JPH08109094A - Production of compound semiconductor single crystal - Google Patents

Production of compound semiconductor single crystal

Info

Publication number
JPH08109094A
JPH08109094A JP24416594A JP24416594A JPH08109094A JP H08109094 A JPH08109094 A JP H08109094A JP 24416594 A JP24416594 A JP 24416594A JP 24416594 A JP24416594 A JP 24416594A JP H08109094 A JPH08109094 A JP H08109094A
Authority
JP
Japan
Prior art keywords
raw material
melt
crucible
vapor pressure
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24416594A
Other languages
Japanese (ja)
Inventor
Toshiaki Asahi
聰明 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP24416594A priority Critical patent/JPH08109094A/en
Publication of JPH08109094A publication Critical patent/JPH08109094A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To enable the compositional control of a raw material melt and effectively carry out the compositional control of a grown single crystal by providing a crucible for placing a compound semiconductor raw material therein with a constitution having the air permeability capable of passing a vapor of an element for controlling the vapor pressure therethrough and growing the crystal from the melt surface downward while controlling the vapor pressure. CONSTITUTION: A simple substance or a compound comprising at least one of an element 5 for controlling the vapor pressure in constituent elements of a compound semiconductor is placed in a reservoir part 4B of a quartz ampul 4 and a raw material 2 containing at least two elements in the constituent elements of the compound semiconductor is then placed in an air-permeable crucible 1 capable of passing the vapor of the element 5 for controlling the vapor pressure therethrough. The crucible 1 is placed in the quartz ampul 4 and vacuum sealed. The quartz ampul 4 is installed in a vertical type heating furnace 6, which is subsequently used to heat the reservoir part 4B. Thereby, the vapor pressure of the element 5 is applied to the interior of the quartz ampul 4 to solidify the raw material melt from the top of the melt 2 downward while controlling the vapor pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、結晶製造技術さらには
垂直グラジェントフリージング(VGF)法や垂直ブリ
ッジマン(VB)法を応用した化合物半導体の単結晶の
製造方法に関し、例えばCdTeやCdZnTeのよう
なII−VI族化合物半導体の単結晶や混晶の製造に利用し
て有用な技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a single crystal of a compound semiconductor by applying a crystal production technique and a vertical gradient freezing (VGF) method or a vertical Bridgman (VB) method, for example, CdTe or CdZnTe. The present invention relates to a technique useful for producing a single crystal or a mixed crystal of such II-VI group compound semiconductors.

【0002】[0002]

【従来の技術】化合物半導体単結晶の製造方法の一つと
して、本出願人が先に出願した特公平5−59873号
に記載されたものがある。これは、VGF法を応用した
製造方法で、縦型加熱炉内に化合物半導体の原料を封入
したアンプルを配置してその原料を加熱溶融し、原料融
液の表面中心が最も低く、半径方向外側に向かうほど高
く、かつ下方ほど温度が高い状態を保持させつつ冷却す
ることにより、融液表面中心より下方へ向かって単結晶
を成長させるというものである。この製造方法によれ
ば、結晶が形成される固液界面がアンプル壁に接触せず
フローティング状態で結晶を成長させることができ、そ
れによって結晶内に熱応力が発生するのを抑制し、また
幾つもの箇所で同時に核が生じるのを回避することがで
きるので、双晶や転位などの欠陥が少ない良質かつ大口
径の化合物半導体単結晶を、再現性よく高歩留まりで育
成できるという効果が得られる。
2. Description of the Related Art One of the methods for producing a compound semiconductor single crystal is described in Japanese Patent Publication No. 5-59873 filed by the applicant of the present invention. This is a manufacturing method to which the VGF method is applied. An ampoule in which a raw material of a compound semiconductor is enclosed is placed in a vertical heating furnace and the raw material is heated and melted. The single crystal is grown downward from the center of the surface of the melt by cooling while maintaining a state in which the temperature is higher toward the bottom and higher toward the bottom. According to this manufacturing method, it is possible to grow the crystal in a floating state without contacting the ampoule wall with the solid-liquid interface where the crystal is formed, thereby suppressing generation of thermal stress in the crystal, and Since it is possible to prevent nucleation from occurring at one place at the same time, it is possible to grow a good quality and large diameter compound semiconductor single crystal with few defects such as twins and dislocations with good reproducibility and high yield.

【0003】また、化合物半導体単結晶の製造方法とし
て、特開昭64−37488号に記載されたものがあ
る。これは、VB法を応用した製造方法で、反応管内に
単結晶成長原料と蒸気圧制御用元素を封入し、その反応
管を縦型加熱炉内で該炉に対して相対移動させることに
より蒸気圧制御を行ないつつ単結晶を原料融液の下部か
ら上方へ向かって成長させるというものである。この製
造方法によれば、厳密な蒸気圧制御が可能となり、電導
タイプ、抵抗値等の物性が十分に制御された単結晶を再
現性よく得ることができるという効果が得られる。
Further, as a method for producing a compound semiconductor single crystal, there is a method described in JP-A-64-37488. This is a manufacturing method applying the VB method, in which a single crystal growth material and a vapor pressure control element are enclosed in a reaction tube, and the reaction tube is moved in a vertical heating furnace relative to the furnace. The single crystal is grown upward from the lower part of the raw material melt while controlling the pressure. According to this manufacturing method, strict vapor pressure control is possible, and a single crystal having sufficiently controlled physical properties such as conductivity type and resistance value can be obtained with good reproducibility.

【0004】さらに、化合物半導体単結晶の他の製造方
法として周知の液体封止チョクラルスキー(LEC)法
においては、GaPの溶融体を収納した石英るつぼの底
に通気性のフィルタを挟んでGa溜め設け、そのGaを
加熱してGa蒸気圧を印加しながらGaP単結晶を成長
させる方法が公知である(特公昭56−35639号公
報に記載)。これによれば、皿状ピットが無く、かつG
a空孔の少ない高品位のGaP結晶を工業的に実用化し
得るという効果が得られる。
Further, in another known liquid-encapsulated Czochralski (LEC) method as another method for producing a compound semiconductor single crystal, a gas permeable filter is sandwiched between the bottoms of a quartz crucible containing a GaP melt to form a Ga. A method is known in which a GaP single crystal is grown by providing a reservoir and heating Ga to apply Ga vapor pressure (described in Japanese Patent Publication No. 56-35639). According to this, there is no dish pit and G
It is possible to obtain the effect that a high-quality GaP crystal having a few voids can be industrially put to practical use.

【0005】さらにまた、米国特許第3,649,19
3号には、ポーラスな底部を有するるつぼ内に収納した
Ga融液を封止剤で覆うとともに、そのポーラスな底部
を介してAsガスをGa融液中に拡散させることにより
GaAs多結晶を合成し、それに引き続き単結晶を成長
させる方法が示されている。
Furthermore, US Pat. No. 3,649,19
No. 3 synthesizes a GaAs polycrystal by covering a Ga melt contained in a crucible having a porous bottom with a sealant and diffusing As gas into the Ga melt through the porous bottom. However, a method for growing a single crystal after that is shown.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、VGF
法やVB法などにおいて、上述した特公平5−5987
3号のように原料融液の表面から下方に向かって単結
晶、特にZnの偏析により成長方向の組成変動が起こり
易いCdZnTe等の混晶を成長させる場合には、成長
した結晶によって融液表面が殆ど覆われてしまうため、
上記特開昭64−37488号のように蒸気圧制御を行
なっても、蒸気圧制御用元素(CdZnTeの場合には
Zn)のガスが原料融液と接触し難くなり、蒸気圧制御
による効果が得難いという問題点がある。
[Problems to be Solved by the Invention] However, VGF
Method and VB method, etc.
In the case of growing a single crystal downward from the surface of the raw material melt as shown in No. 3, especially when growing a mixed crystal such as CdZnTe in which the composition variation in the growth direction is likely to occur due to segregation of Zn, the surface of the melt is increased by the grown crystal. Is almost covered,
Even if vapor pressure control is performed as in JP-A-64-37488, it becomes difficult for the vapor pressure control element (Zn in the case of CdZnTe) gas to come into contact with the raw material melt, and the effect of vapor pressure control is There is a problem that it is difficult to obtain.

【0007】また、上記特公昭56−35639号は、
LEC法において底に通気性のフィルタを有するるつぼ
を用いてそのるつぼ内の原料融液にGa溜めのGaの蒸
気を印加するものであり、VGF法やVB法により融液
表面から下方に向かって結晶を成長させる場合に、るつ
ぼ壁を介して原料融液に蒸気圧を印加する蒸気圧制御法
を何等示唆するものでないだけでなく、またるつぼの構
成が複雑であるという欠点も有する。
The Japanese Patent Publication No. 56-35639 described above
In the LEC method, a crucible having an air-permeable filter at the bottom is used to apply Ga vapor in a Ga reservoir to the raw material melt in the crucible. The VGF method or the VB method is used to move downward from the melt surface. Not only does this suggest a vapor pressure control method of applying a vapor pressure to a raw material melt through a crucible wall when growing a crystal, but it also has a drawback that the structure of the crucible is complicated.

【0008】さらに、上記米国特許第3,649,19
3号は、化合物半導体の多結晶を合成する際に、るつぼ
のポーラスな底部を介してAsガスをGa融液中に拡散
させるものであり、上記の場合と同様に、VGF法やV
B法により融液表面から下方に向かって結晶を成長させ
る場合に、るつぼ壁を介して原料融液に蒸気圧を印加す
る蒸気圧制御法を何等示唆するものでないだけでなく、
またるつぼの構成が複雑で加工が難しいという欠点も有
する。
Further, the above-mentioned US Pat. No. 3,649,19
No. 3 diffuses As gas into a Ga melt through a porous bottom of a crucible when synthesizing a compound semiconductor polycrystal.
Not only does it suggest a vapor pressure control method of applying a vapor pressure to a raw material melt through a crucible wall when a crystal is grown downward from the melt surface by the B method,
It also has a drawback that the crucible has a complicated structure and is difficult to process.

【0009】本発明は、上記事情に鑑みてなされたもの
で、その目的は、VGF法やVB法などにより融液表面
から下方に向かって結晶を成長させる場合にも蒸気圧制
御を有効に行なうことを可能とし、それによって原料融
液の組成制御を可能としさらには成長した結晶の組成制
御を有効に行ない得る化合物半導体単結晶の製造方法を
提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to effectively control vapor pressure even when a crystal is grown downward from the melt surface by the VGF method or the VB method. It is therefore an object of the present invention to provide a method for producing a compound semiconductor single crystal, which enables to control the composition of the raw material melt and to effectively control the composition of the grown crystal.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明者は、単結晶成長用るつぼをCdやZnの蒸
気が通過し得るような通気性を有する材料で形成し、そ
のるつぼを用いることにより、CdやZnの蒸気圧制御
を行ない、それによって原料融液の組成を制御しながら
VGF法またはVB法により融液表面から下方に向かっ
て結晶を成長させることができることを見出した。
In order to achieve the above object, the present inventor has formed a crucible for growing a single crystal with a material having air permeability such that vapor of Cd or Zn can pass through the crucible. It has been found that by using C., it is possible to control the vapor pressure of Cd and Zn, thereby controlling the composition of the raw material melt and growing crystals downward from the melt surface by the VGF method or the VB method. .

【0011】本発明は、上記知見に基づきなされたもの
で、リザーバ部を有する石英アンプルの該リザーバ部内
に、化合物半導体の構成元素のうちの少なくとも1種の
蒸気圧制御用元素よりなる単体または化合物を入れると
ともに、前記蒸気圧制御用元素の蒸気を通過可能な通気
性を有するるつぼ内に、前記化合物半導体の構成元素の
うちの少なくとも2種の元素を有する原料を入れ、該る
つぼを前記石英アンプル内に設置して同石英アンプルを
真空封止した後、該石英アンプルを縦型の加熱炉内に設
置し、該加熱炉により前記リザーバ部を加熱して同リザ
ーバ部内の前記蒸気圧制御用元素の蒸気圧を上記石英ア
ンプル内にかけて蒸気圧制御を行いながら、前記加熱炉
により前記るつぼを加熱して前記原料を融解した後、該
原料融液内の垂直方向の温度勾配を融液上端から融液下
端に向かうに連れて高温となるように保持しながら徐々
に冷却して融液上端から下方に向かって前記原料融液を
固化させることにより前記化合物半導体の単結晶を成長
させることを特徴とする。
The present invention has been made based on the above findings, and a simple substance or a compound made of at least one vapor pressure controlling element among the constituent elements of the compound semiconductor is provided in the reservoir portion of the quartz ampoule having the reservoir portion. And a raw material containing at least two of the constituent elements of the compound semiconductor is placed in a crucible having gas permeability that allows the vapor of the vapor pressure controlling element to pass therethrough, and the crucible is filled with the quartz ampoule. And the quartz ampoule is vacuum-sealed, the quartz ampoule is placed in a vertical heating furnace, and the reservoir is heated by the heating furnace to control the vapor pressure in the reservoir. While heating the crucible by the heating furnace to melt the raw material while controlling the vapor pressure by applying the vapor pressure to the quartz ampoule, the vertical direction in the raw material melt is obtained. The compound semiconductor by gradually cooling while holding the temperature gradient in the direction from the upper end of the melt toward the lower end of the melt so as to become higher and solidifying the raw material melt downward from the upper end of the melt. Is characterized by growing a single crystal of.

【0012】この発明において、前記るつぼは、多孔質
グラファイト、カーボン、窒化ボロン焼結体、アルミナ
または多孔性石英でできていることをも特徴とする。
The present invention is also characterized in that the crucible is made of porous graphite, carbon, sintered boron nitride, alumina or porous quartz.

【0013】[0013]

【作用】上記した手段によれば、化合物半導体の原料を
入れるるつぼを、蒸気圧制御用元素の蒸気を通過可能な
通気性を有する構成とし、蒸気圧制御を行ないながらV
GF法やVB法により融液表面から下方に向かって結晶
を成長させるようにしたため、成長した結晶により融液
表面が殆ど覆われて蒸気圧制御用元素の蒸気と原料融液
とが直接接する面積が著しく小さくなっても、るつぼ壁
を介して、或はるつぼ壁とるつぼ底を介して蒸気と原料
融液とが十分に接することとなり、気相と液相と固相の
三相の平衡状態を保ちながら結晶成長を行なうことがで
きる。従って、結晶成長中、原料融液の組成が一定に保
たれるので、安定して結晶成長を行なうことができる。
According to the above-mentioned means, the crucible for containing the raw material of the compound semiconductor is made to have a gas permeability which allows the vapor of the vapor pressure controlling element to pass therethrough, and V is controlled while controlling the vapor pressure.
Since the crystal is made to grow downward from the melt surface by the GF method or the VB method, the melt surface is almost covered by the grown crystal and the area where the vapor of the vapor pressure controlling element and the raw material melt are in direct contact Even if the temperature becomes extremely small, the vapor and the raw material melt are sufficiently in contact with each other through the crucible wall or through the crucible wall and the crucible bottom, and the three-phase equilibrium state of gas phase, liquid phase and solid phase is reached. It is possible to grow crystals while maintaining the above. Therefore, since the composition of the raw material melt is kept constant during the crystal growth, stable crystal growth can be performed.

【0014】また、3元系以上の混晶組成の結晶を、2
成分以上の元素の蒸気圧を同時に制御しながら成長させ
る場合、例えばCd1-X ZnX Teのような3元混晶半
導体の結晶を成長させる場合に、上記通気性を有するる
つぼを用いてCdとZnの蒸気圧を同時に制御すること
により、Znの偏析によって結晶成長の進行とともに原
料融液中のZn濃度が減少するのを防止して、結晶成長
中、常時、原料融液中のZn濃度を一定に保つことがで
きるので、結晶成長方向の組成が均一な結晶を得ること
ができる。
In addition, a crystal having a mixed crystal composition of ternary or higher is
In the case of growing while simultaneously controlling the vapor pressures of the elements above the components, for example, in the case of growing a crystal of a ternary mixed crystal semiconductor such as Cd 1-X Zn X Te, the above-mentioned air-permeable crucible is used to produce Cd. By simultaneously controlling the vapor pressures of Zn and Zn, it is possible to prevent the Zn concentration in the raw material melt from decreasing as the crystal growth progresses due to the segregation of Zn. Can be kept constant, so that a crystal having a uniform composition in the crystal growth direction can be obtained.

【0015】[0015]

【実施例】本発明に係る化合物半導体単結晶の製造方法
の実施例を図1及び図2に基づき以下に説明する。図1
は、本発明に係る製造方法の実施に用いるるつぼ内に原
料融液を入れ、融液表面から結晶が少し成長した状態の
縦断面図であり、図2はそのるつぼを結晶成長用の加熱
炉内に設置した状態及び該加熱炉内の垂直方向の温度分
布の一例を示した概略図である。両図において、1はる
つぼ、2は原料融液、3は成長した結晶、4は石英アン
プル、4Aは結晶成長室、4Bは蒸気圧制御室(リザー
バ部)、5は蒸気圧制御用元素、6はヒータである。
EXAMPLE An example of a method for producing a compound semiconductor single crystal according to the present invention will be described below with reference to FIGS. 1 and 2. FIG.
FIG. 2 is a vertical cross-sectional view of a state in which a raw material melt is put into a crucible used for carrying out the manufacturing method according to the present invention, and crystals are slightly grown from the surface of the melt, and FIG. 2 is a heating furnace for crystal growth of the crucible. It is the schematic which showed the state installed inside and the example of the temperature distribution of the vertical direction in this heating furnace. In both figures, 1 is a crucible, 2 is a raw material melt, 3 is a grown crystal, 4 is a quartz ampoule, 4A is a crystal growth chamber, 4B is a vapor pressure control chamber (reservoir section), 5 is a vapor pressure control element, 6 is a heater.

【0016】本発明に係る化合物半導体単結晶の製造方
法は、成長させる化合物半導体結晶の構成元素のうち蒸
気圧制御用元素5の蒸気を通過可能な通気性を有するる
つぼ1を用い、蒸気圧制御を行ないながらVGF法によ
り原料融液2の表面から下方へ向かって結晶を成長させ
るものである。即ち、るつぼ1内に化合物半導体の構成
元素を含む原料を入れ、そのるつぼ1を石英アンプル4
の結晶成長室4A内に設置するとともに、リザーバ部4
B内に蒸気圧制御用元素5よりなる単体または化合物を
入れてその石英アンプル4を真空封止し、それを縦型の
加熱炉内に設置する。ヒータ6によりリザーバ部4Bを
所定の温度に加熱して石英アンプル4内における蒸気圧
制御用元素5の蒸気圧が所望の大きさとなるようにヒー
タ6の出力(供給電力)を制御するとともに、るつぼ1
内の原料を溶融して原料融液2とする。そして、図2に
示すイ−ロ線のように原料融液2の表面(上端)よりも
るつぼ底の温度が高くなるような温度勾配を保持しつつ
結晶成長室4Aの温度をハ−ニ線側に徐々に冷却して、
原料融液2をその上部から下部へ向かって固化させる。
In the method for producing a compound semiconductor single crystal according to the present invention, vapor pressure control is performed by using a crucible 1 having gas permeability that allows passage of vapor of vapor pressure control element 5 among the constituent elements of the compound semiconductor crystal to be grown. The crystal is grown downward from the surface of the raw material melt 2 by the VGF method. That is, a raw material containing a constituent element of a compound semiconductor is placed in the crucible 1 and the crucible 1 is placed in a quartz ampoule 4.
Is installed in the crystal growth chamber 4A of
A simple substance or a compound made of the element 5 for controlling the vapor pressure is put in B, the quartz ampoule 4 is vacuum-sealed, and the quartz ampoule 4 is placed in a vertical heating furnace. The heater 6 heats the reservoir portion 4B to a predetermined temperature to control the output (supply power) of the heater 6 so that the vapor pressure of the vapor pressure controlling element 5 in the quartz ampoule 4 becomes a desired value, and the crucible 1
The raw material therein is melted to form a raw material melt 2. Then, the temperature of the crystal growth chamber 4A is adjusted to the Hani line while maintaining a temperature gradient such that the temperature of the crucible bottom is higher than the surface (upper end) of the raw material melt 2 as shown by the arrow line in FIG. Gradually cool to the side,
The raw material melt 2 is solidified from the upper part to the lower part.

【0017】ここで、るつぼ1は、上述したように通気
性を有しており、特に限定しないが、例えば多孔質グラ
ファイト、カーボン、窒化ボロン焼結体、アルミナまた
は多孔性石英でできている。またそれら以外にも、化合
物半導体結晶の育成に使用可能な材料で通気性を有する
ものであれば、るつぼ1の材料として適している。この
ようにるつぼ1が通気性を有することにより、図1に示
すように、原料融液2の表面が成長した結晶3により殆
ど覆われても、蒸気圧制御用元素5の蒸気(ガス)がる
つぼ1の側壁や底壁を通過して原料融液2と接し、さら
にはその接したガスが原料融液2中に拡散していく。従
って、CdZnTeのように偏析などの原因により結晶
成長の進行とともに原料融液2中から消費されて濃度が
減少していくような元素(CdZnTeの場合にはZ
n)、或はCdTeのように融液組成を化合物半導体の
化学量論組成よりもずらして過剰としなければならない
ような元素(CdTeの場合にはCd)を蒸気圧制御用
元素5として選択することにより、その元素の結晶成長
中における濃度を所定の大きさに保つことができるの
で、融液組成の変動を防止することができる。
Here, the crucible 1 has air permeability as described above, and is not particularly limited, but is made of, for example, porous graphite, carbon, boron nitride sintered body, alumina or porous quartz. In addition to these, any material that can be used for growing a compound semiconductor crystal and has air permeability is suitable as a material for the crucible 1. Due to the air permeability of the crucible 1 as described above, as shown in FIG. 1, even if the surface of the raw material melt 2 is almost covered with the grown crystals 3, the vapor (gas) of the vapor pressure control element 5 remains The raw material melt 2 is passed through the side wall and the bottom wall of the crucible 1, and further, the contacted gas diffuses into the raw material melt 2. Therefore, an element such as CdZnTe that is consumed from the raw material melt 2 and its concentration decreases as the crystal growth progresses due to segregation or the like (in the case of CdZnTe, Z
n), or an element such as CdTe that must be in excess of the melt composition by deviating from the stoichiometric composition of the compound semiconductor (CdTe in the case of CdTe) is selected as the vapor pressure controlling element 5. As a result, the concentration of the element during crystal growth can be maintained at a predetermined level, and thus fluctuations in the melt composition can be prevented.

【0018】また、ヒータ6は、垂直方向の温度分布を
任意に設定可能なようになっており、例えば2段、3
段、或はそれ以上の多段構成のヒータである。そして、
加熱炉内の1または複数の箇所に設けられた図示しない
熱電対などの温度測定手段により測定された温度データ
に基づいて、ヒータ6ヘの供給電力を図示しないコンピ
ュータ等の制御装置により制御するようになっており、
それによって炉内の温度が所望の分布となるようにヒー
タ6の出力が調節されている。
Further, the heater 6 can freely set the temperature distribution in the vertical direction.
It is a heater having a multi-stage structure of stages or more. And
The electric power supplied to the heater 6 is controlled by a control device such as a computer (not shown) based on temperature data measured by temperature measuring means (not shown) such as a thermocouple (not shown) provided at one or more locations in the heating furnace. Has become
Thereby, the output of the heater 6 is adjusted so that the temperature in the furnace has a desired distribution.

【0019】以下に、具体例を挙げるが、本発明は以下
の具体例により何等制限されるものではないのはいうま
でもない。 (具体例1)るつぼ1として、例えば、密度(嵩密度)
が1.0〜1.1g/cm3 、厚さ1mm、内径42mm及び
深さ50mmの多孔質グラファイト(商品名VCP10)
製のるつぼを用いた。CdTe多結晶原料の投入量は1
500gであり、リザーバ部4B内には約10gのCd
を入れた。結晶成長室4Aの温度を1110℃に設定す
るとともに、リザーバ部4Bの温度を800℃に設定し
て25時間保持した後、原料融液2内の垂直方向の温度
勾配を0.5〜1℃/cmとし、毎時0.2℃の冷却速度
で徐冷して原料融液2の表面から下方に向かってCdT
e単結晶を成長させた。得られた結晶を調べたところ、
結晶成長方向の化学量論組成が均一に分布しており、従
来よりも高品質のCdTe単結晶が得られたことがわか
った。
Specific examples will be given below, but it goes without saying that the present invention is not limited to the following specific examples. (Specific Example 1) As the crucible 1, for example, density (bulk density)
Of 1.0-1.1 g / cm 3 , thickness of 1 mm, inner diameter of 42 mm and depth of 50 mm porous graphite (trade name VCP10)
A crucible made of was used. CdTe polycrystalline raw material input is 1
500 g, and about 10 g of Cd in the reservoir 4B.
I put it in. The temperature of the crystal growth chamber 4A is set to 1110 ° C., the temperature of the reservoir portion 4B is set to 800 ° C., and the temperature is held for 25 hours. Then, the temperature gradient in the vertical direction in the raw material melt 2 is 0.5 to 1 ° C. / Cm, and gradually cool at a cooling rate of 0.2 ° C./hour to CdT downward from the surface of the raw material melt 2.
e Single crystal was grown. When examining the obtained crystals,
It was found that the stoichiometric composition in the crystal growth direction was uniformly distributed, and a CdTe single crystal of higher quality than the conventional one was obtained.

【0020】ここで、るつぼ1の多孔質材料の気孔率に
ついては、特に限定しないが、気孔率が大きい方が液相
(原料融液2)と気相(蒸気圧制御用元素5の蒸気)と
の接する部分がより大きくなり顕著な効果が得られると
期待されるので、原料融液2が漏洩しない範囲で気孔率
が大きいのが好ましい。
Here, the porosity of the porous material of the crucible 1 is not particularly limited, but the larger porosity is the liquid phase (raw material melt 2) and the gas phase (vapor of vapor pressure control element 5). Since it is expected that a portion in contact with will become larger and a remarkable effect will be obtained, it is preferable that the porosity is large in a range where the raw material melt 2 does not leak.

【0021】(具体例2)上記具体例1と同じるつぼ1
を用いた。CdTe多結晶原料の投入量は250gであ
り、リザーバ部4B内には178gのCdと104gの
Znを入れた(CdとZnのモル比1)。結晶成長室4
Aの温度を1110℃に設定するとともに、リザーバ部
4Bの温度を800℃に設定して25時間保持した後、
原料融液2内の垂直方向の温度勾配を0.5〜1℃/cm
とし、毎時0.2℃の冷却速度で徐冷して原料融液2の
表面から下方に向かってCdZnTeの3元混晶を成長
させた。得られた結晶を調べたところ、結晶成長方向の
Znの組成は2.1〜2.6原子%であり、偏析による
Zn分布よりも均一であることがわかった。また、結晶
の成長面、即ち径方向のZn分布も結晶の縁を除いて均
一であることがわかった。
(Specific Example 2) The same crucible 1 as in the above specific example 1.
Was used. The amount of the CdTe polycrystalline raw material charged was 250 g, and 178 g of Cd and 104 g of Zn were placed in the reservoir portion 4B (molar ratio of Cd and Zn was 1). Crystal growth chamber 4
After setting the temperature of A to 1110 ° C. and the temperature of the reservoir section 4B to 800 ° C. and holding for 25 hours,
The temperature gradient in the vertical direction in the raw material melt 2 is 0.5 to 1 ° C / cm.
Then, the ternary mixed crystal of CdZnTe was grown downward from the surface of the raw material melt 2 by gradually cooling at a cooling rate of 0.2 ° C. per hour. When the obtained crystal was examined, it was found that the composition of Zn in the crystal growth direction was 2.1 to 2.6 atomic%, which was more uniform than the Zn distribution due to segregation. It was also found that the crystal growth surface, that is, the Zn distribution in the radial direction was uniform except for the edges of the crystal.

【0022】なお、上記実施例においては、CdTeと
CdZnTeの単結晶を成長させる場合を例として挙げ
たが、他の化合物半導体、例えばPbTe、PbSnT
e、CdS、CdSe、ZnS、ZnSe、ZnTe、
PbS、PbSe、InSb、InAs、InP、Ga
As、GaSb、GaP、HgCdTe、CdZnS
e、ZnSSeなどに対しても本発明の単結晶の製造方
法を適用できるのは勿論である。
In the above embodiments, the case of growing a single crystal of CdTe and CdZnTe has been described as an example, but other compound semiconductors such as PbTe and PbSnT are used.
e, CdS, CdSe, ZnS, ZnSe, ZnTe,
PbS, PbSe, InSb, InAs, InP, Ga
As, GaSb, GaP, HgCdTe, CdZnS
Of course, the single crystal manufacturing method of the present invention can be applied to e, ZnSSe, and the like.

【0023】また、上記実施例においては、本発明をV
GF法に適用した場合について説明したが、これに限ら
ず、VB法や、化合物半導体の原料融液を液体封止剤で
封止したまま徐冷して固化させるカイロポーラス法にも
本発明を適用できる。
Further, in the above embodiment, the present invention is applied to the V
The case where the present invention is applied to the GF method has been described, but the present invention is not limited to this, and the present invention is also applied to a VB method and a cairoporous method in which a raw material melt of a compound semiconductor is slowly cooled and solidified while being sealed with a liquid sealant. Applicable.

【0024】さらに、上記実施例においては、原料融液
2の表面を開放状態とし、融液表面に自然発生した核か
ら結晶3を成長させたが、成長させる結晶と同一組成の
種結晶や冷却用のヒートシンクを原料融液の表面に接触
させて、原料融液の表面から下方に向かって結晶を成長
させてもよい。
Further, in the above embodiment, the surface of the raw material melt 2 was opened and the crystal 3 was grown from the nuclei naturally generated on the surface of the melt, but a seed crystal having the same composition as the crystal to be grown or cooling. A heat sink for heat may be brought into contact with the surface of the raw material melt to grow crystals downward from the surface of the raw material melt.

【0025】[0025]

【発明の効果】本発明に係る化合物半導体単結晶の製造
方法によれば、リザーバ部を有する石英アンプルの該リ
ザーバ部内に、化合物半導体の構成元素のうちの少なく
とも1種の蒸気圧制御用元素よりなる単体または化合物
を入れるとともに、前記蒸気圧制御用元素の蒸気を通過
可能な通気性を有するるつぼ内に、前記化合物半導体の
構成元素のうちの少なくとも2種の元素を有する原料を
入れ、該るつぼを前記石英アンプル内に設置して同石英
アンプルを真空封止した後、該石英アンプルを縦型の加
熱炉内に設置し、該加熱炉により前記リザーバ部を加熱
して同リザーバ部内の前記蒸気圧制御用元素の蒸気圧を
上記石英アンプル内にかけて蒸気圧制御を行いながら、
前記加熱炉により前記るつぼを加熱して前記原料を融解
した後、該原料融液内の垂直方向の温度勾配を融液上端
から融液下端に向かうに連れて高温となるように保持し
ながら徐々に冷却して融液上端から下方に向かって前記
原料融液を固化させることにより前記化合物半導体の単
結晶を成長させるようにしたため、るつぼ壁を介して、
或はるつぼ壁とるつぼ底を介して蒸気圧制御用元素の蒸
気と原料融液とが十分に接することとなり、気相と液相
と固相の三相の平衡状態を保ちながら結晶成長を行なう
ことができる。従って、結晶成長中、原料融液の組成が
一定に保たれるので、安定して結晶成長を行なうことが
でき、また結晶成長方向の組成が均一な結晶を得ること
ができる。
According to the method for producing a compound semiconductor single crystal of the present invention, at least one of the constituent elements of the compound semiconductor is used for controlling the vapor pressure in the reservoir portion of the quartz ampoule having the reservoir portion. And a raw material containing at least two elements of the constituent elements of the compound semiconductor is placed in a crucible having gas permeability that allows the vapor of the vapor pressure controlling element to pass therethrough. Is placed in the quartz ampoule and the quartz ampoule is vacuum-sealed, and then the quartz ampoule is placed in a vertical heating furnace, and the reservoir is heated by the heating furnace to vaporize the vapor in the reservoir. While controlling the vapor pressure by applying the vapor pressure of the pressure control element to the quartz ampoule,
After melting the raw material by heating the crucible by the heating furnace, the temperature gradient in the vertical direction in the raw material melt is gradually increased while maintaining the temperature from the upper end of the melt toward the lower end of the melt. In order to grow the single crystal of the compound semiconductor by solidifying the raw material melt from the upper end of the melt by cooling to the upper end of the melt, through the crucible wall,
Or, the vapor of the vapor pressure controlling element and the raw material melt are sufficiently in contact with each other through the crucible wall and the crucible bottom, and crystal growth is performed while maintaining the equilibrium state of the three phases of the gas phase, the liquid phase and the solid phase. be able to. Therefore, since the composition of the raw material melt is kept constant during the crystal growth, stable crystal growth can be performed, and crystals having a uniform composition in the crystal growth direction can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る製造方法の実施に用いるるつぼ内
に原料融液を入れ、融液表面から結晶が少し成長した状
態の縦断面図である。
FIG. 1 is a vertical cross-sectional view showing a state in which a raw material melt is put into a crucible used for carrying out a manufacturing method according to the present invention, and crystals are slightly grown from the surface of the melt.

【図2】そのるつぼを結晶成長用の加熱炉内に設置した
状態及び該加熱炉内の垂直方向の温度分布の一例を示し
た概略図である。
FIG. 2 is a schematic diagram showing an example of a state in which the crucible is installed in a heating furnace for crystal growth and a temperature distribution in a vertical direction in the heating furnace.

【符号の説明】[Explanation of symbols]

1 るつぼ 2 原料融液 3 結晶 4 石英アンプル 4B リザーバ部 5 蒸気圧制御用元素 6 ヒータ(加熱炉) 1 Crucible 2 Raw Material Melt 3 Crystal 4 Quartz Ampoule 4B Reservoir Section 5 Vapor Pressure Control Element 6 Heater (Heating Furnace)

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年11月25日[Submission date] November 25, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】以下に、具体例を挙げるが、本発明は以下
の具体例により何等制限されるものではないのはいうま
でもない。 (具体例1)るつぼ1として、例えば、密度(嵩密度)
が1.0〜1.1g/cm3 、厚さ1mm、内径42mm及び
深さ50mmの多孔質カーボン(商品名VCP10)製の
るつぼを用いた。CdTe多結晶原料の投入量は150
0gであり、リザーバ部4B内には約10gのCdを入
れた。結晶成長室4Aの温度を1110℃に設定すると
ともに、リザーバ部4Bの温度を800℃に設定して2
5時間保持した後、原料融液2内の垂直方向の温度勾配
を0.5〜1℃/cmとし、毎時0.2℃の冷却速度で徐
冷して原料融液2の表面から下方に向かってCdTe単
結晶を成長させた。得られた結晶を調べたところ、結晶
成長方向の化学量論組成が均一に分布しており、従来よ
りも高品質のCdTe単結晶が得られたことがわかっ
た。
Specific examples will be given below, but it goes without saying that the present invention is not limited to the following specific examples. (Specific Example 1) As the crucible 1, for example, density (bulk density)
Was 1.0 to 1.1 g / cm 3 , a thickness of 1 mm, an inner diameter of 42 mm and a depth of 50 mm, and a crucible made of porous carbon (trade name VCP10) was used. CdTe polycrystalline raw material input amount is 150
It was 0 g, and about 10 g of Cd was put in the reservoir portion 4B. The temperature of the crystal growth chamber 4A is set to 1110 ° C, and the temperature of the reservoir portion 4B is set to 800 ° C.
After holding for 5 hours, the temperature gradient in the vertical direction in the raw material melt 2 was set to 0.5 to 1 ° C./cm, and the raw material melt 2 was gradually cooled at a cooling rate of 0.2 ° C./hour downward from the surface. A CdTe single crystal was grown toward it. When the obtained crystal was examined, it was found that the stoichiometric composition in the crystal growth direction was uniformly distributed, and a CdTe single crystal of higher quality than the conventional one was obtained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】リザーバ部を有する石英アンプルの該リザ
ーバ部内に、化合物半導体の構成元素のうちの少なくと
も1種の蒸気圧制御用元素よりなる単体または化合物を
入れるとともに、 前記蒸気圧制御用元素の蒸気を通過可能な通気性を有す
るるつぼ内に、前記化合物半導体の構成元素のうちの少
なくとも2種の元素を有する原料を入れ、 該るつぼを前記石英アンプル内に設置して同石英アンプ
ルを真空封止した後、 該石英アンプルを縦型の加熱炉内に設置し、 該加熱炉により前記リザーバ部を加熱して同リザーバ部
内の前記蒸気圧制御用元素の蒸気圧を上記石英アンプル
内にかけて蒸気圧制御を行いながら、 前記加熱炉により前記るつぼを加熱して前記原料を融解
した後、 該原料融液内の垂直方向の温度勾配を融液上端から融液
下端に向かうに連れて高温となるように保持しながら徐
々に冷却して融液上端から下方に向かって前記原料融液
を固化させることにより前記化合物半導体の単結晶を成
長させることを特徴とする化合物半導体単結晶の製造方
法。
1. A quartz ampoule having a reservoir portion is provided with a simple substance or a compound consisting of at least one vapor pressure controlling element among constituent elements of a compound semiconductor, and the vapor pressure controlling element A raw material containing at least two of the constituent elements of the compound semiconductor is placed in a crucible having gas permeability that allows vapor to pass through, the crucible is placed in the quartz ampoule, and the quartz ampoule is vacuum-sealed. After stopping, the quartz ampoule is installed in a vertical heating furnace, and the reservoir is heated by the heating furnace to apply the vapor pressure of the vapor pressure controlling element in the reservoir into the quartz ampoule. While controlling, after heating the crucible by the heating furnace to melt the raw material, a vertical temperature gradient in the raw material melt is changed from the melt upper end to the melt lower end. A compound semiconductor, characterized in that a single crystal of the compound semiconductor is grown by gradually cooling while holding the melt at a high temperature and solidifying the raw material melt downward from the upper end of the melt. Method for producing single crystal.
【請求項2】前記るつぼは、多孔質グラファイト、カー
ボン、窒化ボロン焼結体、アルミナまたは多孔性石英で
できていることを特徴とする請求項1記載の化合物半導
体単結晶の製造方法。
2. The method for producing a compound semiconductor single crystal according to claim 1, wherein the crucible is made of porous graphite, carbon, sintered boron nitride, alumina or porous quartz.
JP24416594A 1994-10-07 1994-10-07 Production of compound semiconductor single crystal Pending JPH08109094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24416594A JPH08109094A (en) 1994-10-07 1994-10-07 Production of compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24416594A JPH08109094A (en) 1994-10-07 1994-10-07 Production of compound semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPH08109094A true JPH08109094A (en) 1996-04-30

Family

ID=17114744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24416594A Pending JPH08109094A (en) 1994-10-07 1994-10-07 Production of compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPH08109094A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103911665A (en) * 2013-01-08 2014-07-09 广东先导稀材股份有限公司 Impurity removal method in process of preparation of tellurium zinc cadmium crystal by use of carbon-plated quartz crucible
JP2016018972A (en) * 2014-07-11 2016-02-01 Jx日鉱日石金属株式会社 Radiation detection element, radiation detector and method for manufacturing radiation detection element
CN116536768A (en) * 2023-06-29 2023-08-04 浙江珏芯微电子有限公司 Crucible for growth of tellurium-zinc-cadmium monocrystal and growth method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103911665A (en) * 2013-01-08 2014-07-09 广东先导稀材股份有限公司 Impurity removal method in process of preparation of tellurium zinc cadmium crystal by use of carbon-plated quartz crucible
JP2016018972A (en) * 2014-07-11 2016-02-01 Jx日鉱日石金属株式会社 Radiation detection element, radiation detector and method for manufacturing radiation detection element
CN116536768A (en) * 2023-06-29 2023-08-04 浙江珏芯微电子有限公司 Crucible for growth of tellurium-zinc-cadmium monocrystal and growth method
CN116536768B (en) * 2023-06-29 2023-09-29 浙江珏芯微电子有限公司 Crucible for growth of tellurium-zinc-cadmium monocrystal and growth method

Similar Documents

Publication Publication Date Title
US3933538A (en) Method and apparatus for production of liquid phase epitaxial layers of semiconductors
US6007622A (en) Method of preparing group III-V compound semiconductor crystal
CA1301034C (en) Process for growing a multi-component crystal
JP4120016B2 (en) Method for producing semi-insulating GaAs single crystal
US4637854A (en) Method for producing GaAs single crystal
JPH08109094A (en) Production of compound semiconductor single crystal
US3290181A (en) Method of producing pure semiconductor material by chemical transport reaction using h2s/h2 system
US6045767A (en) Charge for vertical boat growth process and use thereof
US3771970A (en) Method of producing cadmium telluride crystals
JP2004203721A (en) Apparatus and method for growing single crystal
JPH06125148A (en) Low-resistance semiconductor crystal substrate and manufacture thereof
JP2690420B2 (en) Single crystal manufacturing equipment
JP2010030847A (en) Production method of semiconductor single crystal
JPH0867593A (en) Method for growing single crystal
JPS62288186A (en) Production of compound semiconductor single crystal containing high vapor pressure component
JP2010030868A (en) Production method of semiconductor single crystal
JPH07165488A (en) Apparatus for producing single crystal and method therefor
JPH0341432B2 (en)
JPS6090897A (en) Method and apparatus for manufacturing compound semiconductor single crystal
JP3557690B2 (en) Crystal growth method
Isshiki et al. 9 Bulk Crystal Growth of Wide-Bandgap ll-Vl Materials
Capper et al. Growert
JPH10167874A (en) Production of compound semiconductor single crystal
JP2000327496A (en) Production of inp single crystal
JPH0710674A (en) Method for growing inorganic compound signal crystal