクの13族元素窒素化合物結晶を光デバイスなどの半導体用途に用いるには、不純物を含まない窒化物を作ることが重要である。13族元素は、超臨界状態のような高温では、酸素と結合し易いので、酸素不純物を排除することが特に重要である。酸素不純物は、超臨界アンモニア含有溶液を用いる方法では、オートクレーブ容器やその内壁、原料の13族元素や13族窒素化合物、アルカリ金属アミドやハロゲン化アンモニウムなどの添加剤などから水、酸素、酸化物として混入するので、混入を防ぐのが難しい。   In order to use a bulk group 13 element nitrogen compound crystal for a semiconductor application such as an optical device, it is important to make a nitride containing no impurities. It is particularly important to eliminate oxygen impurities because group 13 elements are likely to bind to oxygen at high temperatures such as in the supercritical state. In the method using a supercritical ammonia-containing solution, oxygen impurities can be obtained from water, oxygen, oxides from autoclave containers and inner walls, additives such as group 13 elements and group 13 nitrogen compounds, alkali metal amides and ammonium halides. It is difficult to prevent contamination.

特表2004/533391号公報Special table 2004/533391 gazette Yuji Kagamitani, Dirk Ehrentraut, Akira Yoshikawa, Naruhiro Hoshino, Tsuguo Fukuda著、「Japanese Journal of Applied Physics」、Vol.45、No.5A、2006年、p. 4018−4020Yuji Kagamitani, Dirk Ehrentraut, Akira Yoshikawa, Naruhiro Hoshino, Tsuguo Fukuda, `` Japanese Journal of Applied Physics '', Vol. 45, No. 5A, 2006, p. 4018-4020

本発明が解決しようとする課題は、超臨界アンモニア含有溶液中でガリウムを含む13族金属又はび13族元素窒素化合物を原料として、ガリウムを主成分とする13族元素窒素化合物の結晶を作製するいわゆるアモノサーマル(Ammonothermal)法において、酸素不純物が少なく高純度で良質の13族窒素化合物結晶を製造する方法を提供することである。   The problem to be solved by the present invention is to produce a crystal of a group 13 element nitrogen compound containing gallium as a main component from a group 13 metal containing gallium or a group 13 element nitrogen compound as a raw material in a supercritical ammonia-containing solution. In the so-called Ammonothermal method, a method for producing a high-quality, high-quality group 13 nitrogen compound crystal with less oxygen impurities is provided.

本発明者は、前記課題を解決するため、超臨界アンモニア含有溶液中において酸素を除去する酸素除去添加剤を種々検討し、中心部がチタン金属、ジルコニウム金属、チタン合金、及びジルコニウム合金から成る群から選ばれる金属又は合金から構成され、かつ、その表層部が該金属又は合金の水素化物で覆われた複合構造を有する酸素除去添加剤をアンモニア溶液に接触させて超臨界アンモニア溶液中で13族元素窒素化合物を結晶化させることにより、酸素が少なく高純度で良質な13族元素窒素化合物結晶を作製できることを発見し、本発明を完成するに至った。具体的には、本発明は以下の[1]〜[3]である:   In order to solve the above-mentioned problems, the present inventor has studied various oxygen removal additives for removing oxygen in a supercritical ammonia-containing solution, and the group consisting of titanium metal, zirconium metal, titanium alloy, and zirconium alloy at the center. And a group 13 in a supercritical ammonia solution by contacting an oxygen solution with an oxygen removal additive having a composite structure composed of a metal or alloy selected from the above and having a surface layer portion covered with a hydride of the metal or alloy It was discovered that by crystallizing elemental nitrogen compounds, high-purity and high-quality group 13 elemental nitrogen compound crystals with less oxygen can be produced, and the present invention has been completed. Specifically, the present invention is the following [1] to [3]:

[1]ガリウムを主成分とする13族元素窒素化合物結晶の製造方法であって、少なくともガリウムを含む13族元素の金属及び/又は該金属の窒素化合物を、アンモニア雰囲気下、酸素除去添加剤の存在下で、加熱処理して結晶を得るステップを含み、ここで、該酸素除去添加剤は、その中心部がチタン金属、ジルコニウム金属、チタン合金、及びジルコニウム合金から成る群から選ばれる金属又は合金から構成され、かつ、その表層部が該金属又は合金の水素化物で覆われた複合構造を有する前記方法。   [1] A method for producing a group 13 element nitrogen compound crystal containing gallium as a main component, wherein a metal of a group 13 element containing at least gallium and / or a nitrogen compound of the metal is used as an oxygen removal additive in an ammonia atmosphere. Heat treatment in the presence to obtain crystals, wherein the oxygen scavenger additive is a metal or alloy whose core is selected from the group consisting of titanium metal, zirconium metal, titanium alloy, and zirconium alloy And having a composite structure in which the surface layer portion is covered with a hydride of the metal or alloy.

[2]前記ガリウムを主成分とする13族元素の窒素化合物がGaNである、前記[1]に記載の方法。   [2] The method according to [1], wherein the group 13 element nitrogen compound containing gallium as a main component is GaN.

[3]前記[1]又は[2]に記載の方法により製造されたガリウムを主成分とする13族元素窒素化合物結晶。   [3] A group 13 element nitrogen compound crystal containing gallium as a main component, produced by the method according to [1] or [2].

本発明で用いることができる酸素除去添加剤は、その中心部がチタン金属、ジルコニウム金属、チタン合金、及びジルコニウム合金から成る群から選ばれる金属又は合金から構成され、かつ、その表層部が該金属又は合金の水素化物で覆われた複合構造を有することで、アンモニア中の酸素や酸素を含む水などの酸素含有化合物から酸素を除去する能力を有する。   The oxygen-removing additive that can be used in the present invention is composed of a metal or an alloy whose central portion is selected from the group consisting of titanium metal, zirconium metal, titanium alloy, and zirconium alloy, and its surface layer portion is the metal. Alternatively, by having a composite structure covered with a hydride of an alloy, it has the ability to remove oxygen from oxygen-containing compounds such as oxygen in oxygen and water containing oxygen.

このような酸素除去添加剤をアンモニア中に入れると、アンモニア雰囲気でアンモニア中の酸素成分と反応して金属酸化物を作ったり、酸素成分を吸着したりするため、アンモニア中の酸素成分を酸素除去添加剤の表面に固定化することで酸素成分をアンモニアから除去することができる。この酸素除去添加剤が酸素と反応し又はまたは酸素を吸着する効果は、300℃〜700℃で顕著に現れるので、アンモニアをこの範囲の温度で使用すると効果が高い。よってこのような酸素結合性又は酸素吸着性の金属をアンモニア中に仕込むことで、酸素不純物が少ない高純度で良質な13族元素窒素化合物の結晶を製造することができる。
ところがこのような酸素と結合し又は酸素を吸着するチタン、ジルコニウムなどの金属又は合金を、容器に仕込む段階で、空気中で取り扱うと、かかる金属又は合金の表面が、この段階で酸化されてしまい、アンモニア中の酸素と反応し又は酸素を吸着する能力がなくなてしまい、得られる13族元素窒素化合物結晶の酸素不純物を減らすことができない。
When such an oxygen removal additive is put into ammonia, it reacts with the oxygen component in ammonia in an ammonia atmosphere to form a metal oxide or adsorb the oxygen component, so the oxygen component in ammonia is removed by oxygen. By immobilizing on the surface of the additive, the oxygen component can be removed from the ammonia. The effect of this oxygen scavenging additive reacting with oxygen or adsorbing oxygen appears remarkably at 300 ° C. to 700 ° C. Therefore, when ammonia is used at a temperature in this range, the effect is high. Therefore, by introducing such an oxygen-bonding or oxygen-adsorbing metal into ammonia, a high-purity and high-quality group 13 element nitrogen compound crystal with less oxygen impurities can be produced.
However, when such a metal or alloy such as titanium or zirconium that binds to oxygen or adsorbs oxygen is handled in the air at the stage of charging the container, the surface of the metal or alloy is oxidized at this stage. The ability to react with oxygen in ammonia or adsorb oxygen is lost, and oxygen impurities in the obtained group 13 element nitrogen compound crystals cannot be reduced.

そこで、発明者は、空気中で取り扱っても表面に酸素を取り込まないが、アンモニア超臨界条件下では、酸素と結合し又は酸素を吸着することで超臨界アンモニア溶液中の酸素を除去することができる酸素除去添加剤を検討した結果、その中心部がチタン金属、ジルコニウム金属、チタン合金、及びジルコニウム合金から成る群から選ばれる金属又は合金から構成され、かつ、その表層部が該金属又は合金の水素化物で覆われた複合構造を有する酸素除去添加剤を見出した。このように本発明の酸素除去添加剤は、その表層部が水素化物で覆われているため、通常の空気雰囲気で取り扱っても、酸素が該酸素除去添加剤中心部の金属又は合金と酸化物を作ることがない。よって、本発明の酸素除去添加剤を13族元素窒素化合物結晶製造用の超臨界アンモニア用圧力容器内に仕込むことにより、容器仕込み段階で酸素を取り込まずに、該酸素除去剤を13族元素窒素化合物結晶製造用圧力容器に収めることができる。   Therefore, the inventor does not take oxygen into the surface even when handled in air, but under ammonia supercritical conditions, it can remove oxygen in the supercritical ammonia solution by binding to oxygen or adsorbing oxygen. As a result of examining the oxygen scavenging additive that can be formed, the central portion is composed of a metal or alloy selected from the group consisting of titanium metal, zirconium metal, titanium alloy, and zirconium alloy, and the surface layer portion of the metal or alloy An oxygen scavenging additive having a composite structure covered with hydride was found. As described above, the oxygen removal additive of the present invention has its surface layer covered with hydride, so that even if it is handled in a normal air atmosphere, oxygen remains in the center of the oxygen removal additive metal or alloy and oxide. Never make. Therefore, by adding the oxygen removing additive of the present invention into a supercritical ammonia pressure vessel for producing a group 13 element nitrogen compound crystal, the oxygen removing agent can be added to the group 13 element nitrogen without taking in oxygen at the vessel charging stage. It can be stored in a pressure vessel for producing compound crystals.

次いで、この13族元素窒素化合物結晶製造用圧力容器にアンモニア液や結晶成長を促す鉱化剤を加え、該圧力容器を密封後にアンモニア含有溶液温度を300〜650℃にすることにより、該酸素除去添加剤の表層部に在る水素化物から水素が除かれて、該酸素除去添加剤の中心部を構成する金属又は合金と同一の金属又は合金が酸素除去添加剤の表面(表層部)に現れる。この段階で、表層部に現れた金属又は合金は、チタン、ジルコニウムなどの金属又は合金であり、酸素と反応し又は酸素を吸着して、高温高圧のアンモニア含有溶液から酸素を除去することができる。   Next, an ammonia solution and a mineralizing agent that promotes crystal growth are added to the pressure vessel for producing a group 13 element nitrogen compound crystal, and after the pressure vessel is sealed, the ammonia-containing solution temperature is set to 300 to 650 ° C. Hydrogen is removed from the hydride present in the surface layer of the additive, and the same metal or alloy as the metal or alloy constituting the central portion of the oxygen removing additive appears on the surface (surface layer portion) of the oxygen removing additive. . At this stage, the metal or alloy appearing in the surface layer is a metal or alloy such as titanium or zirconium, and can react with oxygen or adsorb oxygen to remove oxygen from the high-temperature and high-pressure ammonia-containing solution. .

アモノサーマル法によるGaN結晶の製造では、アンモニア中の酸素成分を少なくすることでGaN結晶中の酸素を減らすことができる。この酸素が少ないGaN結晶は、酸素不純物が少ないことからX線回折法におる半値幅が小さく、単に結晶中の不純物が少ないだけでなくGaN結晶としての質が高く、半導体基板として有効である。   In the production of a GaN crystal by the ammonothermal method, oxygen in the GaN crystal can be reduced by reducing the oxygen component in ammonia. Since the GaN crystal with less oxygen has less oxygen impurities, the half width in the X-ray diffraction method is small, and not only the impurities in the crystal are small, but also the quality of the GaN crystal is high, and it is effective as a semiconductor substrate.

本発明により、アンモニア雰囲気で加熱処理してガリウムを主成分とする13族元素窒素化合物結晶を製造する方法において、その中心部がチタン金属、ジルコニウム金属、チタン合金、ジルコニウム合金のいずれかからなり、その表層部が該中心部を構成する該金属又は合金の水素化物で覆われた複合構造の酸素除去添加剤をアンモニアに接触させてガリウムを主成分とする13族元素窒素化合物結晶を製造することにより、酸素含有量の少ない良質なガリウムを主成分とする13族元素窒素化合物結晶を提供することができる。また、本発明に係る酸素除去添加剤は、表層部(表面)が水素化物で覆われているため、空気中で取り扱っても酸素除去効化を損なうことが無いため、取り扱い性が良い。   According to the present invention, in a method for producing a group 13 element nitrogen compound crystal containing gallium as a main component by heat treatment in an ammonia atmosphere, the central portion thereof is made of any one of titanium metal, zirconium metal, titanium alloy, zirconium alloy, Producing a group 13 element nitrogen compound crystal containing gallium as a main component by bringing the surface layer portion into contact with ammonia in an oxygen removal additive having a composite structure covered with a hydride of the metal or alloy constituting the central portion. Thus, a group 13 element nitrogen compound crystal containing high-quality gallium with a low oxygen content as a main component can be provided. Moreover, since the surface layer part (surface) is covered with the hydride, the oxygen removal additive according to the present invention does not impair the oxygen removal effect even if it is handled in air, so that the handleability is good.

13族元素としては、B、Al、Ga、In等が挙げられる。ガリウムを主成分とする13族元素窒素化合物結晶には、GaN以外に、BN、AlN、InNを含む13族元素窒素化合物の混晶などの結晶も挙げられる。
本明細書中、用語「ガリウムを主成分とする13族元素窒素化合物結晶」とは、GaNのモル数の割合が、70モル%以上100モル%以下の13族元素窒素化合物結晶をいい、GaNのモル数の割合が80モル%以上100モル%の13族元素窒素化合物結晶が好ましく、GaNのモル数の割合が90モル%以上100モル%以下の13族元素窒素化合物結晶がより好ましい。また、これらの13族元素窒素化合物結晶にドーピング材としてマグネシムや亜鉛、炭素、シリコン、ゲルマニウムなどを、Gaモル数に対して1/10〜1/1000000の範囲のごく微量含んだものも、ガリウムを主成分とする13族元素の窒素化合物の結晶に含まれる。
Examples of the group 13 element include B, Al, Ga, and In. Examples of Group 13 element nitrogen compound crystals containing gallium as a main component include crystals such as mixed crystals of Group 13 element nitrogen compounds containing BN, AlN, and InN in addition to GaN.
In this specification, the term “group 13 element nitrogen compound crystal containing gallium as a main component” refers to a group 13 element nitrogen compound crystal in which the ratio of the number of moles of GaN is 70 mol% or more and 100 mol% or less. A group 13 element nitrogen compound crystal having a mole ratio of 80 mol% to 100 mol% is preferable, and a group 13 element nitrogen compound crystal having a mole ratio of GaN of 90 mol% to 100 mol% is more preferable. In addition, these group 13 element nitrogen compound crystals contain magnesium, zinc, carbon, silicon, germanium, etc. as doping materials in a very small amount in the range of 1/10 to 1/1000000 relative to the number of Ga moles. Is contained in a crystal of a nitrogen compound of a group 13 element whose main component is.

アンモニア雰囲気とは、純粋なアンモニア、又はアンモニアが熱分解して窒素と水素を含んだもの、あるいは、そのアンモニア雰囲気にアルカリ性や酸性などのいわゆる鉱化剤を含んだものをいう。
本発明でいうアンモニア雰囲気で加熱処理してガリウムを主成分とする13族窒素化合物結晶を製造する方法は、高温のアンモニア雰囲気での超臨界結晶化法であり、前記した特許文献1や非特許文献1に記載されるような方法である。本明細書中、「ガリウムを含む13族元素の金属及び/又は該金属の窒素化合物」とは、ガリウムを主成分とする13族窒素化合物結晶を製造するための原料であり、ガリウム金属又はGaNを50重量%以上100重量%以下含むガリウムを含む13族元素の金属及び/又は窒素化合物が用いられ、GaNを70重量%以上100重量%以下含むガリウムを含む13族元素の金属及び/又は窒素化合物が好ましく、GaNを90重量%以上100重量%以下含むガリウムを含む13族元素の金属及び/又は窒素化合物がより好ましい。この原料であるガリウムを含む13族元素の金属及び/又は窒素化合物のガリウム以外の成分は、BN、AlN、InN又はこれらの混合物が、好ましく用いられる。また、この原料には、アルミニウムアミド、アルミニウムイミド、カリウムアミド、インジウムアミド、インジウムイミドなどが用いられる。これらの原料で用いるガリウムを含む13族元素を含む窒素化合物は、純度の高いものが好ましいが、使用の際、アンモニア溶媒に溶解させるので、結晶性が高い必要は無い。
The ammonia atmosphere refers to pure ammonia, an ammonia that is thermally decomposed to contain nitrogen and hydrogen, or an ammonia atmosphere that contains a so-called mineralizer such as alkali or acid.
The method for producing a group 13 nitrogen compound crystal containing gallium as a main component by heat treatment in an ammonia atmosphere as referred to in the present invention is a supercritical crystallization method in a high-temperature ammonia atmosphere. It is a method as described in Document 1. In this specification, “a metal of a group 13 element containing gallium and / or a nitrogen compound of the metal” is a raw material for producing a group 13 nitrogen compound crystal containing gallium as a main component, and includes gallium metal or GaN. Group 13 element metal and / or nitrogen compound containing gallium containing 50% by weight to 100% by weight of gallium, and Group 13 element metal and / or nitrogen containing gallium containing 70% to 100% by weight of GaN A compound is preferable, and a group 13 element metal and / or nitrogen compound containing gallium containing 90% by weight to 100% by weight of GaN is more preferable. BN, AlN, InN, or a mixture thereof is preferably used as the component other than gallium of the group 13 element metal and / or nitrogen compound containing gallium as the raw material. As the raw material, aluminum amide, aluminum imide, potassium amide, indium amide, indium imide, or the like is used. The nitrogen compound containing a Group 13 element containing gallium used in these raw materials is preferably high in purity, but is not required to have high crystallinity because it is dissolved in an ammonia solvent when used.

本発明においては、酸性鉱化剤、アルカリ性鉱化剤、ほぼ中性の金属塩鉱化剤を用いることができる。酸性鉱化剤としては、ハロゲン元素を含む化合物があり、塩化アンモニウム、ヨウ化アンモニウム、臭化アンモニウム、フッ化アンモニウムなどのハロゲン化アンモニウムなどが挙げられる。アルカリ性鉱化剤としては、アルカリ金属元素を含む鉱化剤が挙げられる。例えば、NaNH、KNH、LiNHなどのアルカリ金属アミドが挙げられる。ほぼ中性の金属塩鉱化剤には、MgCl、MgBrなどのハロゲン化マグネシウム、CaCl、BaBrなどのハロゲン化カルシウム、NaCl、NaBr、KCl、KBr、CsCl、CsBr、LiCl、LiBrなどのハロゲン化アルカリ金属化合物が挙げられる。 In the present invention, an acidic mineralizer, an alkaline mineralizer, or an almost neutral metal salt mineralizer can be used. Examples of the acidic mineralizer include compounds containing a halogen element, and include ammonium halides such as ammonium chloride, ammonium iodide, ammonium bromide, and ammonium fluoride. Examples of the alkaline mineralizer include mineralizers containing alkali metal elements. For example alkali metal amides such as NaNH 2, KNH 2, LiNH 2 . Almost neutral metal salt mineralizers include magnesium halides such as MgCl 2 and MgBr 2 , calcium halides such as CaCl 2 and BaBr 2 , NaCl, NaBr, KCl, KBr, CsCl, CsBr, LiCl, LiBr, etc. And an alkali metal halide compound.

前記酸性鉱化剤、アルカリ性鉱化剤又はほぼ中性の金属塩鉱化剤は、アンモニア溶媒に溶解させて用い、原料の窒素化合物の溶解を促進させる働きがある。これらの鉱化剤の使用割合は、鉱化剤/アンモニアモル比が通常0.0001〜0.2となる範囲であり、鉱化剤/アンモニアモル比が0.001〜0.1となる範囲が好ましく、鉱化剤/アンモニアモル比が0.005〜0.05となる範囲がさらに好ましい。   The acidic mineralizer, alkaline mineralizer, or almost neutral metal salt mineralizer is used after being dissolved in an ammonia solvent and has a function of promoting dissolution of the starting nitrogen compound. The use ratio of these mineralizers is a range in which the mineralizer / ammonia molar ratio is usually 0.0001 to 0.2, and the range in which the mineralizer / ammonia molar ratio is 0.001 to 0.1. The range in which the mineralizer / ammonia molar ratio is 0.005 to 0.05 is more preferable.

本発明において、アンモニア雰囲気の温度は、通常300℃から800℃、好ましくは400℃から700℃、さらに好ましくは450℃から650℃である。アンモニア雰囲気の温度が300℃より低い場合には、13族元素窒素化合物結晶の成長速度が遅すぎて製造には向かない。アンモニア雰囲気の温度は、300℃から700℃程度までは温度が高いほど13族元素窒素化合物結晶の結晶成長速度が大きく製造に適している。しかしながらオートクレ−ブ(圧力容器)の耐温の要求も高くなり、オートクレーブの材質上、耐圧も要求されるので、アンモニア雰囲気温度が800℃を超えるのは製造上適当ではない。   In the present invention, the temperature of the ammonia atmosphere is usually 300 ° C. to 800 ° C., preferably 400 ° C. to 700 ° C., more preferably 450 ° C. to 650 ° C. When the temperature of the ammonia atmosphere is lower than 300 ° C., the growth rate of the group 13 element nitrogen compound crystals is too slow to be suitable for production. As the temperature of the ammonia atmosphere increases from about 300 ° C. to about 700 ° C., the higher the temperature, the higher the growth rate of the group 13 element nitrogen compound crystal, which is suitable for production. However, since the temperature resistance of the autoclave (pressure vessel) is also increased, and the pressure resistance is also required due to the material of the autoclave, it is not suitable for production that the ammonia atmosphere temperature exceeds 800 ° C.

アンモニア雰囲気の圧力条件は、通常50MPa〜500MPa、好ましくは90MPa〜300MPa、より好ましくは100MPa〜350MPaである。圧力が50MPaより低いと、13族元素窒素化合物結晶の成長速度が遅すぎて、製造には向かない。一方、圧力が500MPaを超えると、大きい容積のオートクレーブ(圧力容器)を製造することが困難であるため、製造には向かない。   The pressure condition in the ammonia atmosphere is usually 50 MPa to 500 MPa, preferably 90 MPa to 300 MPa, more preferably 100 MPa to 350 MPa. When the pressure is lower than 50 MPa, the growth rate of the group 13 element nitrogen compound crystal is too slow to be suitable for production. On the other hand, when the pressure exceeds 500 MPa, it is difficult to produce a large-volume autoclave (pressure vessel), which is not suitable for production.

本発明に係るその中心部がチタン金属、ジルコニウム金属、チタン合金、及びジルコニウム合金から成る群から選ばれる金属又は合金から構成され、かつ、その表層部が該金属又は合金の水素化物で覆われた複合構造を有する酸素除去添加剤は、中心部(内部)がチタン金属でその表層部(表面)がチタン水素化物で覆われているもの、内部がジルコニウムでその表面がジルコニウム水素化物で覆われているもの、内部がチタン合金でその表面がチタン合金の水素化物で覆われているもの、内部がジルコニウム合金でその表面がジルコニウム合金の水素化物で覆われているものが挙げられる。   The central portion according to the present invention is composed of a metal or alloy selected from the group consisting of titanium metal, zirconium metal, titanium alloy, and zirconium alloy, and the surface layer portion is covered with a hydride of the metal or alloy. The oxygen removal additive having a composite structure has a center part (inside) covered with titanium metal and a surface layer part (surface) covered with titanium hydride, and the inside is covered with zirconium and the surface is covered with zirconium hydride. And those whose inside is a titanium alloy and whose surface is covered with a hydride of a titanium alloy, and those whose inside is a zirconium alloy and whose surface is covered with a hydride of a zirconium alloy.

内部がチタン合金でその表面がチタン合金の水素化物からなる酸素除去添加剤のチタン合金のチタン含有割合は、30重量%以上100重量%未満であることが好ましく、チタン含有割合が50重量%以上100重量%未満であることがより好ましく、チタン含有割合が70重量%以上100重量%未満であることがさらに好ましい。内部がジルコニウム合金でその表面がジルコニウム合金の水素化物で覆われている酸素除去添加剤のジルコニウム合金のジルコニウム含有割合は、30重量%以上100重量%未満であることが好ましく、ジルコニウム含有割合が50重量%以上100重量%未満であることがより好ましく、ジルコニウム含有割合が70重量%以上100重量%未満であることがさらに好ましい。   The titanium content of the titanium alloy of the oxygen removing additive, the inside of which is a titanium alloy and the surface thereof is made of a hydride of a titanium alloy, is preferably 30% by weight or more and less than 100% by weight, and the titanium content is 50% by weight or more. More preferably, the content is less than 100% by weight, and the titanium content is more preferably 70% by weight or more and less than 100% by weight. The zirconium content of the zirconium alloy of the oxygen removing additive whose inside is covered with a zirconium alloy and whose surface is covered with a hydride of the zirconium alloy is preferably 30% by weight or more and less than 100% by weight, and the zirconium content is 50%. More preferably, it is more than 100% by weight and more preferably less than 100% by weight.

チタンやジルコニウムは、酸素と結合または吸着する能力が大きく、また、表面に安定な水素化物を作りやすいので、これらの合金を用いた場合にも、チタンやジルコニウムの含有率が高い方が、酸素除去の効果が大きい。チタンやジルコニウムの含有率が20重量%より少ないと、酸素除去の効果が少ない。また、チタンやジルコニウムを酸素除去添加剤として用いても、得られる13族元素窒素化合物結晶中に不純物として取り込まれにくいので、高純度で良質な13族元素窒素化合物結晶が得られる。   Titanium and zirconium have a large ability to bind to or adsorb oxygen and easily form a stable hydride on the surface. Even when these alloys are used, the higher the content of titanium or zirconium, the higher the oxygen content. The removal effect is great. When the content of titanium or zirconium is less than 20% by weight, the effect of removing oxygen is small. Further, even when titanium or zirconium is used as an oxygen removal additive, it is difficult to be incorporated as an impurity in the obtained group 13 element nitrogen compound crystal, so that a high-quality, high-quality group 13 element nitrogen compound crystal can be obtained.

本発明に係るその中心部がチタン金属、ジルコニウム金属、チタン合金、及びジルコニウム合金から成る群から選ばれる金属又は合金から構成され、かつ、その表層部が該金属又は合金の水素化物で覆われた複合構造を有する酸素除去添加剤の製造方法は、特に限定しないが、チタン金属、ジルコニウム金属、チタン合金、ジルコニウム合金を水素雰囲気で熱処理することで、該酸素除去添加剤を作製することができる。板状や粒状のチタン金属、ジルコニウム金属、チタン合金、ジルコニウム合金を、真空中500〜900℃で数時間処理して、その表面に存在する酸化物を除去し、その後、水素雰囲気で300〜800℃にて数時間処理することで該表面をチタンやジルコニウムの水素化物又はチタンやジルコニウムを含む合金の水素化物で覆うことができる。水素化物の厚さは、内部の金属の酸化を抑制することができる程度であれよい。   The central portion according to the present invention is composed of a metal or alloy selected from the group consisting of titanium metal, zirconium metal, titanium alloy, and zirconium alloy, and the surface layer portion is covered with a hydride of the metal or alloy. Although the manufacturing method of the oxygen removal additive which has a composite structure is not specifically limited, This oxygen removal additive can be produced by heat-treating titanium metal, zirconium metal, titanium alloy, and zirconium alloy in a hydrogen atmosphere. Plate or granular titanium metal, zirconium metal, titanium alloy, zirconium alloy is treated in vacuum at 500 to 900 ° C. for several hours to remove oxides present on the surface, and then in a hydrogen atmosphere, 300 to 800 The surface can be covered with a hydride of titanium or zirconium or a hydride of an alloy containing titanium or zirconium by treating at 0 ° C. for several hours. The thickness of the hydride may be such that oxidation of the internal metal can be suppressed.

酸素除去添加剤の形状は、特に限定しないが、粒状のものや板状のものなどが使い易い。粒状の酸素除去添加剤を用いる場合には、平均粒子径が1μm以下のものは、細かすぎて扱いにくいので、1μm以上の粒子径が好ましい。また、酸素除去添加剤の粒子径は、13族元素窒素化合物結晶を製造する容器より小さい必要がある。板状の酸素除去添加剤を用いる場合には、板厚みが1μm以下のものは、薄すぎて扱いにくいので、板厚み1μm以上のものが好ましい。また、酸素除去添加剤の板の大きさは、13族元素窒素化合物結晶を製造する容器より小さい必要がある。   The shape of the oxygen removal additive is not particularly limited, but a granular or plate-like one is easy to use. When a granular oxygen removing additive is used, those having an average particle size of 1 μm or less are too fine and difficult to handle, so a particle size of 1 μm or more is preferable. Further, the particle diameter of the oxygen removal additive needs to be smaller than the container for producing the group 13 element nitrogen compound crystal. When a plate-like oxygen removal additive is used, those having a plate thickness of 1 μm or less are too thin and difficult to handle, and those having a plate thickness of 1 μm or more are preferable. Further, the size of the oxygen removing additive plate needs to be smaller than the container for producing the group 13 element nitrogen compound crystal.

酸素除去添加剤の水素化物の厚さは、上記のように内部の金属の酸化を抑制できる程度である限り特に限定されないが、10nm〜1mmの範囲であれば、本発明の酸素除去添加剤の機能を有する。酸素除去添加剤の水素化物の厚さは、100nm以上100μm以下であることが好ましく、1μm以上50μm以下であることがさらに好ましく、1μm以上20μm以下であることがさらに好ましい。酸素除去添加剤の水素化物の厚さは、酸素除去添加剤の切断面を走査型電子顕微鏡観察することで求めることができる。酸素除去添加剤の水素化物の厚さが10nmより薄いと、空気中で酸素除去添加剤が酸化されてしまい、酸素除去添加剤の効果が弱まる。一方、酸素除去添加剤の水素化物の厚さは、厚ければ厚いほど、空気中で酸素除去添加剤を扱っても酸素除去添加剤が酸化されにくくなるが、酸素除去添加剤の水素化物の厚さが1mmを超えると、13族元素窒素化合物結晶を製造する際の450℃から650℃の高温アンモニア雰囲気において水素化物が脱離してしまい、チタンやジルコニウムの金属が表面に現れにくくなるため、酸素除去添加が低下する。   The thickness of the hydride of the oxygen removing additive is not particularly limited as long as it can suppress the oxidation of the internal metal as described above, but if it is in the range of 10 nm to 1 mm, the oxygen removing additive of the present invention has a thickness. It has a function. The hydride thickness of the oxygen removal additive is preferably 100 nm or more and 100 μm or less, more preferably 1 μm or more and 50 μm or less, and further preferably 1 μm or more and 20 μm or less. The thickness of the hydride of the oxygen removing additive can be determined by observing the cut surface of the oxygen removing additive with a scanning electron microscope. If the hydride thickness of the oxygen removal additive is thinner than 10 nm, the oxygen removal additive is oxidized in the air, and the effect of the oxygen removal additive is weakened. On the other hand, as the thickness of the oxygen removal additive hydride increases, the oxygen removal additive is less likely to be oxidized even if the oxygen removal additive is handled in the air. If the thickness exceeds 1 mm, the hydride is detached in a high-temperature ammonia atmosphere at 450 ° C. to 650 ° C. when producing a group 13 element nitrogen compound crystal, and the titanium or zirconium metal hardly appears on the surface. Oxygen removal addition is reduced.

酸素除去添加剤の使用量は、オートクレーブのサイズや容器表面の酸素濃度、鉱化剤の種類や濃度、アンモニアやGaN原料自体の酸素濃度などによって変動する。酸素除去添加剤の使用量を種々検討したところ、オートクレーブなどのオートクレーブ内のアンモニア充填量に対する酸素除去添加剤の割合が、重量%で0.003重量%以上43重量%以下であることが好ましく、0.03重量%以上10重量%以下であることがより好ましいことが判明した。酸素除去添加剤の量が0.003重量%より少ないと、酸素除去添加剤の量が少なすぎて酸素除去の効果が少ない。一方、酸素除去添加剤の量は、10重量%程度までは多ければ多いほどできたGaN結晶中の酸素濃度は減少するが、10重量%を超えるとそれ以上添加してもGaN結晶中の酸素濃度の減少効果は少ない。   The amount of oxygen removal additive used varies depending on the size of the autoclave, the oxygen concentration on the surface of the container, the type and concentration of the mineralizer, the oxygen concentration of ammonia or the GaN raw material itself, and the like. As a result of various examinations of the amount of the oxygen removing additive used, the ratio of the oxygen removing additive to the ammonia filling amount in the autoclave such as an autoclave is preferably 0.003% by weight to 43% by weight, It was found that the content is more preferably 0.03% by weight or more and 10% by weight or less. When the amount of the oxygen removing additive is less than 0.003% by weight, the amount of the oxygen removing additive is too small and the effect of removing oxygen is small. On the other hand, the oxygen concentration in the GaN crystal decreases as the amount of the oxygen removal additive increases up to about 10% by weight. However, if it exceeds 10% by weight, the oxygen concentration in the GaN crystal increases even if more than 10% by weight is added. The effect of decreasing the concentration is small.

図1は、本発明に係るガリウムを主成分とする13族元素窒素化合物結晶の製造方法に用いることができるオートクレーブを含む製造装置の概略断面図である。
図1中、バッフル板9は、結晶成長部8と原料部11を区画するものであり、開口率が1%〜25%であることが好ましく、3%〜15%であることがより好ましい。また、バッフル板表面の材質は、耐侵食性を向上させるために、白金、金、イリジウム、ルテニウム、ロジウム、パラジウムなどの金属又はこれらの合金が好ましい。
FIG. 1 is a schematic cross-sectional view of a production apparatus including an autoclave that can be used in the method for producing a group 13 element nitrogen compound crystal containing gallium as a main component according to the present invention.
In FIG. 1, the baffle plate 9 divides the crystal growth part 8 and the raw material part 11, and the aperture ratio is preferably 1% to 25%, more preferably 3% to 15%. The material of the baffle plate surface is preferably a metal such as platinum, gold, iridium, ruthenium, rhodium, palladium, or an alloy thereof in order to improve the erosion resistance.

13族元素窒素化合物結晶の製造は、先ず、オートクレーブ内に、鉱化剤、酸素除去添加剤、13族金属元素を含む原料を入れ、バッフル板とシードをセットして、オートクレーブ内にアンモニア溶媒を導入して、オートクレーブを封止する。オートクレーブ内にアンモニアを導入する前に、オートクレーブ内を脱気して真空に保ち、酸素や水分を除去することが好ましい。オートクレーブにアンモニアを導入するときには、オートクレーブをアンモニアの沸点以下に冷やすと、アンモニアの蒸気圧が低いため、オートクレーブを封止するのが容易である。   In order to produce a group 13 element nitrogen compound crystal, first, a mineralizer, an oxygen removal additive, and a raw material containing a group 13 metal element are placed in an autoclave, a baffle plate and seed are set, and an ammonia solvent is placed in the autoclave. Introduce and seal the autoclave. Before introducing ammonia into the autoclave, it is preferable to deaerate the inside of the autoclave and maintain a vacuum to remove oxygen and moisture. When introducing ammonia into the autoclave, if the autoclave is cooled below the boiling point of ammonia, the vapor pressure of ammonia is low, so that it is easy to seal the autoclave.

13族元素窒素化合物結晶の製造は、オートクレーブ中で実施する。本発明に用いる容器は、13族元素窒素化合物結晶を成長させるときの高温高圧条件に耐えうるものの中から選択する。本発明に用いるオートクレーブは、耐圧性と耐侵食性を有する材料で構成されているものがこのましく、Inconel625(Inconelは、The International Nickel Company, Inc. の登録商標)、Rene41(Reneは、Alvac Metals Company の登録商標)、Udimet520(Udimetは、Special Metals, Inc.の登録商標)が好ましい。
オートクレーブの耐侵食性を向上させるために、アンモニアに触れる部分を白金、金、イリジウム、ルテニウム、ロジウム、パラジウムなどの金属又はこれらの合金でライニング又はコーティングすることが好ましい。特に、白金やイリジウム又はそれらの合金をライニングしたオートクレーブが特に好ましい。
13族窒素化合物結晶の製造方法における結晶成長時間としては、1日以上が好ましく、より好ましくは、2日以上である。
Production of Group 13 element nitrogen compound crystals is carried out in an autoclave. The container used in the present invention is selected from those that can withstand the high-temperature and high-pressure conditions when growing the group 13 element nitrogen compound crystal. The autoclave used in the present invention is preferably composed of a material having pressure resistance and erosion resistance. Inconel 625 (Inconel is a registered trademark of The International Nickel Company, Inc.), Rene 41 (Rene is Alvac) Metals Company registered trademark) and Udimet 520 (Udimet is a registered trademark of Special Metals, Inc.) are preferred.
In order to improve the erosion resistance of the autoclave, it is preferable to line or coat the part that contacts ammonia with a metal such as platinum, gold, iridium, ruthenium, rhodium, palladium, or an alloy thereof. In particular, an autoclave lined with platinum, iridium, or an alloy thereof is particularly preferable.
The crystal growth time in the method for producing a group 13 nitrogen compound crystal is preferably 1 day or longer, more preferably 2 days or longer.

以下、本発明を非制限的な実施例により具体的に説明する。
[実施例1〜6]
内部がチタン金属で表面がチタン水素化物からなる酸素除去添加剤Aを作製するために、粒子径が0.5mmの球状の粒状高純度チタンを用いた。この粒状高純度チタンをアルミナ製ルツボに入れ、加熱炉に仕込み、チタン表面の酸化物層を除去するために、800℃で真空熱処理を2時間行った。さらに、加熱炉の内部温度を400℃にし、高純度水素を大気圧で流して、大気圧水素雰囲気で4時間熱処理を行い、内部がチタン金属で表面が水素化物からなる酸素除去添加剤Aを得た。酸素除去添加剤Aは、湿度40%、温度20℃の恒温恒湿室に保管して使用した。酸素除去添加Aの内部状態を観察するため、酸素除去添加剤Aを切断して、その断面をEPMA(Electron Probe Micro Analysis)の付いた走査型電子顕微鏡で観察したところ、チタン金属粒子の表面を水素化物が厚さ3〜5μmで万遍なく覆っていることが判った。
Hereinafter, the present invention will be specifically described by way of non-limiting examples.
[Examples 1 to 6]
In order to produce the oxygen removal additive A having a titanium metal inside and a titanium hydride surface, spherical granular high-purity titanium having a particle diameter of 0.5 mm was used. This granular high-purity titanium was put in an alumina crucible, charged in a heating furnace, and subjected to vacuum heat treatment at 800 ° C. for 2 hours in order to remove the oxide layer on the titanium surface. Furthermore, the internal temperature of the heating furnace is set to 400 ° C., high-purity hydrogen is allowed to flow at atmospheric pressure, heat treatment is performed in an atmospheric pressure hydrogen atmosphere for 4 hours, and an oxygen removal additive A having a titanium metal inside and a hydride surface is added Obtained. The oxygen removal additive A was used in a constant temperature and humidity chamber with a humidity of 40% and a temperature of 20 ° C. In order to observe the internal state of the oxygen removal additive A, the oxygen removal additive A was cut and the cross section was observed with a scanning electron microscope with EPMA (Electron Probe Micro Analysis). It was found that the hydride was uniformly covered with a thickness of 3 to 5 μm.

図1に示す装置を用いてGaNの結晶成長を行った。
Inconel(登録商標)625製で内径が10mm、長さ200mm、容量約16mlの白金を内張りしたオートクレーブ5を用いた。オートクレーブ5の底部に酸素除去剤Aを、置いて使用した。酸素除去添加剤Aの使用量は、実施例1では0.003gを、実施例2では0.03gを、実施例3では0.3gを、実施例4では1.0gを、実施例5では2.0gを、実施例6では3.0gを用いた。この酸素除去添加剤Aは製造後10日のものを使用し、オートクレーブに設置後、空気雰囲気にある時間は、1〜2時間であった。それぞれの実施例で用いた酸素除去添加剤Aの量を、以下の表1に酸素除去添加剤の使用量として示す。
GaN crystal growth was performed using the apparatus shown in FIG.
An autoclave 5 made of Inconel (registered trademark) 625 and having an inner diameter of 10 mm, a length of 200 mm, and a capacity of about 16 ml is used as an autoclave 5. An oxygen scavenger A was placed on the bottom of the autoclave 5 for use. The amount of oxygen removal additive A used is 0.003 g in Example 1, 0.03 g in Example 2, 0.3 g in Example 3, 1.0 g in Example 4, and in Example 5. 2.0 g was used, and 3.0 g was used in Example 6. This oxygen-removing additive A was used 10 days after production, and after being installed in the autoclave, the time in the air atmosphere was 1-2 hours. The amount of oxygen removal additive A used in each example is shown in Table 1 below as the amount of oxygen removal additive used.

Figure 0004719788
Figure 0004719788

その後、鉱化剤として乾燥させた純度99.99%のNHCl粉体0.3gを置いた。次いで、白金製網13の上に、HVPE法で作製したGaN多結晶塊3.5gを白金製網の入れ物に入れた原料部12をセットし、その上部に底から100mmの位地にバッフル板9をセットし、その上にHPVE法で作製した3mm角のGaNシードを設置した後、オートクレーブの蓋を閉じて蓋を含んだ状態のオートクレーブの重さを量った。このGaNシードは、3mm角のC面を有しc軸方向の厚みが、50μmである。 Thereafter, 0.3 g of NH 4 Cl powder having a purity of 99.99% and dried as a mineralizer was placed. Next, the raw material part 12 in which 3.5 g of a GaN polycrystal lump produced by the HVPE method is placed in a platinum net container is set on the platinum net 13, and a baffle plate is placed on the top at a position of 100 mm from the bottom. 9 was set, and a 3 mm square GaN seed produced by the HPVE method was set thereon, then the lid of the autoclave was closed and the autoclave including the lid was weighed. This GaN seed has a 3 mm square C-plane and a thickness in the c-axis direction of 50 μm.

一旦オートクレーブ内を窒素ガスで置換した後、バルブ4の先に真空脱気装置をつなぎバルブ1とバルブ4を開けて、オートクレーブ内を真空で排気した。その後、バルブ4とバルブ1を閉じて真空状態を維持した状態で、オートクレーブ5をドライアイスメタノール溶媒によって冷却し、バルブ1側からアンモニアをオートクレーブ5内に充填した。アンモニアの流量を測定して、アンモニア量が−33℃の液体アンモニア状態でオートクレーブ内の容積の65%になるように、オートクレーブ5内にアンモニアを充填した。アンモニア充填後に、バルブ1とバルブ4を閉じて、室温に戻し、再びオートクレーブの重さを測定して、アンモニアの充填量が適切であることを確認した。   Once the inside of the autoclave was replaced with nitrogen gas, a vacuum deaerator was connected to the tip of the valve 4, the valves 1 and 4 were opened, and the inside of the autoclave was evacuated with vacuum. Thereafter, the autoclave 5 was cooled with a dry ice methanol solvent while the valve 4 and the valve 1 were closed and the vacuum state was maintained, and ammonia was charged into the autoclave 5 from the valve 1 side. The flow rate of ammonia was measured, and the autoclave 5 was filled with ammonia so that the ammonia amount was 65% of the volume in the autoclave in the liquid ammonia state at −33 ° C. After filling with ammonia, the valves 1 and 4 were closed, returned to room temperature, and the weight of the autoclave was measured again to confirm that the amount of filling with ammonia was appropriate.

アンモニア雰囲気で加熱処理してGaN結晶成長を行わせるために、オートクレーブ5を上下に2分割したヒーターで構成された電気炉6内に置いた。オートクレーブの下部の外面温度が550℃、オートクレーブ上部の外面温度が500℃になるように8時間かけて昇温し、その温度で96時間保持し、GaN結晶成長を行った。オートクレーブ5内の圧力は、150MPaであった。また、保持中の外面温度の温度幅は、オートクレーブの下部の外部温度と上部外部温度ともに±5℃以内であった。その後、オートクレーブを12時間かけて60℃まで降温し、さらに室温になるまで、放置した。オートクレーブの温度がほぼ室温になっていることを確認して、オートクレーブ5を電気炉6から外して、バルブ4をゆっくり開放して、オートクレーブ5内のアンモニアを排出させた。   In order to perform GaN crystal growth by heat treatment in an ammonia atmosphere, the autoclave 5 was placed in an electric furnace 6 composed of a heater divided into two parts in the vertical direction. The temperature was raised over 8 hours so that the outer surface temperature of the lower part of the autoclave was 550 ° C. and the outer surface temperature of the upper part of the autoclave was 500 ° C., and maintained at that temperature for 96 hours to perform GaN crystal growth. The pressure in the autoclave 5 was 150 MPa. In addition, the temperature range of the outer surface temperature during holding was within ± 5 ° C. for both the external temperature at the bottom of the autoclave and the external temperature at the top. Thereafter, the autoclave was cooled down to 60 ° C. over 12 hours, and further allowed to stand at room temperature. After confirming that the temperature of the autoclave was approximately room temperature, the autoclave 5 was removed from the electric furnace 6, the valve 4 was slowly opened, and the ammonia in the autoclave 5 was discharged.

オートクレーブ内のアンモニアを完全に排出させるために、一旦バルブ4を閉め、バルブ1側から、1MPaの圧力で高純度窒素を封入し、バルブ4側から窒素を排出させる操作を10回繰り返した。その後、バルブ4を開放して、オートクレーブの蓋を開け、内部のGaNシード上に成長したGaN結晶を確認した。   In order to completely discharge ammonia in the autoclave, the valve 4 was once closed, high purity nitrogen was sealed from the valve 1 side at a pressure of 1 MPa, and nitrogen was discharged from the valve 4 side 10 times. Thereafter, the valve 4 was opened, the autoclave lid was opened, and GaN crystals grown on the internal GaN seeds were confirmed.

GaNシード上に成長したGaN結晶を走査電子顕微鏡で確認したところ、実施例1〜6のいずれもC面上に厚さ約60μmのGaN結晶がGaNシードを覆うように成長していた。さらにX線回折でGaNの結晶形態を確認したところ、実施例1〜6のいずれも、ヘキサゴナル型であり、GaN結晶の厚さ方向の成長方位は、シードと同じくC面上にはc軸に配向していた。   When the GaN crystal grown on the GaN seed was confirmed by a scanning electron microscope, in all of Examples 1 to 6, a GaN crystal having a thickness of about 60 μm was grown on the C plane so as to cover the GaN seed. Furthermore, when the crystal form of GaN was confirmed by X-ray diffraction, all of Examples 1 to 6 were hexagonal, and the growth direction in the thickness direction of the GaN crystal was c-axis on the C-plane as in the seed. Oriented.

得られたC面上に成長したGaN結晶の酸素濃度を、CAMECA社製IMS−7f型
二次イオン質量分析計で測定した結果を表1に示す。この二次イオン質量分析計によるGaN結晶中の酸素濃度は、高純度のHPVE法で作製したGaN基板に酸素をインプラントした酸素濃度既知のGaN標準資料を用いて定量した。この二次イオン質量分析計によるGaN結晶の酸素濃度は、一次イオンとしてCs+を用い、GaN結晶表面からc軸方向に1μmの深さの位置おいて、一次加速電圧14.5kV、検出領域30μmφにて、測定した値である。この二次イオン質量分析計によるGaN結晶の酸素濃度は、GaN結晶cm当たりの酸素原子数を原子数/cmとして表している。
表1から分かるように、内部がチタン金属で表面が水素化物からなる酸素除去添加剤Aを用いた実施例1〜6では、シード上に成長したGaN結晶中の酸素濃度が、酸素除去添加剤を用いていない以下の表6に示す比較例1のシード上に成長したGaN結晶中の酸素濃度4×1019原子数/cmに比べ大幅に減っていて、本酸素除去剤の添加により酸素の少ない良質なGaN結晶が得られたことが分かる。この酸素除去剤の効果は、アンモニア充填量に対する酸素除去添加剤Aの割合が10重量%を超えると、GaN結晶中の酸素濃度がより下がり、良質なGaN結晶が得られることが分かった。
なお、製造後30日保管した酸素除去添加剤Aを使用した場合においても、表1と同様の結果が得られた。
Table 1 shows the results of measuring the oxygen concentration of the GaN crystal grown on the obtained C-plane with an IMS-7f type secondary ion mass spectrometer manufactured by CAMECA. The oxygen concentration in the GaN crystal by the secondary ion mass spectrometer was quantified using a GaN standard material having a known oxygen concentration in which oxygen was implanted into a GaN substrate manufactured by a high purity HPVE method. The oxygen concentration of the GaN crystal measured by this secondary ion mass spectrometer is Cs + as the primary ion, and the primary acceleration voltage is 14.5 kV and the detection region is 30 μmφ at a depth of 1 μm in the c-axis direction from the GaN crystal surface. The measured value. The oxygen concentration of the GaN crystal by this secondary ion mass spectrometer is expressed as the number of oxygen atoms per cm 3 of GaN crystal as the number of atoms / cm 3 .
As can be seen from Table 1, in Examples 1 to 6 using the oxygen removal additive A whose inside is titanium metal and the surface is made of hydride, the oxygen concentration in the GaN crystal grown on the seed is the oxygen removal additive. The oxygen concentration in the GaN crystal grown on the seed of Comparative Example 1 shown in Table 6 below is significantly lower than the oxygen concentration of 4 × 10 19 atoms / cm 3. By adding this oxygen scavenger, oxygen is reduced. It can be seen that a good quality GaN crystal with a small amount of GaN was obtained. The effect of this oxygen scavenger was found to be that when the ratio of the oxygen scavenging additive A to the ammonia filling amount exceeds 10% by weight, the oxygen concentration in the GaN crystal is lowered and a good quality GaN crystal is obtained.
In addition, the same result as Table 1 was obtained also when the oxygen removal additive A preserve | saved 30 days after manufacture was used.

[実施例7〜11]
内部がジルコニウム金属で表面がジルコニウム水素化物からなる酸素除去添加剤Bを作製するために、粒子径が0.5mmの球状の粒状高純度ジルコニウムを用いた。この粒状高純度ジルコニウムをアルミナ製ルツボに入れ、加熱炉に仕込み、チタン表面の酸化物層を除去するために、800℃で真空熱処理を2時間行った。さらに、加熱炉の内部温度を500℃にし、高純度水素を大気圧で流して、大気圧水素雰囲気で8時間熱処理を行い、内部がチタン金属で表面が水素化物からなる酸素除去添加剤Bを得た。酸素除去添加剤Bは、実施例1〜6と同様に湿度40%、温度20℃の恒温恒湿室に保管して使用した。酸素除去添加Bの内部状態を観察するため、酸素除去添加剤Bを切断して、その断面をEPMA(Electron Probe Micro Analysis)の付いた走査型電子顕微鏡で観察したところ、ジルコニウム金属粒子の表面を水素化物が厚さ2〜4μmで万遍なく覆っていることが判った。
[Examples 7 to 11]
In order to produce the oxygen removal additive B having a zirconium metal inside and a zirconium hydride surface, spherical granular high-purity zirconium having a particle diameter of 0.5 mm was used. This granular high-purity zirconium was put in an alumina crucible, charged in a heating furnace, and subjected to vacuum heat treatment at 800 ° C. for 2 hours in order to remove the oxide layer on the titanium surface. Furthermore, the internal temperature of the heating furnace is set to 500 ° C., high-purity hydrogen is allowed to flow at atmospheric pressure, heat treatment is performed in an atmospheric pressure hydrogen atmosphere for 8 hours, and an oxygen removing additive B having titanium metal inside and hydride on the surface is added. Obtained. Oxygen removal additive B was stored and used in a constant temperature and humidity chamber having a humidity of 40% and a temperature of 20 ° C. as in Examples 1-6. In order to observe the internal state of the oxygen removal additive B, the oxygen removal additive B was cut and the cross section was observed with a scanning electron microscope with EPMA (Electron Probe Micro Analysis). It was found that the hydride was uniformly covered with a thickness of 2 to 4 μm.

実施例7〜11は、実施例1〜6で用いた酸素除去添加剤Aを酸素除去添加剤Bに置き替えた以外は、実施例1〜6と同様の方法で、GaN結晶を作製した。酸素除去添加剤Bの使用量は、実施例7では0.03gを、実施例8では0.3gを、実施例9では1.0gを、実施例10では2.0gを、実施例11では3.0gを用いた。この酸素除去添加剤Bは製造後10日のものを使用し、オートクレーブに設置後、空気雰囲気にある時間は、実施例1〜6と同様に1〜2時間であった。このそれぞれの実施例で用いた酸素除去添加剤Bの量を、以下の表2に酸素除去添加剤の使用量として示す。   In Examples 7 to 11, GaN crystals were produced in the same manner as in Examples 1 to 6, except that the oxygen removal additive A used in Examples 1 to 6 was replaced with the oxygen removal additive B. The amount of oxygen removal additive B used is 0.03 g in Example 7, 0.3 g in Example 8, 1.0 g in Example 9, 2.0 g in Example 10, and in Example 11. 3.0 g was used. This oxygen removal additive B was used 10 days after production, and after being installed in the autoclave, the time in the air atmosphere was 1-2 hours as in Examples 1-6. The amount of oxygen removal additive B used in each of these examples is shown in Table 2 below as the amount of oxygen removal additive used.

Figure 0004719788
Figure 0004719788

GaNシード上に成長したGaN結晶を走査電子顕微鏡で確認したところ、実施例7〜11のいずれもC面上に厚さ約60μmのGaN結晶がGaNシードを覆うように成長していた。さらにX線回折でGaNの結晶形態を確認したところ、実施例7〜11のいずれも、ヘキサゴナル型であり、GaN結晶の厚さ方向の成長方位は、シードと同じくC面上にはc軸に配向していた。   When the GaN crystal grown on the GaN seed was confirmed by a scanning electron microscope, in all of Examples 7 to 11, a GaN crystal having a thickness of about 60 μm was grown on the C plane so as to cover the GaN seed. Furthermore, when the crystal form of GaN was confirmed by X-ray diffraction, all of Examples 7 to 11 were hexagonal, and the growth direction in the thickness direction of the GaN crystal was c-axis on the C-plane as in the seed. Oriented.

得られたC面上に成長したGaN結晶の酸素濃度を、実施例1〜6と同様の方法で測定した結果を表2に示す。
表2から分かるように、内部がジルコニウム金属で表面がジルコニウムの水素化物からなる酸素除去添加剤Bを用いた実施例7〜11においては、シード上に成長したGaN結晶中の酸素濃度が、酸素除去添加剤を用いていない以下の表6に示す比較例1のシード上に成長したGaN結晶中の酸素濃度4×1019原子数/cmに比べ大幅に減っていて、本酸素除去剤の添加により酸素の少ない良質なGaN結晶が得られたことが分かる。この酸素除去剤の効果は、アンモニア充填量に対する酸素除去添加剤Bの割合が10重量%を超えると、GaN結晶中の酸素濃度がより下がり、さらに良質なGaN結晶が得られることが分かった。
なお、製造後30日保管した酸素除去添加剤Bを使用した場合においても、表2と同様の結果が得られた。
Table 2 shows the results of measuring the oxygen concentration of the GaN crystal grown on the obtained C-plane in the same manner as in Examples 1-6.
As can be seen from Table 2, in Examples 7 to 11 using the oxygen removal additive B having a zirconium metal inside and a zirconium hydride surface, the oxygen concentration in the GaN crystal grown on the seed was oxygen. The oxygen concentration in the GaN crystal grown on the seed of Comparative Example 1 shown in Table 6 below, which does not use the removal additive, is greatly reduced compared to 4 × 10 19 atoms / cm 3 . It can be seen that a good quality GaN crystal with little oxygen was obtained by the addition. The effect of this oxygen scavenger was found to be that when the ratio of the oxygen scavenger additive B to the ammonia filling amount exceeds 10% by weight, the oxygen concentration in the GaN crystal is further lowered and a higher quality GaN crystal can be obtained.
In addition, the same result as Table 2 was obtained also when the oxygen removal additive B preserve | saved 30 days after manufacture was used.

[実施例12〜16]
内部がチタン50%ジルコニウム50%の合金で表面がチタンとジルコニウムの水素化物からなる酸素除去添加剤Cを作製するために、粒子径が0.5mmの球状の高純度チタン50%と高純度ジルコニウム50%の合金を用いた。このチタン50%とジルコニウム50%の合金は、チタン50重量部とジルコニウム50重量部の合金である、この粒状高純度合金をアルミナ製ルツボに入れ、加熱炉に仕込み、合金表面の酸化物層を除去するために、800℃で真空熱処理を2時間行った。さらに、加熱炉の内部温度を450℃にし、高純度水素を大気圧で流して、大気圧水素雰囲気で8時間熱処理を行い、内部がチタン50%ジルコニウム50%の合金で表面がチタンとジルコニウムの水素化物からなる酸素除去添加剤Cを得た。酸素除去添加剤Cは、実施例1〜6と同様に湿度40%、温度20℃の恒温恒湿室に保管して使用した。酸素除去添加Cの内部状態を観察するため、酸素除去添加剤Cを切断して、その断面をEPMA(Electron Probe Micro Analysis)の付いた走査型電子顕微鏡で観察したところ、チタンとジルコニウムの合金粒子の表面を水素化物が厚さ3〜5μmで万遍なく覆っていることが分かった。
[Examples 12 to 16]
In order to produce an oxygen scavenging additive C whose inner surface is an alloy of 50% titanium and 50% zirconium and whose surface is composed of a hydride of titanium and zirconium, 50% spherical high-purity titanium having a particle diameter of 0.5 mm and high-purity zirconium A 50% alloy was used. This alloy of 50% titanium and 50% zirconium is an alloy of 50 parts by weight of titanium and 50 parts by weight of zirconium. This granular high-purity alloy is placed in an alumina crucible and charged in a heating furnace, and an oxide layer on the surface of the alloy is formed. In order to remove, vacuum heat treatment was performed at 800 ° C. for 2 hours. Furthermore, the internal temperature of the heating furnace is set to 450 ° C., high-purity hydrogen is allowed to flow at atmospheric pressure, heat treatment is performed in an atmospheric hydrogen atmosphere for 8 hours, and the inside is an alloy of 50% titanium and 50% zirconium. An oxygen removal additive C made of hydride was obtained. The oxygen removal additive C was stored and used in a constant temperature and humidity chamber having a humidity of 40% and a temperature of 20 ° C. as in Examples 1-6. In order to observe the internal state of the oxygen removal additive C, the oxygen removal additive C was cut and the cross section was observed with a scanning electron microscope with EPMA (Electron Probe Micro Analysis). It was found that the surface of the hydride uniformly covered with a thickness of 3 to 5 μm.

実施例12〜16は、実施例1〜6で用いた酸素除去添加剤Aを酸素除去添加剤Cに置き替えた以外は、実施例1〜6と同様の方法で、GaN結晶を作製した。酸素除去添加剤Cの使用量は、実施例12では0.03gを、実施例13では0.3gを、実施例14では1.0gを、実施例15では2.0gを、実施例16では3.0gを用いた。この酸素除去添加剤Cは製造後10日のものを使用し、オートクレーブに設置後、空気雰囲気にある時間は、実施例1〜6と同様に1〜2時間であった。このそれぞれの実施例で用いた酸素除去添加剤Cの量を、以下の表3に酸素除去添加剤の使用量として示す。   In Examples 12 to 16, GaN crystals were produced in the same manner as in Examples 1 to 6, except that the oxygen removal additive A used in Examples 1 to 6 was replaced with the oxygen removal additive C. The amount of oxygen removal additive C used is 0.03 g in Example 12, 0.3 g in Example 13, 1.0 g in Example 14, 2.0 g in Example 15, and in Example 16. 3.0 g was used. This oxygen removal additive C was used 10 days after production, and after being installed in the autoclave, the time in the air atmosphere was 1-2 hours as in Examples 1-6. The amount of oxygen removal additive C used in each of the examples is shown in Table 3 below as the amount of oxygen removal additive used.

Figure 0004719788
Figure 0004719788

GaNシード上に成長したGaN結晶を走査電子顕微鏡で確認したところ、実施例12〜16のいずれもC面上に厚さ約60μmのGaN結晶がGaNシードを覆うように成長していた。さらにX線回折でGaNの結晶形態を確認したところ、実施例12〜16のいずれも、ヘキサゴナル型であり、GaN結晶の厚さ方向の成長方位は、シードと同じくC面上にはc軸に配向していた。   When the GaN crystal grown on the GaN seed was confirmed by a scanning electron microscope, in all of Examples 12 to 16, a GaN crystal having a thickness of about 60 μm was grown on the C plane so as to cover the GaN seed. Furthermore, when the crystal form of GaN was confirmed by X-ray diffraction, all of Examples 12 to 16 were hexagonal, and the growth direction in the thickness direction of the GaN crystal was c-axis on the C-plane as in the seed. Oriented.

得られたC面上に成長したGaN結晶の酸素濃度を、実施例1〜6と同様の方法で測定した結果を表3に示す。
表3から分かるように、内部がチタン50%ジルコニウム50%の合金で表面がチタンとジルコニウムの水素化物からなる酸素除去添加剤Cを用いた実施例12〜16においては、シード上に成長したGaN結晶中の酸素濃度が、酸素除去添加剤を用いていない以下の表6に示す比較例1のシード上に成長したGaN結晶中の酸素濃度4×1019原子数/cmに比べ大幅に減っていて、本酸素除去剤の添加により酸素の少ない良質なGaN結晶が得られたことが分かる。この酸素除去剤の効果は、アンモニア充填量に対する酸素除去添加剤Cの割合が10重量%を超えると、GaN結晶中の酸素濃度がより下がり、さらに良質なGaN結晶が得られることが分かった。
なお、製造後30日保管した酸素除去添加剤Cを使用した場合においても、表3と同様の結果が得られた。
Table 3 shows the results of measuring the oxygen concentration of the GaN crystal grown on the obtained C-plane by the same method as in Examples 1-6.
As can be seen from Table 3, in Examples 12 to 16 using the oxygen removal additive C having an inside alloy of 50% titanium and 50% zirconium and a hydride of titanium and zirconium on the surface, GaN grown on the seed The oxygen concentration in the crystal is greatly reduced compared to the oxygen concentration of 4 × 10 19 atoms / cm 3 in the GaN crystal grown on the seed of Comparative Example 1 shown in Table 6 below without using an oxygen removal additive. Thus, it can be seen that a good quality GaN crystal with less oxygen was obtained by the addition of the present oxygen scavenger. The effect of this oxygen scavenger was found to be that when the ratio of the oxygen scavenging additive C to the ammonia filling amount exceeds 10% by weight, the oxygen concentration in the GaN crystal is further lowered, and a higher quality GaN crystal can be obtained.
In addition, the same result as Table 3 was obtained also when using the oxygen removal additive C preserve | saved 30 days after manufacture.

[実施例17〜21]
内部がチタン50%ニッケル50%の合金で表面がチタンとニッケルの水素化物からなる酸素除去添加剤Dを作製するために、粒子径が0.5mmの球状の高純度チタン50%と高純度ニッケル50%の合金を用いた。このチタン50%とニッケル50%の合金は、チタン50重量部とニッケル50重量部の合金である、この粒状高純度合金をアルミナ製ルツボに入れ、加熱炉に仕込み、合金表面の酸化物層を除去するために、800℃で真空熱処理を2時間行った。さらに、加熱炉の内部温度を450℃にし、高純度水素を大気圧で流して、大気圧水素雰囲気で8時間熱処理を行い、内部がチタン50%ニッケル50%の合金で表面がチタンとニッケルの水素化物からなる酸素除去添加剤Dを得た。酸素除去添加剤Dは、実施例1〜6と同様に湿度40%、温度20℃の恒温恒湿室に保管して使用した。酸素除去添加Dの内部状態を観察するため、酸素除去添加剤Dを切断して、その断面をEPMA(Electron Probe Micro Analysis)の付いた走査型電子顕微鏡で観察したところ、チタンとニッケルの合金粒子の表面を水素化物が厚さ1〜3μmで万遍なく覆っていることが分かった。
[Examples 17 to 21]
In order to produce an oxygen scavenging additive D whose inside is an alloy of 50% titanium and 50% nickel and whose surface is made of a hydride of titanium and nickel, 50% spherical high-purity titanium having a particle diameter of 0.5 mm and high-purity nickel A 50% alloy was used. This alloy of 50% titanium and 50% nickel is an alloy of 50 parts by weight of titanium and 50 parts by weight of nickel. This granular high-purity alloy is placed in an alumina crucible, charged in a heating furnace, and an oxide layer on the surface of the alloy is formed. In order to remove, vacuum heat treatment was performed at 800 ° C. for 2 hours. Furthermore, the internal temperature of the heating furnace is set to 450 ° C., high-purity hydrogen is allowed to flow at atmospheric pressure, heat treatment is performed in an atmospheric hydrogen atmosphere for 8 hours, and the inside is an alloy of 50% titanium and 50% nickel, and the surface is made of titanium and nickel. An oxygen removal additive D made of hydride was obtained. The oxygen removal additive D was stored and used in a constant temperature and humidity chamber having a humidity of 40% and a temperature of 20 ° C. as in Examples 1-6. In order to observe the internal state of the oxygen removal additive D, the oxygen removal additive D was cut and the cross section was observed with a scanning electron microscope with EPMA (Electron Probe Micro Analysis). It was found that the surface of the hydride uniformly covered the hydride with a thickness of 1 to 3 μm.

実施例17〜21は、実施例1〜6で用いた酸素除去添加剤Aを酸素除去添加剤Dに置き換えた以外は、実施例1〜6と同様の方法で、GaN結晶を作製した。酸素除去添加剤Dの使用量は、実施例17では0.03gを、実施例18では0.3gを、実施例19では1.0gを、実施例20では2.0gを、実施例21では3.0gを用いた。この酸素除去添加剤Dは製造後10日のものを使用し、オートクレーブに設置後、空気雰囲気にある時間は、実施例1〜6と同様に1〜2時間であった。このそれぞれの実施例で用いた酸素除去添加剤Dの量を、以下の表4に酸素除去添加剤の使用量として示す。   In Examples 17 to 21, GaN crystals were produced in the same manner as in Examples 1 to 6, except that the oxygen removal additive A used in Examples 1 to 6 was replaced with the oxygen removal additive D. The amount of oxygen removal additive D used is 0.03 g in Example 17, 0.3 g in Example 18, 1.0 g in Example 19, 2.0 g in Example 20, and in Example 21. 3.0 g was used. This oxygen-removing additive D was used 10 days after production, and after being installed in the autoclave, the time in the air atmosphere was 1-2 hours as in Examples 1-6. The amount of oxygen removal additive D used in each example is shown in Table 4 below as the amount of oxygen removal additive used.

Figure 0004719788
Figure 0004719788

GaNシード上に成長したGaN結晶を走査電子顕微鏡で確認したところ、実施例17〜21のいずれもC面上に厚さ約60μmのGaN結晶がGaNシードを覆うように成長していた。さらにX線回折でGaNの結晶形態を確認したところ、実施例17〜21のいずれも、ヘキサゴナル型であり、GaN結晶の厚さ方向の成長方位は、シードと同じくC面上にはc軸に配向していた。   When the GaN crystal grown on the GaN seed was confirmed by a scanning electron microscope, in all of Examples 17 to 21, a GaN crystal having a thickness of about 60 μm was grown on the C plane so as to cover the GaN seed. Further, when the crystal form of GaN was confirmed by X-ray diffraction, all of Examples 17 to 21 were hexagonal type, and the growth direction in the thickness direction of the GaN crystal was c-axis on the C plane as in the seed. Oriented.

得られたC面上に成長したGaN結晶の酸素濃度を、実施例1〜6と同様の方法で測定した結果を表4に示す。
表4から分かるように、内部がチタン50%ニッケル50%の合金で表面がチタンとニッケルの水素化物からなる酸素除去添加剤Dを用いた実施例17〜21では、シード上に成長したGaN結晶中の酸素濃度が、酸素除去添加剤を用いていない以下の表6に示す比較例1のシード上に成長したGaN結晶中の酸素濃度4×1019原子数/cmに比べ減っていて、本酸素除去剤の添加により酸素の少ない良質なGaN結晶が得られたことが分かる。この酸素除去剤の効果は、アンモニア充填量に対する酸素除去添加剤Dの割合が10重量%を超えると、GaN結晶中の酸素濃度がより下がり、さらに良質なGaN結晶が得られることが分かった。
なお、製造後30日保管した酸素除去添加剤Dを使用した場合においても、表4と同様の結果が得られた。
Table 4 shows the results of measuring the oxygen concentration of the GaN crystal grown on the obtained C-plane by the same method as in Examples 1-6.
As can be seen from Table 4, in Examples 17 to 21 using the oxygen removal additive D whose inside is an alloy of 50% titanium and 50% nickel and whose surface is made of a hydride of titanium and nickel, the GaN crystal grown on the seed And the oxygen concentration in the GaN crystal grown on the seed of Comparative Example 1 shown in Table 6 below using no oxygen removal additive is reduced compared to the oxygen concentration of 4 × 10 19 atoms / cm 3 , It can be seen that the addition of this oxygen scavenger resulted in a good quality GaN crystal with little oxygen. The effect of this oxygen scavenger was found to be that when the ratio of the oxygen scavenging additive D to the ammonia filling amount exceeds 10% by weight, the oxygen concentration in the GaN crystal is further lowered and a higher quality GaN crystal can be obtained.
In addition, when the oxygen removal additive D stored for 30 days after production was used, the same results as in Table 4 were obtained.

[実施例22〜26]
内部がジルコニウム50%ニッケル50%の合金で表面がジルコニウムとニッケルの水素化物からなる酸素除去添加剤Eを作製するために、粒子径が0.5mmの球状の高純度ジルコニウム50%と高純度ニッケル50%の合金を用いた。このジルコニウム50%とニッケル50%の合金は、ジルコニウム50重量部とニッケル50重量部の合金である、この粒状高純度合金をアルミナ製ルツボに入れ、加熱炉に仕込み、合金表面の酸化物層を除去するために、800℃で真空熱処理を2時間行った。さらに、加熱炉の内部温度を450℃にし、高純度水素を大気圧で流して、大気圧水素雰囲気で8時間熱処理を行い、内部がジルコニウム50%ニッケル50%の合金で表面がジルコニウムとニッケルの水素化物からなる酸素除去添加剤Eを得た。酸素除去添加剤Eは、実施例1〜6と同様に湿度40%、温度20℃の恒温恒湿室に保管して使用した。酸素除去添加Eの内部状態を観察するため、酸素除去添加剤Eを切断して、その断面をEPMA(Electron Probe Micro Analysis)の付いた走査型電子顕微鏡で観察したところ、ジルコニウムとニッケルの合金粒子の表面を水素化物が厚さ1〜3μmで万遍なく覆っていることが分かった。
[Examples 22 to 26]
In order to produce an oxygen removal additive E having an alloy of 50% zirconium and 50% nickel inside and a hydride of zirconium and nickel on the surface, 50% spherical high purity zirconium having a particle diameter of 0.5 mm and high purity nickel A 50% alloy was used. This alloy of 50% zirconium and 50% nickel is an alloy of 50 parts by weight of zirconium and 50 parts by weight of nickel. This granular high-purity alloy is placed in an alumina crucible, charged in a heating furnace, and an oxide layer on the surface of the alloy is formed. In order to remove, vacuum heat treatment was performed at 800 ° C. for 2 hours. Furthermore, the internal temperature of the heating furnace is set to 450 ° C., high-purity hydrogen is allowed to flow at atmospheric pressure, and heat treatment is performed in an atmospheric pressure hydrogen atmosphere for 8 hours. An oxygen removal additive E consisting of hydride was obtained. The oxygen removal additive E was stored and used in a constant temperature and humidity chamber having a humidity of 40% and a temperature of 20 ° C. as in Examples 1 to 6. In order to observe the internal state of the oxygen removal additive E, the oxygen removal additive E was cut and the cross section was observed with a scanning electron microscope equipped with EPMA (Electron Probe Micro Analysis). It was found that the surface of the hydride uniformly covered the hydride with a thickness of 1 to 3 μm.

本実施例22〜26は、実施例1〜6で用いた酸素除去添加剤Aを酸素除去添加剤Eに置き替えた以外は、実施例1〜6と同様の方法で、GaN結晶を作製した。酸素除去添加剤Eの使用量は、実施例22では0.03gを、実施例23では0.3gを、実施例24では1.0gを、実施例25では2.0gを、実施例26では3.0gを用いた。この酸素除去添加剤Eは製造後10日のものを使用し、オートクレーブに設置後、空気雰囲気にある時間は、実施例1〜6と同様に1〜2時間であった。このそれぞれの実施例で用いた酸素除去添加剤Eの量を、以下の表5に酸素除去添加剤の使用量として示す。   In Examples 22 to 26, GaN crystals were produced in the same manner as in Examples 1 to 6, except that the oxygen removal additive A used in Examples 1 to 6 was replaced with the oxygen removal additive E. . The amount of oxygen removal additive E used is 0.03 g in Example 22, 0.3 g in Example 23, 1.0 g in Example 24, 2.0 g in Example 25, and in Example 26. 3.0 g was used. This oxygen removal additive E was used 10 days after production, and after being installed in the autoclave, the time in the air atmosphere was 1-2 hours as in Examples 1-6. The amount of oxygen removal additive E used in each example is shown in Table 5 below as the amount of oxygen removal additive used.

Figure 0004719788
Figure 0004719788

GaNシード上に成長したGaN結晶を走査電子顕微鏡で確認したところ、実施例22〜26のいずれもC面上に厚さ約60μmのGaN結晶がGaNシードを覆うように成長していた。さらにX線回折でGaNの結晶形態を確認したところ、実施例22〜26のいずれも、ヘキサゴナル型であり、GaN結晶の厚さ方向の成長方位は、シードと同じくC面上にはc軸に配向していた。
得られたC面上に成長したGaN結晶の酸素濃度を、実施例1〜6と同様の方法で測定した結果を表5に示す。
When the GaN crystal grown on the GaN seed was confirmed by a scanning electron microscope, in all of Examples 22 to 26, a GaN crystal having a thickness of about 60 μm was grown on the C plane so as to cover the GaN seed. Further, when the crystal form of GaN was confirmed by X-ray diffraction, all of Examples 22 to 26 were hexagonal, and the growth direction in the thickness direction of the GaN crystal was c-axis on the C-plane as in the seed. Oriented.
Table 5 shows the results of measuring the oxygen concentration of the GaN crystal grown on the obtained C-plane by the same method as in Examples 1-6.

表5から分かるように、内部がジルコニウム50%ニッケル50%の合金で表面がジルコニウムとニッケルの水素化物からなる酸素除去添加剤Eを用いた実施例22〜26では、シード上に成長したGaN結晶中の酸素濃度が、酸素除去添加剤を用いていない以下の表6に示す比較例1のシード上に成長したGaN結晶中の酸素濃度4×1019原子数/cmに比べ減っていて、本酸素除去剤の添加により酸素の少ない良質なGaN結晶が得られたことが分かる。この酸素除去剤の効果は、アンモニア充填量に対する酸素除去添加剤Eの割合が10重量%を超えると、GaN結晶中の酸素濃度がより下がり、さらに良質なGaN結晶が得られることが分かった。
なお、製造後30日保管した酸素除去添加剤Eを使用した場合においても、表5と同様の結果が得られた。
As can be seen from Table 5, in Examples 22 to 26 using the oxygen removal additive E whose inside is an alloy of 50% zirconium and 50% nickel and whose surface is made of a hydride of zirconium and nickel, the GaN crystal grown on the seed And the oxygen concentration in the GaN crystal grown on the seed of Comparative Example 1 shown in Table 6 below using no oxygen removal additive is reduced compared to the oxygen concentration of 4 × 10 19 atoms / cm 3 , It can be seen that the addition of this oxygen scavenger resulted in a good quality GaN crystal with little oxygen. The effect of this oxygen scavenger was found to be that when the ratio of the oxygen scavenging additive E to the ammonia filling amount exceeds 10% by weight, the oxygen concentration in the GaN crystal is further lowered and a higher quality GaN crystal can be obtained.
In addition, the same result as Table 5 was obtained also when using the oxygen removal additive E preserve | saved 30 days after manufacture.

[比較例1]
比較例1は、酸素除去添加剤を使用しない例である。比較例1は、酸素除去添加剤を用いない以外は、実施例1〜6と同様の方法で、GaN結晶を作製した。
GaNシード上に成長したGaN結晶を走査電子顕微鏡で確認したところ、C面上に厚さ約60μmのGaN結晶がGaNシードを覆うように成長していた。さらにX線回折でGaNの結晶形態を確認したところ、ヘキサゴナル型であり、GaN結晶の厚さ方向の成長方位は、シードと同じくC面上にはc軸に配向していた。
得られたC面上に成長したGaN結晶の酸素濃度を、実施例1〜6と同様の方法で測定した結果を以下の表6に示す。
[Comparative Example 1]
Comparative Example 1 is an example in which no oxygen removal additive is used. In Comparative Example 1, a GaN crystal was produced in the same manner as in Examples 1 to 6 except that no oxygen removal additive was used.
When the GaN crystal grown on the GaN seed was confirmed by a scanning electron microscope, a GaN crystal having a thickness of about 60 μm was grown on the C plane so as to cover the GaN seed. Further, when the crystal form of GaN was confirmed by X-ray diffraction, it was a hexagonal type, and the growth direction in the thickness direction of the GaN crystal was oriented on the c-axis on the C-plane like the seed.
Table 6 below shows the results of measuring the oxygen concentration of the GaN crystal grown on the obtained C-plane by the same method as in Examples 1-6.

Figure 0004719788
Figure 0004719788

比較例1のシード上に成長したGaN結晶中の酸素濃度4×1019原子数/cmは表6に示すように、実施例1〜26のいずれと比べても酸素濃度が大きく、GaNの純度は高くなかった。 As shown in Table 6, the oxygen concentration of 4 × 10 19 atoms / cm 3 in the GaN crystal grown on the seed of Comparative Example 1 is higher than that of any of Examples 1 to 26. The purity was not high.

[比較例2、3]
比較例2と3は、表面が水素化物でないチタン金属からなる酸素除去添加剤Kを用いた場合の比較例である。酸素除去添加剤Kとして、実施例1〜6と同様の粒子径が0.5mmの球状の粒状高純度チタンを、製造後窒素封入したものを保管して用いた。
本比較例2と3は、実施例1〜6で用いた酸素除去添加剤Aを酸素除去添加剤Kに置き替えた以外は、実施例1〜6と同様の方法で、GaN結晶を作製した。酸素除去添加剤Kの使用量は、比較例2では1.0gを、比較例3では3.0gを用いた。この酸素除去添加剤Kは使用直前で窒素封入から開放して使用し、オートクレーブに設置後、空気雰囲気にある時間は、実施例1〜6と同様に1〜2時間であった。このそれぞれの実施例で用いた酸素除去添加剤Kの量を、表6に酸素除去添加剤の使用量として示す。
[Comparative Examples 2 and 3]
Comparative Examples 2 and 3 are comparative examples in the case of using an oxygen removal additive K made of titanium metal whose surface is not a hydride. As the oxygen removal additive K, a spherical granular high-purity titanium having a particle diameter of 0.5 mm similar to that in Examples 1 to 6 was used after being stored and filled with nitrogen.
In Comparative Examples 2 and 3, a GaN crystal was produced in the same manner as in Examples 1 to 6, except that the oxygen removal additive A used in Examples 1 to 6 was replaced with the oxygen removal additive K. . The amount of oxygen removal additive K used was 1.0 g in Comparative Example 2 and 3.0 g in Comparative Example 3. This oxygen removal additive K was used after being released from nitrogen filling immediately before use, and after being installed in the autoclave, the time in the air atmosphere was 1-2 hours as in Examples 1-6. The amount of oxygen removal additive K used in each example is shown in Table 6 as the amount of oxygen removal additive used.

GaNシード上に成長したGaN結晶を走査電子顕微鏡で確認したところ、比較例2と3のいずれもC面上に厚さ約60μmのGaN結晶がGaNシードを覆うように成長していた。さらにX線回折でGaNの結晶形態を確認したところ、比較例2と3のいずれも、ヘキサゴナル型であり、GaN結晶の厚さ方向の成長方位は、シードと同じくC面上にはc軸に配向していた。
得られたC面上に成長したGaN結晶の酸素濃度を、実施例1〜6と同様の方法で測定した結果を表6に示す。
比較例2と3のシード上に成長したGaN結晶中の酸素濃度は表6に示すように、実施例1〜26のいずれと比べても酸素濃度が大きく、GaNの純度は高くなかった。
When the GaN crystal grown on the GaN seed was confirmed by a scanning electron microscope, in both Comparative Examples 2 and 3, a GaN crystal having a thickness of about 60 μm was grown on the C plane so as to cover the GaN seed. Further, when the crystal form of GaN was confirmed by X-ray diffraction, both Comparative Examples 2 and 3 were hexagonal, and the growth direction in the thickness direction of the GaN crystal was c-axis on the C-plane as in the seed. Oriented.
Table 6 shows the results of measuring the oxygen concentration of the GaN crystal grown on the obtained C-plane by the same method as in Examples 1-6.
As shown in Table 6, the oxygen concentration in the GaN crystals grown on the seeds of Comparative Examples 2 and 3 was higher than that in any of Examples 1 to 26, and the purity of GaN was not high.

[比較例4、5]
比較例4と5は、表面が水素化物でないジルコニウム金属からなる酸素除去添加剤Lを用いた場合の比較例である。酸素除去添加剤Lとして、実施例7〜11と同様の粒子径が0.5mmの球状の粒状高純度ジルコニウムを、製造後窒素封入したものを保管して用いた。
比較例4と5は、実施例1〜6で用いた酸素除去添加剤Aを酸素除去添加剤Lに置き換えた以外は、実施例1〜6と同様の方法で、GaN結晶を作製した。酸素除去添加剤Lの使用量は、比較例4では1.0gを、比較例5では3.0gを用いた。この酸素除去添加剤Lは使用直前で窒素封入から開放して使用し、オートクレーブに設置後、空気雰囲気にある時間は、実施例1〜6と同様に1〜2時間であった。このそれぞれの実施例で用いた酸素除去添加剤Lの量を、表6に酸素除去添加剤の使用量として示す。
[Comparative Examples 4 and 5]
Comparative Examples 4 and 5 are comparative examples in the case of using an oxygen removal additive L made of zirconium metal whose surface is not a hydride. As the oxygen removal additive L, spherical granular high-purity zirconium having a particle diameter of 0.5 mm as in Examples 7 to 11 was used after storage and nitrogen-sealed.
In Comparative Examples 4 and 5, GaN crystals were produced in the same manner as in Examples 1 to 6, except that the oxygen removal additive A used in Examples 1 to 6 was replaced with the oxygen removal additive L. The amount of oxygen removal additive L used was 1.0 g in Comparative Example 4 and 3.0 g in Comparative Example 5. This oxygen removal additive L was used by being released from nitrogen filling immediately before use, and after being installed in the autoclave, the time in the air atmosphere was 1-2 hours as in Examples 1-6. The amount of oxygen removal additive L used in each of these examples is shown in Table 6 as the amount of oxygen removal additive used.

GaNシード上に成長したGaN結晶を走査電子顕微鏡で確認したところ、比較例4と5のいずれもC面上に厚さ約60μmのGaN結晶がGaNシードを覆うように成長していた。さらにX線回折でGaNの結晶形態を確認したところ、比較例4と5のいずれも、ヘキサゴナル型であり、GaN結晶の厚さ方向の成長方位は、シードと同じくC面上にはc軸に配向していた。
得られたC面上に成長したGaN結晶の酸素濃度を、実施例1〜6と同様の方法で測定した結果を表6に示す。
比較例4と5シード上に成長したGaN結晶中の酸素濃度は表6に示すように、実施例1〜26のいずれと比べても酸素濃度が大きく、GaNの純度が高くなかった。
When the GaN crystal grown on the GaN seed was confirmed with a scanning electron microscope, in both Comparative Examples 4 and 5, a GaN crystal having a thickness of about 60 μm was grown on the C plane so as to cover the GaN seed. Furthermore, when the crystal form of GaN was confirmed by X-ray diffraction, both Comparative Examples 4 and 5 were hexagonal, and the growth direction in the thickness direction of the GaN crystal was c-axis on the C-plane as in the seed. Oriented.
Table 6 shows the results of measuring the oxygen concentration of the GaN crystal grown on the obtained C-plane by the same method as in Examples 1-6.
Comparative Examples 4 and 5 As shown in Table 6, the oxygen concentration in the GaN crystals grown on the seeds was higher than those in Examples 1 to 26, and the purity of GaN was not high.

[比較例6、7]
比較例6と7は、表面が水素化物でないチタン50%とジルコニウム50%の合金からなる酸素除去添加剤Mを用いた場合の比較例である。酸素除去添加剤Mとして、実施例12〜16と同様の粒子径が0.5mmの球状の高純度チタン50%と高純度ジルコニウム50%の合金を、製造後窒素封入したものを保管して用いた。
比較例6と7は、実施例1〜6で用いた酸素除去添加剤Aを酸素除去添加剤Mに置き替えた以外は、実施例1〜6と同様の方法で、GaN結晶を作製した。酸素除去添加剤Mの使用量は、比較例6では1.0gを、比較例7では3.0gを用いた。この酸素除去添加剤Mは使用直前で窒素封入から開放して使用し、オートクレーブに設置後、空気雰囲気にある時間は、実施例1〜6と同様に1〜2時間であった。このそれぞれの実施例で用いた酸素除去添加剤Mの量を、表6に酸素除去添加剤の使用量として示す。
[Comparative Examples 6 and 7]
Comparative Examples 6 and 7 are comparative examples in the case of using an oxygen removal additive M made of an alloy of 50% titanium and 50% zirconium whose surfaces are not hydride. As the oxygen removal additive M, a spherical alloy of 50% high-purity titanium and 50% high-purity zirconium having a particle diameter of 0.5 mm, which is the same as in Examples 12 to 16, was used after storage and nitrogen-sealed. It was.
In Comparative Examples 6 and 7, GaN crystals were produced in the same manner as in Examples 1 to 6, except that the oxygen removal additive A used in Examples 1 to 6 was replaced with the oxygen removal additive M. The amount of oxygen removal additive M used was 1.0 g in Comparative Example 6 and 3.0 g in Comparative Example 7. This oxygen removal additive M was used after being released from nitrogen filling immediately before use, and after being installed in the autoclave, the time in the air atmosphere was 1-2 hours as in Examples 1-6. The amount of oxygen removal additive M used in each of these examples is shown in Table 6 as the amount of oxygen removal additive used.

GaNシード上に成長したGaN結晶を走査電子顕微鏡で確認したところ、比較例6と7のいずれもC面上に厚さ約60μmのGaN結晶がGaNシードを覆うように成長していた。さらにX線回折でGaNの結晶形態を確認したところ、比較例6と7のいずれも、ヘキサゴナル型であり、GaN結晶の厚さ方向の成長方位は、シードと同じくC面上にはc軸に配向していた。
得られたC面上に成長したGaN結晶の酸素濃度を、実施例1〜6と同様の方法で測定した結果を表6に示す。
比較例6と7のシード上に成長したGaN結晶中の酸素濃度は表6に示すように、実施例1〜26のいずれと比べても酸素濃度が大きく、GaNの純度が高くなかった。
When the GaN crystal grown on the GaN seed was confirmed with a scanning electron microscope, in both Comparative Examples 6 and 7, a GaN crystal having a thickness of about 60 μm was grown on the C plane so as to cover the GaN seed. Furthermore, when the crystal form of GaN was confirmed by X-ray diffraction, both Comparative Examples 6 and 7 were hexagonal, and the growth direction in the thickness direction of the GaN crystal was c-axis on the C-plane as in the seed. Oriented.
Table 6 shows the results of measuring the oxygen concentration of the GaN crystal grown on the obtained C-plane by the same method as in Examples 1-6.
As shown in Table 6, the oxygen concentration in the GaN crystals grown on the seeds of Comparative Examples 6 and 7 was higher than that in any of Examples 1 to 26, and the purity of GaN was not high.

[比較例8、9]
比較例8と9は、内部がチタン20%とニッケル80%の合金で表面がそのチタンとニッケルの水素化物からなる酸素除去添加剤からなる酸素除去添加剤Nを用いた場合の比較例である。内部がチタン20%ニッケル70%の合金で表面がチタンとニッケルの水素化物からなる酸素除去添加剤Nを作製するために、粒子径が0.5mmの球状の高純度チタン20%と高純度ニッケル80%の合金を用いた。このチタン20%とニッケル80%の合金は、チタン20重量部とニッケル80重量部の合金である、この粒状高純度合金をアルミナ製ルツボに入れ、加熱炉に仕込み、合金表面の酸化物層を除去するために、800℃で真空熱処理を2時間行った。さらに、加熱炉の内部温度を450℃にし、高純度水素を大気圧で流して、大気圧水素雰囲気で8時間熱処理を行い、内部がチタン20%ニッケル80%の合金で表面がチタンとニッケルの水素化物からなる酸素除去添加剤Nを得た。酸素除去添加剤Nは、実施例1〜6と同様に湿度40%、温度20℃の恒温恒湿室に保管して使用した。酸素除去添加Nの内部状態を観察するため、酸素除去添加剤Nを切断して、その断面をEPMA(Electron Probe Micro Analysis)の付いた走査型電子顕微鏡で観察したところ、チタンとニッケルの合金粒子の表面を水素化物が厚さ1〜2μmで覆っていることが分かった。
[Comparative Examples 8 and 9]
Comparative Examples 8 and 9 are comparative examples in the case of using an oxygen removal additive N composed of an oxygen removal additive consisting of an alloy containing 20% titanium and 80% nickel inside and a hydride of titanium and nickel on the surface. . In order to produce an oxygen removal additive N consisting of an alloy containing 20% titanium and 70% nickel and a hydride of titanium and nickel on the inside, 20% spherical high-purity titanium with a particle size of 0.5 mm and high-purity nickel An 80% alloy was used. This alloy of 20% titanium and 80% nickel is an alloy of 20 parts by weight titanium and 80 parts by weight nickel. This granular high-purity alloy is put in an alumina crucible and charged in a heating furnace, and an oxide layer on the surface of the alloy is formed. In order to remove, vacuum heat treatment was performed at 800 ° C. for 2 hours. Furthermore, the internal temperature of the heating furnace is set to 450 ° C., high-purity hydrogen is allowed to flow at atmospheric pressure, heat treatment is performed in an atmospheric hydrogen atmosphere for 8 hours, and the inside is an alloy of 20% titanium and 80% nickel, and the surface is made of titanium and nickel. An oxygen removal additive N consisting of hydride was obtained. The oxygen removal additive N was used in a constant temperature and humidity chamber having a humidity of 40% and a temperature of 20 ° C. as in Examples 1 to 6. In order to observe the internal state of the oxygen removal additive N, the oxygen removal additive N was cut and the cross section was observed with a scanning electron microscope with EPMA (Electron Probe Micro Analysis). It was found that the hydride covered the surface with a thickness of 1 to 2 μm.

比較例8と9は、実施例1〜6で用いた酸素除去添加剤Aを酸素除去添加剤Nに置き替えた以外は、実施例1〜6と同様の方法で、GaN結晶を作製した。酸素除去添加剤Nの使用量は、比較例8では1.0gを、比較例9では3.0gを用いた。この酸素除去添加剤Nをオートクレーブに設置後、空気雰囲気にある時間は、実施例1〜6と同様に1〜2時間であった。このそれぞれの実施例で用いた酸素除去添加剤Nの量を、表6に酸素除去添加剤の使用量として示す。   Comparative Examples 8 and 9 produced GaN crystals in the same manner as in Examples 1 to 6, except that oxygen removal additive A used in Examples 1 to 6 was replaced with oxygen removal additive N. The amount of oxygen removal additive N used was 1.0 g in Comparative Example 8 and 3.0 g in Comparative Example 9. After the oxygen removing additive N was placed in the autoclave, the time in the air atmosphere was 1-2 hours as in Examples 1-6. The amount of oxygen removal additive N used in each of these examples is shown in Table 6 as the amount of oxygen removal additive used.

GaNシード上に成長したGaN結晶を走査電子顕微鏡で確認したところ、比較例8と9のいずれもC面上に厚さ約60μmのGaN結晶がGaNシードを覆うように成長していた。さらにX線回折でGaNの結晶形態を確認したところ、比較例8と9のいずれも、ヘキサゴナル型であり、GaN結晶の厚さ方向の成長方位は、シードと同じくC面上にはc軸に配向していた。
得られたC面上に成長したGaN結晶の酸素濃度を、実施例1〜6と同様の方法で測定した結果を表6に示す。
比較例8と9のシード上に成長したGaN結晶中の酸素濃度は表6に示すように、実施例1〜26のいずれと比べても酸素濃度が大きく、GaNの純度が高くなかった。
When the GaN crystal grown on the GaN seed was confirmed by a scanning electron microscope, in both Comparative Examples 8 and 9, a GaN crystal having a thickness of about 60 μm was grown on the C plane so as to cover the GaN seed. Furthermore, when the crystal form of GaN was confirmed by X-ray diffraction, both Comparative Examples 8 and 9 were hexagonal, and the growth direction in the thickness direction of the GaN crystal was c-axis on the C-plane as in the seed. Oriented.
Table 6 shows the results of measuring the oxygen concentration of the GaN crystal grown on the obtained C-plane by the same method as in Examples 1-6.
As shown in Table 6, the oxygen concentration in the GaN crystals grown on the seeds of Comparative Examples 8 and 9 was higher than that in any of Examples 1 to 26, and the purity of GaN was not high.

[比較例10、11]
比較例10と11は、内部がジルコニウム20%とニッケル80%の合金で表面がそのジルコニウムとニッケルの水素化物からなる酸素除去添加剤からなる酸素除去添加剤Oを用いた場合の比較例である。内部がジルコニウム20%ニッケル70%の合金で表面がジルコニウムとニッケルの水素化物からなる酸素除去添加剤Oを作製するために、粒子径が0.5mmの球状の高純度ジルコニウム20%と高純度ニッケル80%の合金を用いた。このジルコニウム20%とニッケル80%の合金は、ジルコニウム20重量部とニッケル80重量部の合金である、この粒状高純度合金をアルミナ製ルツボに入れ、加熱炉に仕込み、合金表面の酸化物層を除去するために、800℃で真空熱処理を2時間行った。さらに、加熱炉の内部温度を450℃にし、高純度水素を大気圧で流して、大気圧水素雰囲気で8時間熱処理を行い、内部がジルコニウム20%ニッケル80%の合金で表面がチタンとニッケルの水素化物からなる酸素除去添加剤Oを得た。酸素除去添加剤Oは、実施例1〜6と同様に湿度40%、温度20℃の恒温恒湿室に保管して使用した。酸素除去添加Oの内部状態を観察するため、酸素除去添加剤Oを切断して、その断面をEPMA(Electron Probe Micro Analysis)の付いた走査型電子顕微鏡で観察したところ、チタンとニッケルの合金粒子の表面を水素化物が厚さ1〜2μmで覆っていることが分かった。
[Comparative Examples 10 and 11]
Comparative Examples 10 and 11 are comparative examples in the case of using an oxygen removal additive O composed of an oxygen removal additive composed of an alloy containing 20% zirconium and 80% nickel inside and a hydride of zirconium and nickel on the surface. . In order to produce an oxygen scavenging additive O whose inside is an alloy of 20% zirconium and 70% nickel and whose surface is composed of a hydride of zirconium and nickel, 20% spherical high purity zirconium having a particle diameter of 0.5 mm and high purity nickel An 80% alloy was used. This alloy of 20% zirconium and 80% nickel is an alloy of 20 parts by weight zirconium and 80 parts by weight nickel. This granular high-purity alloy is placed in an alumina crucible and charged in a heating furnace, and an oxide layer on the surface of the alloy is formed. In order to remove, vacuum heat treatment was performed at 800 ° C. for 2 hours. Furthermore, the internal temperature of the heating furnace is set to 450 ° C., high-purity hydrogen is allowed to flow at atmospheric pressure, heat treatment is performed for 8 hours in an atmospheric hydrogen atmosphere, an alloy containing 20% zirconium and 80% nickel inside, and the surface is made of titanium and nickel. An oxygen removal additive O consisting of hydride was obtained. The oxygen removal additive O was stored and used in a constant temperature and humidity chamber having a humidity of 40% and a temperature of 20 ° C. as in Examples 1-6. In order to observe the internal state of the oxygen removal additive O, the oxygen removal additive O was cut and the cross section was observed with a scanning electron microscope with EPMA (Electron Probe Micro Analysis). It was found that the hydride covered the surface with a thickness of 1 to 2 μm.

本比較例10と11は、実施例1〜6で用いた酸素除去添加剤Aを酸素除去添加剤Oに置き替えた以外は、実施例1〜6と同様の方法で、GaN結晶を作製した。酸素除去添加剤Oの使用量は、比較例10では1.0gを、比較例11では3.0gを用いた。この酸素除去添加剤Oをオートクレーブに設置後、空気雰囲気にある時間は、実施例1〜6と同様に1〜2時間であった。このそれぞれの実施例で用いた酸素除去添加剤Oの量を、表6に酸素除去添加剤の使用量として示す。   In Comparative Examples 10 and 11, a GaN crystal was produced in the same manner as in Examples 1 to 6, except that the oxygen removal additive A used in Examples 1 to 6 was replaced with the oxygen removal additive O. . The amount of oxygen removal additive O used was 1.0 g in Comparative Example 10 and 3.0 g in Comparative Example 11. After the oxygen removing additive O was placed in the autoclave, the time in the air atmosphere was 1-2 hours as in Examples 1-6. The amount of oxygen removal additive O used in each example is shown in Table 6 as the amount of oxygen removal additive used.

GaNシード上に成長したGaN結晶を走査電子顕微鏡で確認したところ、比較例10と11のいずれもC面上に厚さ約60μmのGaN結晶がGaNシードを覆うように成長していた。さらにX線回折でGaNの結晶形態を確認したところ、比較例10と11のいずれも、ヘキサゴナル型であり、GaN結晶の厚さ方向の成長方位は、シードと同じくC面上にはc軸に配向していた。
得られたC面上に成長したGaN結晶の酸素濃度を、実施例1〜6と同様の方法で測定した結果を表6に示す。
比較例のシード上に成長したGaN結晶中の酸素濃度は表6に示すように、実施例1〜26のいずれと比べても酸素濃度が大きく、GaNの純度は高くなかった。
When the GaN crystal grown on the GaN seed was confirmed with a scanning electron microscope, in Comparative Examples 10 and 11, a GaN crystal having a thickness of about 60 μm was grown on the C plane so as to cover the GaN seed. Further, when the crystal form of GaN was confirmed by X-ray diffraction, both Comparative Examples 10 and 11 were hexagonal, and the growth direction in the thickness direction of the GaN crystal was c-axis on the C-plane as in the seed. Oriented.
Table 6 shows the results of measuring the oxygen concentration of the GaN crystal grown on the obtained C-plane by the same method as in Examples 1-6.
As shown in Table 6, the oxygen concentration in the GaN crystal grown on the seed of the comparative example was higher than that in any of Examples 1 to 26, and the purity of GaN was not high.

本発明では、アンモニア雰囲気で加熱処理して13族窒素化合物結晶を得るいわゆるアモノサーマル法における製造方法において、内部が金属及びび/又は合金で表面が該金属及びび/又は合金の水素化物で覆われている酸素除去添加剤をアンモニアに接触させて13族元素窒素化合物結晶を製造することにより、酸素含有量の少ない良質な13族元素窒素化合物結晶を提供することができる。また、本発明に係る酸素除去添加剤は、表面が水素化物で覆われているため、空気中で取り扱っても酸素除去効果を損なうことが無いため、取扱い易い酸素除去添加剤である。酸素不純物の少ない高純度な良質のGaN結晶などの13族元素窒素化合物結晶を得ることができ、産業上有用であり、産業上の利用可能性が極めて高い。   In the present invention, in a production method in a so-called ammonothermal method in which a group 13 nitrogen compound crystal is obtained by heat treatment in an ammonia atmosphere, the inside is a metal and / or alloy and the surface is a hydride of the metal and / or alloy. By producing the group 13 element nitrogen compound crystal by contacting the covered oxygen removal additive with ammonia, a high-quality group 13 element nitrogen compound crystal having a low oxygen content can be provided. In addition, the oxygen removing additive according to the present invention is an easy-to-handle oxygen removing additive because the surface is covered with hydride and the oxygen removing effect is not impaired even when handled in air. A group 13 element nitrogen compound crystal such as a high-quality high-quality GaN crystal with few oxygen impurities can be obtained, is industrially useful, and has extremely high industrial applicability.

本発明の13族元素窒素化合物結晶製造装置の概略断面図。The schematic sectional drawing of the group 13 element nitrogen compound crystal manufacturing apparatus of this invention.

符号の説明Explanation of symbols

1 バルブ1
2 配管
3 圧力計
4 バルブ4
5 オートクレーブ
6 電気炉
7 シード
8 結晶成長部
9 バッフル板
10 熱電対
11 原料部
12 原料
13 白金金網
14 酸素除去添加剤
1 Valve 1
2 Piping 3 Pressure gauge 4 Valve 4
5 Autoclave 6 Electric furnace 7 Seed 8 Crystal growth part 9 Baffle plate 10 Thermocouple 11 Raw material part 12 Raw material 13 Platinum wire mesh 14 Oxygen removal additive

Claims (2)

ガリウムを主成分とする13族元素窒素化合物結晶の製造方法であって、少なくともガリウムを含む13族元素の金属及び/又は該金属の窒素化合物を、アンモニア雰囲気下、酸素除去添加剤の存在下で、加熱処理して結晶を得るステップを含み、ここで、該酸素除去添加剤は、その中心部がチタン金属、ジルコニウム金属、チタン合金、及びジルコニウム合金から成る群から選ばれる金属又は合金から構成され、かつ、その表層部が該金属又は合金の水素化物で覆われた複合構造を有する前記製造方法。   A method for producing a Group 13 element nitrogen compound crystal containing gallium as a main component, wherein a Group 13 element metal containing at least gallium and / or a nitrogen compound of the metal is added in an ammonia atmosphere in the presence of an oxygen removal additive. Heat treatment to obtain crystals, wherein the oxygen scavenging additive is composed of a metal or alloy whose central portion is selected from the group consisting of titanium metal, zirconium metal, titanium alloy, and zirconium alloy. And the said manufacturing method which has the composite structure where the surface layer part was covered with the hydride of this metal or alloy. 前記ガリウムを主成分とする13族元素の窒素化合物がGaNである、請求項1に記載の方法。   The method according to claim 1, wherein the nitrogen compound of a group 13 element containing gallium as a main component is GaN.
JP2008335283A 2008-12-26 2008-12-26 Method for producing group 13 element nitrogen compound crystal Expired - Fee Related JP4719788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008335283A JP4719788B2 (en) 2008-12-26 2008-12-26 Method for producing group 13 element nitrogen compound crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008335283A JP4719788B2 (en) 2008-12-26 2008-12-26 Method for producing group 13 element nitrogen compound crystal

Publications (2)

Publication Number Publication Date
JP2010155751A JP2010155751A (en) 2010-07-15
JP4719788B2 true JP4719788B2 (en) 2011-07-06

Family

ID=42573962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008335283A Expired - Fee Related JP4719788B2 (en) 2008-12-26 2008-12-26 Method for producing group 13 element nitrogen compound crystal

Country Status (1)

Country Link
JP (1) JP4719788B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2839868A1 (en) * 2011-06-23 2012-12-27 Asahi Kasei Kabushiki Kaisha Method for producing nitride single crystal and autoclave for use in the method
JPWO2012176318A1 (en) * 2011-06-23 2015-02-23 旭化成株式会社 Manufacturing method of nitride single crystal and autoclave used therefor
JP6051768B2 (en) * 2011-10-24 2016-12-27 三菱化学株式会社 Method for producing nitride single crystal
EP2772570A4 (en) 2011-10-28 2015-03-04 Mitsubishi Chem Corp Method for producing nitride crystal, and nitride crystal
JP2014062023A (en) * 2011-10-28 2014-04-10 Mitsubishi Chemicals Corp Method for producing nitride crystal
CN111020708A (en) * 2019-12-16 2020-04-17 上海玺唐半导体科技有限公司 Hot isostatic pressing crystal growth device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293196A (en) * 2002-04-01 2003-10-15 Ishifuku Metal Ind Co Ltd Electrode for electrolysis and production method therefor
JP2005008444A (en) * 2003-06-17 2005-01-13 Mitsubishi Chemicals Corp Method for preparing nitride crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293196A (en) * 2002-04-01 2003-10-15 Ishifuku Metal Ind Co Ltd Electrode for electrolysis and production method therefor
JP2005008444A (en) * 2003-06-17 2005-01-13 Mitsubishi Chemicals Corp Method for preparing nitride crystal

Also Published As

Publication number Publication date
JP2010155751A (en) 2010-07-15

Similar Documents

Publication Publication Date Title
JP4541935B2 (en) Method for producing nitride crystal
JP5553273B2 (en) Nitride semiconductor manufacturing method, crystal growth rate increasing agent, nitride single crystal, wafer and device
JP5480624B2 (en) Method for forming nitride crystal
JP4433696B2 (en) Method for producing nitride crystal
JP4719788B2 (en) Method for producing group 13 element nitrogen compound crystal
US20220033992A1 (en) Method for producing nitride crystal and nitride crystal
US20080193363A1 (en) Metal Nitrides and Process for Production Thereof
JP2009533303A (en) Growth of large surface area gallium nitride crystals.
JP6020440B2 (en) Method for producing nitride crystal
JP2007290921A (en) Method for producing nitride single crystal, nitride single crystal, and device
US20160355945A1 (en) Method for Producing Nitride Crystal
US20140205840A1 (en) Method for producing nitride single crystal and autoclave for use in the method
WO2010140665A1 (en) Process and apparatus for production of crystals of compound of metal belonging to group-13 on periodic table
JP5082213B2 (en) Metal nitride and method for producing metal nitride
JP4881553B2 (en) Method for producing group 13 nitride crystal
JP2013203652A (en) Method for producing nitride single crystal
JP5983483B2 (en) Periodic table group 13 metal nitride polycrystal production method and periodic table group 13 metal nitride polycrystal
JP4760652B2 (en) Method for producing Ga-containing nitride crystal and method for producing semiconductor device using the same
JP2009114057A (en) Manufacturing process of nitride crystal
JP2006225213A (en) Zinc oxide single crystal, substrate for epitaxial growth obtained from the same, and methods for manufacturing them
JP2013006762A (en) Method for producing nitride crystal and nitride crystal
WO2013147097A1 (en) Method for producing nitride single crystal
JP5751182B2 (en) Nitride crystal manufacturing method, reaction vessel and crystal manufacturing apparatus
JP2015040169A (en) Periodic table group 13 metal nitride crystal
JP2011256055A (en) Method of producing group 13 metal nitride crystal, group 13 metal nitride crystal obtained by the same, and semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

LAPS Cancellation because of no payment of annual fees