JP2005228757A - Apparatus and method for growing vapor phase - Google Patents

Apparatus and method for growing vapor phase Download PDF

Info

Publication number
JP2005228757A
JP2005228757A JP2004032781A JP2004032781A JP2005228757A JP 2005228757 A JP2005228757 A JP 2005228757A JP 2004032781 A JP2004032781 A JP 2004032781A JP 2004032781 A JP2004032781 A JP 2004032781A JP 2005228757 A JP2005228757 A JP 2005228757A
Authority
JP
Japan
Prior art keywords
vapor phase
reaction chamber
source gas
substrate
phase growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004032781A
Other languages
Japanese (ja)
Inventor
Yukichi Takamatsu
勇吉 高松
Yoshiyasu Ishihama
義康 石濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP2004032781A priority Critical patent/JP2005228757A/en
Publication of JP2005228757A publication Critical patent/JP2005228757A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vapor phase growing apparatus which performs like the manufacture of a gallium nitride compound semiconductor, which heats a substrate to a high temperature of 1000°C or higher, and which can vapor phase grow efficiently a semiconductor film uniformly with proper crystallinity on a plurality of substrates, and to provide a vapor phase growing method. <P>SOLUTION: The vapor phase growing apparatus includes an annular susceptor 3 which lays the substrate 2 horizontally in a reaction chamber 1, a heater 4 which heats the substrate 2, a supply tube 5 which introduces a first material gas from the core of the annular susceptor 3 in the reaction chamber 1, a supply tube 6 which introduces a second material gas to the reaction chamber 1 from the core of the wall surface of the reaction chamber 1 facing the annular susceptor 3, and a reactant gas discharging unit 7. Moreover, the substrate 2 is heated by the heater 4 by using the vapor phase growing apparatus, and the first material gas and the second material gas are introduced into the reaction chamber 1 to subject the semiconductor film to vapor phase growth on the substrate 2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体膜の気相成長装置に関し、さらに詳細には、基板を載置するサセプタ、基板を加熱するヒータ、原料ガス導入部、及び反応ガス排出部を備えた半導体膜の気相成長装置及び気相成長方法に関する。   The present invention relates to a semiconductor film vapor phase growth apparatus, and more particularly, to a semiconductor film vapor phase growth comprising a susceptor for placing a substrate, a heater for heating the substrate, a source gas introduction unit, and a reaction gas discharge unit. The present invention relates to an apparatus and a vapor phase growth method.

近年、窒化ガリウム系化合物半導体が、発光ダイオードやレーザーダイオード等の素子として、照明分野を中心に急速に需要が高まっている。窒化ガリウム系化合物半導体の製造方法としては、例えばトリメチルガリウム、トリメチルインジウム、またはトリメチルアルミニウム等の有機金属ガスをIII族金属源として、アンモニアを窒素源として用い、あらかじめ反応室内にセットされたサファイヤ等の基板上に窒化ガリウム系化合物の半導体膜を気相成長させて成膜する方法が知られている。   In recent years, the demand for gallium nitride-based compound semiconductors has been increasing rapidly as an element such as a light-emitting diode or a laser diode, mainly in the lighting field. As a method for producing a gallium nitride compound semiconductor, for example, an organic metal gas such as trimethylgallium, trimethylindium, or trimethylaluminum is used as a group III metal source, ammonia is used as a nitrogen source, and sapphire is set in advance in a reaction chamber. A method of forming a semiconductor film of a gallium nitride compound on a substrate by vapor growth is known.

また、前記窒化ガリウム系化合物半導体を製造するための装置としては、基板を水平方向に載置するサセプタ、基板を加熱するヒータ、原料ガス導入部、反応ガス排出部、及びサセプタを支持するサセプタ回転軸を備えた横型あるいは縦型の気相成長装置がある。このような気相成長装置においては、基板をサセプタに載せ、ヒータで加熱した後、前記の原料を含む2種類のガスを、基板の表面に水平方向から供給することにより、または水平方向と上方向から供給することにより、基板上に半導体膜を気相成長させて成膜する構成となっている。   The apparatus for producing the gallium nitride compound semiconductor includes a susceptor for placing the substrate in a horizontal direction, a heater for heating the substrate, a source gas introduction unit, a reaction gas discharge unit, and a susceptor rotation for supporting the susceptor. There are horizontal or vertical vapor phase growth apparatuses with shafts. In such a vapor phase growth apparatus, a substrate is placed on a susceptor and heated by a heater, and then two kinds of gases containing the above-mentioned raw materials are supplied to the surface of the substrate from the horizontal direction, or in the horizontal direction and above. By supplying from the direction, a semiconductor film is formed on the substrate by vapor deposition.

また、窒化ガリウム系化合物半導体の製造においては、基板を1000℃以上の高温に加熱するため、基板付近の熱対流により原料ガスが拡散し効率よく基板に到達せず、均一で結晶性が良好な半導体膜が得られない、あるいは成長速度が遅いという問題点があった。このため、基板と対向する反応室壁面に押圧ガス導入部を設けて、キャリアガス等の反応に影響を与えない押圧ガスを、基板と垂直方向に反応室内に供給し、原料ガスの流れを基板に吹付ける方向に変更させた気相成長装置及び気相成長方法が開発されている。これによると、押圧ガスの流量を、原料ガスの種類及び流量、基板の加熱温度等に応じて適宜制御することにより、結晶性の良好な半導体膜が得られるとされている。
特開平11−121386号公報 特開2001−250783号公報
In the manufacture of gallium nitride compound semiconductors, since the substrate is heated to a high temperature of 1000 ° C. or higher, the source gas diffuses due to the thermal convection in the vicinity of the substrate and does not reach the substrate efficiently, and is uniform and has good crystallinity. There is a problem that a semiconductor film cannot be obtained or the growth rate is slow. For this reason, a pressure gas introduction part is provided on the reaction chamber wall facing the substrate, and a pressure gas that does not affect the reaction such as carrier gas is supplied into the reaction chamber in a direction perpendicular to the substrate, and the flow of the source gas is changed to the substrate. A vapor phase growth apparatus and a vapor phase growth method have been developed which are changed in the direction of spraying. According to this, it is said that a semiconductor film with good crystallinity can be obtained by appropriately controlling the flow rate of the pressing gas in accordance with the type and flow rate of the source gas, the heating temperature of the substrate, and the like.
Japanese Patent Laid-Open No. 11-121386 JP 2001-250783 A

しかしながら、前記の気相成長装置及び気相成長方法においては、原料を含むガスのうち少なくとも1種類のガスは、基板の表面に水平方向から供給しているので、複数枚の基板の同時気相成長を行なう場合は、サセプタを回転させているものの、ガス流の最上流側の基板と最下流側の基板はかなり離れており、各々の位置における気相成長反応の状況、例えばガス中の原料の濃度等は大きく異なるので、半導体膜の品質に悪影響を与える虞があった。   However, in the vapor phase growth apparatus and the vapor phase growth method, at least one gas out of the gas containing the raw material is supplied to the surface of the substrate from the horizontal direction. When performing growth, although the susceptor is rotated, the substrate on the most upstream side of the gas flow and the substrate on the most downstream side are considerably separated from each other, and the situation of the vapor phase growth reaction at each position, for example, the raw material in the gas Since the concentrations and the like differ greatly, there is a possibility that the quality of the semiconductor film is adversely affected.

従って、本発明が解決しようとする課題は、窒化ガリウム系化合物半導体等の製造において、複数枚の基板の同時気相成長を行なう場合であっても、基板上に均一で結晶性が良好な半導体膜を効率よく気相成長させることができる気相成長装置及び気相成長方法を提供することである。   Therefore, the problem to be solved by the present invention is a semiconductor having a uniform and good crystallinity on a substrate even when simultaneous vapor phase growth of a plurality of substrates is performed in the manufacture of a gallium nitride compound semiconductor or the like. To provide a vapor phase growth apparatus and a vapor phase growth method capable of efficiently vapor-depositing a film.

本発明者らは、これらの課題を解決すべく鋭意検討した結果、複数の基板を水平方向に載置するサセプタとして環状のサセプタを用い、その中心部から第一の原料ガスを反応室内に導入するとともに、環状サセプタと対向する反応室壁面の中心部から第二の原料ガスを反応室内に導入する構成とすることにより、いずれの位置にある基板もほぼ同一の条件で気相成長が行なわれ、また熱対流による原料ガスの拡散を緩和することが可能となり、均一で結晶性が良好な半導体膜が効率よく得られることを見出し、本発明の気相成長装置及び気相成長方法に到達した。   As a result of intensive studies to solve these problems, the present inventors have used an annular susceptor as a susceptor for mounting a plurality of substrates in the horizontal direction, and introduced the first source gas into the reaction chamber from the center thereof. In addition, by adopting a configuration in which the second source gas is introduced into the reaction chamber from the center of the reaction chamber wall surface facing the annular susceptor, vapor phase growth is performed on the substrate at any position under substantially the same conditions. In addition, it has become possible to alleviate the diffusion of the source gas due to thermal convection, and it has been found that a semiconductor film having uniform and good crystallinity can be obtained efficiently, and has reached the vapor phase growth apparatus and vapor phase growth method of the present invention. .

すなわち本発明は、反応室内に基板を水平方向に載置する環状サセプタ、該基板を加熱するヒータ、該環状サセプタの中心部から第一の原料ガスを反応室内に導入する供給管、該環状サセプタと対向する反応室壁面の中心部から第二の原料ガスを反応室内に導入する供給管、及び反応ガス排出部を備えてなることを特徴とする気相成長装置である。   That is, the present invention relates to an annular susceptor for horizontally placing a substrate in a reaction chamber, a heater for heating the substrate, a supply pipe for introducing a first source gas into the reaction chamber from the center of the annular susceptor, and the annular susceptor. And a supply pipe for introducing the second source gas into the reaction chamber from the central portion of the reaction chamber wall surface facing to the reaction chamber, and a reaction gas discharge section.

また、本発明は、基板を反応室内の環状サセプタに載せ、該基板をヒータで加熱し、該環状サセプタの中心部から第一の原料ガスを反応室内に導入するとともに、該環状サセプタと対向する反応室壁面の中心部から第二の原料ガスを反応室内に導入して、該基板に半導体膜を気相成長させることを特徴とする気相成長方法でもある。   In the present invention, the substrate is placed on the annular susceptor in the reaction chamber, the substrate is heated with a heater, and the first source gas is introduced into the reaction chamber from the center of the annular susceptor, and is opposed to the annular susceptor. It is also a vapor phase growth method characterized in that a second source gas is introduced into the reaction chamber from the center of the reaction chamber wall surface and a semiconductor film is vapor grown on the substrate.

本発明は、基板を載置するサセプタ、基板を加熱するヒータ、原料ガス導入管、及び反応ガス排出部を備えた気相成長装置及び気相成長方法に適用される。
本発明の気相成長装置においては、原料ガスの種類等には特に限定されることはない。しかし、特に気相成長温度として1000℃以上の高温を必要とする窒化ガリウム系化合物半導体の製造の場合に、基板上に均一で結晶性が良好な半導体膜を効率よく気相成長できる点で、本発明の効果を充分に発揮させることができる。
The present invention is applied to a vapor phase growth apparatus and a vapor phase growth method including a susceptor for placing a substrate, a heater for heating the substrate, a source gas introduction pipe, and a reaction gas discharge unit.
In the vapor phase growth apparatus of the present invention, the type of the raw material gas is not particularly limited. However, particularly in the case of manufacturing a gallium nitride compound semiconductor that requires a high temperature of 1000 ° C. or higher as the vapor phase growth temperature, it is possible to efficiently vapor phase grow a uniform semiconductor film with good crystallinity on the substrate. The effects of the present invention can be sufficiently exhibited.

以下、本発明の気相成長装置及び気相成長方法を、図1〜図4に基づいて詳細に説明するが、本発明がこれらにより限定されるものではない。
図1〜図4は、本発明の気相成長装置の一例を示す垂直断面図である。本発明の気相成長装置は、図1に示すように、反応室1内に基板2を水平方向に載置する環状サセプタ3、基板を加熱するヒータ4、環状サセプタの中心部から第一の原料ガスを反応室内に導入する供給管5、該環状サセプタと対向する反応室壁面の中心部から第二の原料ガスを反応室内に導入する供給管6、及び反応ガス排出部7を備えてなる気相成長装置である。また、好ましくは、サセプタ回転軸8が設定される。
Hereinafter, although the vapor phase growth apparatus and vapor phase growth method of this invention are demonstrated in detail based on FIGS. 1-4, this invention is not limited by these.
1 to 4 are vertical sectional views showing an example of a vapor phase growth apparatus of the present invention. As shown in FIG. 1, the vapor phase growth apparatus of the present invention includes an annular susceptor 3 for placing a substrate 2 in a reaction chamber 1 in a horizontal direction, a heater 4 for heating the substrate, and a first portion from the center of the annular susceptor. A supply pipe 5 for introducing the source gas into the reaction chamber, a supply pipe 6 for introducing the second source gas into the reaction chamber from the center of the reaction chamber wall facing the annular susceptor, and a reaction gas discharge section 7 are provided. It is a vapor phase growth apparatus. Preferably, a susceptor rotation shaft 8 is set.

図1に示す気相成長装置は、第一の原料ガスを環状サセプタの中心部の下から上方向に反応室内に導入し、第二の原料ガスを環状サセプタと対向する反応室壁面の中心部の上から下方向に反応室内に導入する構造であるが、図2に示すように、環状サセプタを反応室の上側に設定し、第一の原料ガスを上から下方向に反応室内に導入し、第二の原料ガスを下から上方向に反応室内に導入する構造とすることも可能である。図3、図4に示す気相成長装置についても、前記と同様に原料ガスの導入方向を変更することができる。   The vapor phase growth apparatus shown in FIG. 1 introduces a first source gas into the reaction chamber from below the central portion of the annular susceptor, and introduces the second source gas into the central portion of the reaction chamber wall facing the annular susceptor. As shown in FIG. 2, an annular susceptor is set on the upper side of the reaction chamber, and the first source gas is introduced into the reaction chamber from the upper side to the lower side. It is also possible to adopt a structure in which the second source gas is introduced into the reaction chamber from the bottom upward. Also in the vapor phase growth apparatus shown in FIGS. 3 and 4, the introduction direction of the source gas can be changed as described above.

本発明の気相成長装置においては、基板を載置するサセプタとして環状のサセプタが用いられる。このサセプタは、通常は自転可能な基板が等間隔で載置できるように設定される。また、環状のサセプタの対面には、環状のサセプタとほぼ同じ大きさの壁面が設けられ、第二の原料ガスの導入管が、反応室を介して第一の原料ガスの導入管と向い合う位置に設定される。尚、通常は第一の原料ガスの導入口と第二の原料ガスの導入口の間には、図1〜図4に示すように、第一の原料ガスと第二の原料ガスが互いに正面から混合し乱流が発生することを防止するとともに、第二の原料ガスが基板表面の方向に向くような案内部材9が使用される。   In the vapor phase growth apparatus of the present invention, an annular susceptor is used as a susceptor on which a substrate is placed. This susceptor is usually set so that substrates that can rotate can be placed at equal intervals. Further, the opposite surface of the annular susceptor is provided with a wall surface that is approximately the same size as the annular susceptor, and the second source gas introduction pipe faces the first source gas introduction pipe through the reaction chamber. Set to position. Normally, between the first source gas inlet and the second source gas inlet, the first source gas and the second source gas are in front of each other as shown in FIGS. The guide member 9 is used so that the turbulent flow is prevented from mixing and the second source gas is directed toward the substrate surface.

また、本発明の気相成長装置においては、第二の原料ガスの供給管は、図3、図4に示すように、その内径が反応室に向かって大きくなるように設定することが好ましい。さらに、第二の原料ガスの供給管の反応室導入口には、図4に示すように、第二の原料ガスが基板の方向に向くような案内部材10を設定することが好ましい。このような構成とすることにより、例えば窒化ガリウム系化合物半導体の製造のように、基板を1000℃以上の高温に加熱する必要がある場合に、熱対流による原料ガスの拡散を緩和することができる。   In the vapor phase growth apparatus of the present invention, it is preferable that the second source gas supply pipe is set so that its inner diameter increases toward the reaction chamber, as shown in FIGS. Furthermore, it is preferable to set a guide member 10 at the reaction chamber inlet of the second source gas supply pipe so that the second source gas faces the substrate as shown in FIG. By adopting such a configuration, when the substrate needs to be heated to a high temperature of 1000 ° C. or more as in the case of manufacturing a gallium nitride compound semiconductor, for example, diffusion of the source gas due to thermal convection can be reduced. .

反応室の垂直方向の間隙(環状サセプタとこれに対向する反応室壁面の間隙)は、通常は3〜30mm、好ましくは5〜20mm程度に設定される。反応室の垂直方向の間隙が3mm未満の場合は、原料ガスの流れが速くなりすぎて、反応効率が低下し、成長速度が遅くなる虞がある。また、30mmを超える場合は、前記のように案内部材を設定しても、第二の原料ガスが基板に到達しにくくなり、成長速度が遅くなる虞がある。   The vertical gap in the reaction chamber (the gap between the annular susceptor and the reaction chamber wall facing this) is usually set to 3 to 30 mm, preferably about 5 to 20 mm. If the vertical gap in the reaction chamber is less than 3 mm, the flow of the raw material gas becomes too fast, which may reduce the reaction efficiency and slow the growth rate. In addition, when it exceeds 30 mm, even if the guide member is set as described above, the second source gas is difficult to reach the substrate, and the growth rate may be slow.

本発明の気相成長方法は、前述の気相成長装置を用いて、基板に半導体膜を気相成長させる方法である。すなわち、基板を反応室内の環状サセプタに載せ、基板をヒータで加熱し、環状サセプタの中心部から第一の原料ガスを反応室内に導入するとともに、環状サセプタと対向する反応室壁面の中心部から第二の原料ガスを反応室内に導入して、基板に半導体膜を気相成長させる方法である。
本発明の気相成長方法は、特に窒化ガリウム系化合物半導体の製造に好適であるが、これに限定されるものではない。
The vapor phase growth method of the present invention is a method in which a semiconductor film is vapor-phase grown on a substrate using the above-described vapor phase growth apparatus. That is, the substrate is placed on the annular susceptor in the reaction chamber, the substrate is heated with a heater, the first source gas is introduced into the reaction chamber from the central portion of the annular susceptor, and from the central portion of the reaction chamber wall facing the annular susceptor. This is a method in which a second source gas is introduced into a reaction chamber and a semiconductor film is vapor-grown on a substrate.
The vapor phase growth method of the present invention is particularly suitable for the production of gallium nitride compound semiconductors, but is not limited thereto.

本発明の気相成長方法により、窒化ガリウム系化合物半導体を製造する際には、通常は第一の原料ガスとして、アンモニア、モノメチルヒドラジン、ジメチルヒドラジン、tert-ブチルヒドラジン、またはトリメチルアミンを含むガスが用いられ、第二の原料ガスとして、トリメチルガリウム、トリエチルガリウム、トリメチルインジウム、トリエチルインジウム、トリメチルアルミニウム、またはトリエチルアルミニウムを含むガスが用いられる。尚、第二の原料ガスは、さらにビスエチルシクロペンタジエニルマグネシウム、シラン、または有機シランを含んでいてもよい。   When a gallium nitride compound semiconductor is produced by the vapor phase growth method of the present invention, a gas containing ammonia, monomethylhydrazine, dimethylhydrazine, tert-butylhydrazine, or trimethylamine is usually used as the first source gas. As the second source gas, a gas containing trimethylgallium, triethylgallium, trimethylindium, triethylindium, trimethylaluminum, or triethylaluminum is used. The second source gas may further contain bisethylcyclopentadienyl magnesium, silane, or organosilane.

また、本発明の気相成長方法は、基板の最高加熱温度が600℃程度の比較的低い温度の気相成長から1000℃以上の比較的高い温度の気相成長まで幅広く適用することができる。また、反応室内の圧力は、常圧のほか、1kPa(abs)の減圧から1MPa(abs)の加圧下とすることも可能である。
本発明により気相成長を行なう際は、基板上に均一な半導体膜を効率よく気相成長させるために、基板を自転及び公転させることが好ましい。
In addition, the vapor phase growth method of the present invention can be widely applied from a relatively low temperature vapor phase growth where the maximum heating temperature of the substrate is about 600 ° C. to a relatively high temperature vapor phase growth of 1000 ° C. or more. Further, the pressure in the reaction chamber may be a normal pressure or a reduced pressure of 1 kPa (abs) to a pressurized pressure of 1 MPa (abs).
When performing vapor phase growth according to the present invention, it is preferable to rotate and revolve the substrate in order to efficiently vapor phase grow a uniform semiconductor film on the substrate.

本発明の気相成長装置及び気相成長方法は、環状のサセプタの中心部から第一の原料ガスを反応室内に導入するとともに、これと対向する反応室壁面の中心部から第二の原料ガスを反応室内に導入する構成なので、いずれの位置にある複数の基板もほぼ同一の条件で気相成長が行なわれる。また、第二の原料ガスを基板表面に対して斜め方向から導入するように設定できるので、熱対流による原料ガスの拡散を緩和することが可能である。従って、窒化ガリウム系化合物半導体の製造のように、基板を1000℃以上の高温に加熱する必要があっても、複数の基板上に均一で結晶性が良好な半導体膜を効率よく気相成長させることが可能である。   The vapor phase growth apparatus and the vapor phase growth method of the present invention introduce a first source gas into the reaction chamber from the central portion of the annular susceptor, and the second source gas from the central portion of the reaction chamber wall surface facing this. Is introduced into the reaction chamber, a plurality of substrates at any position are subjected to vapor phase growth under substantially the same conditions. In addition, since the second source gas can be set to be introduced from an oblique direction with respect to the substrate surface, it is possible to reduce the diffusion of the source gas due to thermal convection. Therefore, even when it is necessary to heat the substrate to a high temperature of 1000 ° C. or higher as in the case of manufacturing a gallium nitride compound semiconductor, a semiconductor film having uniform and good crystallinity is efficiently vapor-grown on a plurality of substrates It is possible.

次に、本発明を実施例により具体的に説明するが、本発明がこれらにより限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these.

(気相成長装置の製作)
石英製の反応容器(内寸法で、内径300mm、高さ100mm)の内部に、環状サセプタ(直径260mm、厚さ5mm、中心の開口部の直径10mm)、ヒータ、及び環状サセプタと対向するように壁面(直径260mm、厚さ10mm)を設け、さらに、環状サセプタの中心部に第一の原料ガスの供給管、壁面の中心部に第二の原料ガスの供給管、案内部材、反応ガス排出部を設けて、図3に示すような気相成長装置を製作した。尚、第一の原料ガスの供給管の内径は10mm、第二の原料ガスの供給管の供給口以外の内径は10mm、供給口の内径は30mmであった。また、反応室の垂直方向の間隙は15mmであった。
(Production of vapor phase growth equipment)
Inside a quartz reaction vessel (inner dimensions, inner diameter 300 mm, height 100 mm), facing the annular susceptor (diameter 260 mm, thickness 5 mm, central opening diameter 10 mm), heater, and annular susceptor A wall surface (diameter 260 mm, thickness 10 mm) is provided, and further, a first source gas supply pipe at the center of the annular susceptor, a second source gas supply pipe at the center of the wall surface, a guide member, and a reaction gas discharge unit The vapor phase growth apparatus as shown in FIG. 3 was manufactured. The inner diameter of the first source gas supply pipe was 10 mm, the inner diameter of the second source gas supply pipe other than the supply port was 10 mm, and the inner diameter of the supply port was 30 mm. The vertical gap in the reaction chamber was 15 mm.

(気相成長実験)
この装置を用いて、以下のように直径2インチのサファイヤ基板上にGaNの結晶成長を行なった。
サファイヤ基板5枚をサセプタ上に等間隔でセットし、反応室内を水素ガスで置換した後、第一の原料ガスの供給管から水素を15L/min、第二の原料ガスの供給管から水素を15L/min供給しながら基板を1150℃に加熱し、基板の熱処理を10分間行なった。
(Vapor phase growth experiment)
Using this apparatus, a GaN crystal was grown on a sapphire substrate having a diameter of 2 inches as follows.
After five sapphire substrates were set on the susceptor at equal intervals and the reaction chamber was replaced with hydrogen gas, hydrogen was supplied from the first source gas supply pipe at 15 L / min, and hydrogen was supplied from the second source gas supply pipe. The substrate was heated to 1150 ° C. while supplying 15 L / min, and the substrate was heat-treated for 10 minutes.

次に、基板の温度を500℃に下げ安定するまで放置した。続いて、サセプタを毎分12回転、基板を毎分36回転させるとともに、第一の原料ガスの供給管からはアンモニアと水素の混合ガス(アンモニア20L/min、水素10L/min)を供給し、第二の原料ガスの供給管からはトリメチルガリウムを含む水素ガス(トリメチルガリウム120μmol/min、水素25L/min)を供給して、GaNの低温気相成長を2分間行なった。   Next, the temperature of the substrate was lowered to 500 ° C. and allowed to stand until stable. Subsequently, the susceptor is rotated 12 times per minute, the substrate is rotated 36 times per minute, and a mixed gas of ammonia and hydrogen (ammonia 20 L / min, hydrogen 10 L / min) is supplied from the first source gas supply pipe, Hydrogen gas containing trimethylgallium (trimethylgallium 120 μmol / min, hydrogen 25 L / min) was supplied from the second source gas supply pipe, and low-temperature vapor phase growth of GaN was performed for 2 minutes.

低温成長層形成後、トリメチルガリウムの供給を停止し、アンモニアと水素の混合ガスのみ供給し、基板の温度を1100℃まで上げて安定するまで放置した。次に第一の原料ガスの供給管からはアンモニアと水素の混合ガス(アンモニア40L/min、水素10L/min)を供給し、第二の原料ガスの供給管から再度トリメチルガリウムを含む水素ガス(トリメチルガリウム240μmol/min、水素50L/min)を供給し、GaNの気相成長を60分間行なった。このようにして、気相成長を5回繰り返した。   After the low temperature growth layer was formed, the supply of trimethylgallium was stopped, only a mixed gas of ammonia and hydrogen was supplied, and the temperature of the substrate was raised to 1100 ° C. and allowed to stand until stable. Next, a mixed gas of ammonia and hydrogen (ammonia 40 L / min, hydrogen 10 L / min) is supplied from the first source gas supply pipe, and hydrogen gas containing trimethylgallium is again supplied from the second source gas supply pipe ( (Trimethylgallium 240 μmol / min, hydrogen 50 L / min) was supplied, and vapor phase growth of GaN was performed for 60 minutes. Thus, the vapor phase growth was repeated 5 times.

(GaN膜の評価)
気相成長終了後、基板を取り出しGaNの膜厚分布を測定して均一性を評価した。気相成長中基板は自転しているので、膜厚分布は基板の中心から端に向かう分布を測定した。膜厚及びその変動幅((最大値−最小値)/平均値)を測定した結果を表1に示す。さらに、成長した膜の結晶品質及び電気的特性を評価するために、5枚の基板についてX線回析((002)面の半値幅)及びホール測定(移動度)を行なった結果を表1に示す。尚、数値は平均値であり、実施例2もこれと同様である。
(Evaluation of GaN film)
After completion of the vapor phase growth, the substrate was taken out and the film thickness distribution of GaN was measured to evaluate the uniformity. Since the substrate rotates during the vapor phase growth, the film thickness distribution was measured from the center to the end of the substrate. Table 1 shows the results of measuring the film thickness and the fluctuation range ((maximum value−minimum value) / average value). Furthermore, in order to evaluate the crystal quality and electrical characteristics of the grown film, Table 1 shows the results of X-ray diffraction (half width of (002) plane) and hole measurement (mobility) for five substrates. Shown in In addition, a numerical value is an average value and Example 2 is the same as this.

実施例1の気相成長装置の製作において、第二の原料ガスの供給管の導入口に、第二の原料ガスが基板表面の方向に向くような円錐形の案内部材を設定したほかは実施例1と同様にして図4に示すような気相成長装置を製作した。
この気相成長装置を用いたほかは実施例1と同様にして気相成長実験及びGaN膜の評価を行なった。その結果を表1に示す。
The production of the vapor phase growth apparatus of Example 1 was carried out except that a conical guide member was set at the inlet of the second source gas supply pipe so that the second source gas was directed toward the substrate surface. In the same manner as in Example 1, a vapor phase growth apparatus as shown in FIG.
A vapor phase growth experiment and evaluation of the GaN film were performed in the same manner as in Example 1 except that this vapor phase growth apparatus was used. The results are shown in Table 1.

(比較例1)
実施例1の気相成長装置の製作において、第一の原料ガスの供給管を設けなかったほかは実施例1と同様にして気相成長装置を製作した。
この装置を用いて、以下のように直径2インチのサファイヤ基板上にGaNの結晶成長を行なった。
サファイヤ基板5枚をサセプタ上に等間隔でセットし、反応室内を水素ガスで置換した後、第二の原料ガスの供給管から水素を30L/min供給しながら基板を1150℃に加熱し、基板の熱処理を10分間行なった。
(Comparative Example 1)
In the production of the vapor phase growth apparatus of Example 1, the vapor phase growth apparatus was produced in the same manner as in Example 1 except that the first source gas supply pipe was not provided.
Using this apparatus, a GaN crystal was grown on a sapphire substrate having a diameter of 2 inches as follows.
After five sapphire substrates were set on the susceptor at equal intervals and the reaction chamber was replaced with hydrogen gas, the substrate was heated to 1150 ° C. while supplying hydrogen at 30 L / min from the second source gas supply pipe. The heat treatment was performed for 10 minutes.

次に、基板の温度を500℃に下げ安定するまで放置した。続いてサセプタを毎分12回転、基板を毎分36回転させるとともに、第二の原料ガスの供給管から、トリメチルガリウムを含むアンモニアと水素の混合ガス(トリメチルガリウム120μmol/min、アンモニア20L/min、水素35L/min)を供給して、GaNの低温気相成長を2分間行なった。   Next, the temperature of the substrate was lowered to 500 ° C. and allowed to stand until stable. Subsequently, the susceptor is rotated 12 times per minute, the substrate is rotated 36 times per minute, and a mixed gas of ammonia and hydrogen containing trimethylgallium (trimethylgallium 120 μmol / min, ammonia 20 L / min, Hydrogen 35 L / min) was supplied, and low-temperature vapor phase growth of GaN was performed for 2 minutes.

低温成長層形成後、アンモニアと水素の混合ガスのみ供給し、基板の温度を1100℃まで上げて安定するまで放置した。次に第二の原料ガスの供給管から再度トリメチルガリウムを含むアンモニアと水素の混合ガス(トリメチルガリウム240μmol/min、アンモニア40L/min、水素60L/min)を供給し、GaNの気相成長を60分間行なった。このようにして、気相成長を5回繰り返した。気相成長終了後、実施例1と同様にして気相成長実験及びGaN膜の評価を行なった結果を表1に示す。   After forming the low-temperature growth layer, only a mixed gas of ammonia and hydrogen was supplied, and the temperature of the substrate was raised to 1100 ° C. and left until it was stabilized. Next, a mixed gas of trimethylgallium-containing ammonia and hydrogen (trimethylgallium 240 μmol / min, ammonia 40 L / min, hydrogen 60 L / min) is supplied again from the second source gas supply pipe, and vapor phase growth of GaN is performed for 60 times. For a minute. Thus, the vapor phase growth was repeated 5 times. Table 1 shows the results of the vapor phase growth experiment and the GaN film evaluation performed in the same manner as in Example 1 after the completion of the vapor phase growth.

Figure 2005228757
Figure 2005228757

本発明の気相成長装置の一例を示す垂直断面図Vertical sectional view showing an example of the vapor phase growth apparatus of the present invention 本発明の図1以外の気相成長装置の一例を示す垂直断面図Vertical sectional view showing an example of a vapor phase growth apparatus other than FIG. 1 of the present invention 本発明の図1、図2以外の気相成長装置の一例を示す垂直断面図Vertical sectional view showing an example of a vapor phase growth apparatus other than FIGS. 1 and 2 of the present invention 本発明の図1〜図3以外の気相成長装置の一例を示す垂直断面図Vertical sectional view showing an example of a vapor phase growth apparatus other than FIGS. 1 to 3 of the present invention

符号の説明Explanation of symbols

1 反応室
2 基板
3 環状サセプタ
4 ヒータ
5 第一の原料ガスの供給管
6 第二の原料ガスの供給管
7 反応ガス排出部
8 サセプタ回転軸
9 案内部材
10 案内部材
DESCRIPTION OF SYMBOLS 1 Reaction chamber 2 Substrate 3 Annular susceptor 4 Heater 5 First source gas supply pipe 6 Second source gas supply pipe 7 Reaction gas discharge part 8 Susceptor rotating shaft 9 Guide member 10 Guide member

Claims (11)

反応室内に基板を水平方向に載置する環状サセプタ、該基板を加熱するヒータ、該環状サセプタの中心部から第一の原料ガスを反応室内に導入する供給管、該環状サセプタと対向する反応室壁面の中心部から第二の原料ガスを反応室内に導入する供給管、及び反応ガス排出部を備えてなることを特徴とする気相成長装置。   An annular susceptor for horizontally placing the substrate in the reaction chamber, a heater for heating the substrate, a supply pipe for introducing the first source gas into the reaction chamber from the center of the annular susceptor, and a reaction chamber facing the annular susceptor A vapor phase growth apparatus comprising: a supply pipe for introducing a second source gas into a reaction chamber from a central part of a wall surface; and a reaction gas discharge part. 気相成長装置が、窒化ガリウム系化合物半導体を製造するための装置である請求項1に記載の気相成長装置。   The vapor phase growth apparatus according to claim 1, wherein the vapor phase growth apparatus is an apparatus for producing a gallium nitride compound semiconductor. サセプタが複数枚の基板を載せる構成である請求項1に記載の気相成長装置。   The vapor phase growth apparatus according to claim 1, wherein the susceptor is configured to mount a plurality of substrates. 第一の原料ガスと第二の原料ガスの混合位置に、第二の原料ガスが基板の方向に向くような案内部材を設定した請求項1に記載の気相成長装置。   The vapor phase growth apparatus according to claim 1, wherein a guide member is set at a mixing position of the first source gas and the second source gas so that the second source gas faces the substrate. 第二の原料ガスの供給管の内径が、反応室に向かって大きくなるように設定した請求項1に記載の気相成長装置。   The vapor phase growth apparatus according to claim 1, wherein an inner diameter of the second source gas supply pipe is set so as to increase toward the reaction chamber. 第二の原料ガスの供給管の反応室供給口に、第二の原料ガスが基板の方向に向くような案内部材を設定した請求項1に記載の気相成長装置。   2. The vapor phase growth apparatus according to claim 1, wherein a guide member is set at a reaction chamber supply port of the second source gas supply pipe so that the second source gas is directed toward the substrate. 反応室の垂直方向の間隙が、3〜30mmである請求項1に記載の気相成長装置。   The vapor phase growth apparatus according to claim 1, wherein a vertical gap of the reaction chamber is 3 to 30 mm. 基板を反応室内の環状サセプタに載せ、該基板をヒータで加熱し、該環状サセプタの中心部から第一の原料ガスを反応室内に導入するとともに、該環状サセプタと対向する反応室壁面の中心部から第二の原料ガスを反応室内に導入して、該基板に半導体膜を気相成長させることを特徴とする気相成長方法。   The substrate is placed on the annular susceptor in the reaction chamber, the substrate is heated with a heater, the first source gas is introduced into the reaction chamber from the central portion of the annular susceptor, and the central portion of the reaction chamber wall facing the annular susceptor A second source gas is introduced into the reaction chamber, and a semiconductor film is vapor-phase grown on the substrate. 第一の原料ガスが、アンモニア、モノメチルヒドラジン、ジメチルヒドラジン、tert-ブチルヒドラジン、またはトリメチルアミンを含むガスであり、第二の原料ガスが、トリメチルガリウム、トリエチルガリウム、トリメチルインジウム、トリエチルインジウム、トリメチルアルミニウム、またはトリエチルアルミニウムを含むガスである請求項8に記載の気相成長方法。   The first source gas is a gas containing ammonia, monomethylhydrazine, dimethylhydrazine, tert-butylhydrazine, or trimethylamine, and the second source gas is trimethylgallium, triethylgallium, trimethylindium, triethylindium, trimethylaluminum, The vapor phase growth method according to claim 8, wherein the gas is a gas containing triethylaluminum. 第二の原料ガスが、さらにビスエチルシクロペンタジエニルマグネシウム、シラン、または有機シランを含むガスである請求項9に記載の気相成長方法。   The vapor phase growth method according to claim 9, wherein the second source gas is a gas further containing bisethylcyclopentadienylmagnesium, silane, or organosilane. 第二の原料ガスを、基板表面の方向に向かって導入する請求項8に記載の気相成長方法。
The vapor phase growth method according to claim 8, wherein the second source gas is introduced toward the substrate surface.
JP2004032781A 2004-02-10 2004-02-10 Apparatus and method for growing vapor phase Pending JP2005228757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004032781A JP2005228757A (en) 2004-02-10 2004-02-10 Apparatus and method for growing vapor phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004032781A JP2005228757A (en) 2004-02-10 2004-02-10 Apparatus and method for growing vapor phase

Publications (1)

Publication Number Publication Date
JP2005228757A true JP2005228757A (en) 2005-08-25

Family

ID=35003260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004032781A Pending JP2005228757A (en) 2004-02-10 2004-02-10 Apparatus and method for growing vapor phase

Country Status (1)

Country Link
JP (1) JP2005228757A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1750195A1 (en) 2005-08-05 2007-02-07 Niles Co., Ltd. Joystic input device
JP2013502079A (en) * 2009-08-12 2013-01-17 ジョージア ステート ユニバーシティ リサーチ ファウンデーション,インコーポレイテッド High pressure chemical vapor deposition apparatus, method, and composition produced thereby
JP2013538463A (en) * 2010-09-17 2013-10-10 ウォニク アイピーエス カンパニ リミテッド Thin film deposition equipment
CN103451725A (en) * 2012-06-01 2013-12-18 夏普株式会社 Vapor phase growth device and producing method of nitride semiconductor illuminating element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1750195A1 (en) 2005-08-05 2007-02-07 Niles Co., Ltd. Joystic input device
JP2013502079A (en) * 2009-08-12 2013-01-17 ジョージア ステート ユニバーシティ リサーチ ファウンデーション,インコーポレイテッド High pressure chemical vapor deposition apparatus, method, and composition produced thereby
JP2015216381A (en) * 2009-08-12 2015-12-03 ジョージア ステート ユニバーシティ リサーチ ファウンデーション,インコーポレイテッド High pressure chemical vapor deposition apparatuses, methods, and compositions produced therewith
US10358743B2 (en) 2009-08-12 2019-07-23 Georgia State University Research Foundation, Inc. High pressure chemical vapor deposition apparatuses, methods, and compositions produced therewith
JP2013538463A (en) * 2010-09-17 2013-10-10 ウォニク アイピーエス カンパニ リミテッド Thin film deposition equipment
CN103451725A (en) * 2012-06-01 2013-12-18 夏普株式会社 Vapor phase growth device and producing method of nitride semiconductor illuminating element
CN103451725B (en) * 2012-06-01 2016-04-20 夏普株式会社 The manufacture method of epitaxially growing equipment and nitride semiconductor luminescent element

Similar Documents

Publication Publication Date Title
TW544775B (en) Chemical vapor deposition apparatus and chemical vapor deposition method
US8029621B2 (en) Raw material feeding device, film formation system and method for feeding gaseous raw material
JP2002371361A (en) Apparatus and method for vapor phase epitaxy
WO2011011532A2 (en) Hollow cathode showerhead
TW201246297A (en) Metal-organic vapor phase epitaxy system and process
JP6606403B2 (en) Shower plate, vapor phase growth apparatus, and vapor phase growth method
KR20090122347A (en) Method and device for manufacturing semiconductor compound materials by means of vapour phase epitaxy
US20140366803A1 (en) Vapor phase growth apparatus
KR20120083495A (en) Vapor deposition device, vapor deposition method, and semiconductor element manufacturing method
KR100767798B1 (en) Chemical vapor deposition apparatus and chemical vapor deposition method
US20100307418A1 (en) Vapor phase epitaxy apparatus of group iii nitride semiconductor
JP2010095431A (en) APPARATUS OF FORMING SiC THIN FILM
US11692266B2 (en) SiC chemical vapor deposition apparatus
JP2010248022A (en) Group iii nitride semiconductor self-standing substrate
JP2005228757A (en) Apparatus and method for growing vapor phase
JP2015198213A (en) Method of manufacturing epitaxial silicon carbide wafer, and holde for silicon carbide single cristal substrate used for the same
JP4879693B2 (en) MOCVD apparatus and MOCVD method
JP2009004424A (en) Method of manufacturing silicon epitaxial wafer
JP2002261021A (en) Apparatus and method for vapor-phase growth
JP2004165445A (en) Semiconductor manufacturing arrangement
JP2012174731A (en) Vapor phase deposition method and compound semiconductor film formed by vapor phase deposition method
JP2006013326A (en) Temperature control method of semiconductor manufacturing equipment
JP6117522B2 (en) Method for manufacturing epitaxial silicon carbide wafer
JP2012084581A (en) Vapor phase epitaxial growth device
JPH0648899A (en) Production of silicon carbide single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090626