JPS6090897A - Method and apparatus for manufacturing compound semiconductor single crystal - Google Patents

Method and apparatus for manufacturing compound semiconductor single crystal

Info

Publication number
JPS6090897A
JPS6090897A JP19828783A JP19828783A JPS6090897A JP S6090897 A JPS6090897 A JP S6090897A JP 19828783 A JP19828783 A JP 19828783A JP 19828783 A JP19828783 A JP 19828783A JP S6090897 A JPS6090897 A JP S6090897A
Authority
JP
Japan
Prior art keywords
single crystal
melt
compound semiconductor
crystal
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19828783A
Other languages
Japanese (ja)
Inventor
Shintaro Miyazawa
宮澤 信太郎
Koji Tada
多田 紘二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP19828783A priority Critical patent/JPS6090897A/en
Publication of JPS6090897A publication Critical patent/JPS6090897A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To manufacture a long-sized compound semiconductor single crystal without dislocation by forming a single crystal in the shape of an umbrella extending to the inner diameter of a crucible with a seed crystal in the long-sized crucible, and growing the crystal while specifying the product of a temp. gradient and a growing speed. CONSTITUTION:A specified amt. of the mother materials Ga and As is charged into a crucible 1, and a liquid sealing material B2O3 3 is added thereon. The crucible is heated by an upper heater 6a and a lower heater 6b, and the GaAs melt 2 is covered with the sealing material 3. Then a seed crystal 4 is brought into contact with the melt 2, and the vertical temp. gradient in the vicinity of the interface between the seed crystal 4 and the melt 2 is regulated by the upper heater 6a and a temp. gradient controlling heater 8. An umbrella-shaped thin plate single crystal is grown by controlling the output of the lower heater 6b. Then the umbrella-shaped single crystal is further grown while regulating the product of the temp. gradient and the growing temp. to <=1 deg.C/h, and the single crystal 5 having the diameter almost the same as the inner diameter of the crucible 1 is manufactured.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は例えばGaAg 、 InP などのBl−v
族化合物半導体その他の化合物半導体単結晶の製造方法
および製造装置に関するものでるる。
DETAILED DESCRIPTION OF THE INVENTION [Technical field of the invention] The present invention relates to a Bl-v film such as GaAg, InP, etc.
This article relates to methods and apparatus for producing single crystals of group compound semiconductors and other compound semiconductors.

〔従来技術〕[Prior art]

最近電子応用分野で使用されるこの種の化合物半導体、
例えばGaAs 、InPで代表されるm−V族化合物
半導体の単結晶には、室温で107Ωαの高抵抗・半絶
縁性でるることが要求される。
This kind of compound semiconductor, recently used in electronic applications,
For example, a single crystal of an m-V group compound semiconductor represented by GaAs or InP is required to have a high resistance of 10 7 Ωα and semi-insulating properties at room temperature.

従来このよりな■−v族化合物半導体単結晶は、石英製
ボートに目的とする化合物の融液を入れて水平方向に電
気炉またはボートを移動させて単結晶を製造する水平ブ
リッジマン法CHB法、ボート法)か、目的とする化合
物と同種の種子結晶を融液に接触させて引上げるチョク
ラルスキー法(C2法、LEC法)によって製造されて
いる。
Traditionally, this type of ■-V group compound semiconductor single crystal was manufactured using the horizontal Bridgman method CHB method, in which a melt of the target compound is placed in a quartz boat and the electric furnace or boat is moved horizontally to produce a single crystal. , boat method) or the Czochralski method (C2 method, LEC method) in which seed crystals of the same type as the target compound are brought into contact with a melt and pulled up.

最近注目されているLEC(Liquid Encap
aulated Czochralskis液体封じ引
上げ)法によるGaAs単結晶は、残留不純物が少なく
良好な半絶縁性の(100) 円形単結晶が得られるが
、第1図に示すように引上げ法特有の高温度勾配下(1
00〜b に、結晶欠陥でるる転位の密度が10’10++27)
Aら5 X 105/cm2と高くしかも(100)ウ
エノ・面内で不均一に分布しているために電気的特性の
不均一性が大きい欠点があシ、低転位・無転位化が望ま
れている。なお、第1図(a)は引上げ装置、同図(b
)はその温度分布を示し、1はるつぼ、2は融液、3#
′i液体封止材、4は種子結晶、5け単結晶、6はヒー
タ、7はるつぼサセプタを示す。
LEC (Liquid Encap) has been attracting attention recently.
GaAs single crystals produced by the Czochralskis aluminized liquid confinement (Liquid-confined pulling) method yield a semi-insulating (100) circular single crystal with few residual impurities. 1
00~b, the density of dislocations caused by crystal defects is 10'10++27)
A et al. 5 x 105/cm2, which is high and (100) Ueno, has the disadvantage of large non-uniformity of electrical properties due to non-uniform distribution within the plane, and low dislocation/no dislocation is desired. ing. Note that Fig. 1(a) shows the lifting device, and Fig. 1(b)
) shows the temperature distribution, 1 is the crucible, 2 is the melt, 3#
'i liquid sealing material, 4 is a seed crystal, 5 is a single crystal, 6 is a heater, and 7 is a crucible susceptor.

一方HB法での結晶成長では、LEC法に比べて低温度
勾配(例えば5℃/(7))下での成長であるので本質
的に転位密度は低く、例えば4×103〜8 X 10
 ” /1yn2で、 しかも均一に分布している特徴
がるるか、ボート成長法では(111)軸に単結晶を成
長させるためにデバイスに有利な(100)面ウェハを
得るには(l l 1)インゴットから54.7°傾け
てウェハと切断する必要がるり、したがって円形ウェハ
が得られない。さらに、(100)面ウェハは成長方向
から54.7°傾いているためにウェハ面内での残留不
純物の分布が不均一になる欠点がめる。いずれにしても
、従来方法では無転位の大形単結晶を得ることは難かし
い。
On the other hand, in crystal growth by the HB method, the dislocation density is essentially lower because it is grown under a lower temperature gradient (e.g. 5°C/(7)) than in the LEC method, for example 4 x 103 to 8 x 10
”/1yn2, and is uniformly distributed. In the boat growth method, to grow a single crystal along the (111) axis, it is necessary to obtain a (100) plane wafer, which is advantageous for devices. ) It is necessary to cut the wafer at an angle of 54.7 degrees from the ingot, so a circular wafer cannot be obtained.Furthermore, since the (100) plane wafer is inclined at 54.7 degrees from the growth direction, The drawback is that the distribution of residual impurities becomes non-uniform.In any case, it is difficult to obtain large single crystals free of dislocations using conventional methods.

〔発明の目的および構成〕[Object and structure of the invention]

本発明はこのような事情に鑑みてなされたもので、その
目的は、無転位の化合物半導体単結晶、特に(100)
円形ウェハの取得が可能な無転位化合物半導体単結晶の
製造方法および製造装置を提供することにるる。
The present invention has been made in view of these circumstances, and its purpose is to provide dislocation-free compound semiconductor single crystals, particularly (100)
It is an object of the present invention to provide a method and apparatus for manufacturing a dislocation-free compound semiconductor single crystal, which enables the production of circular wafers.

このような目的全達成するために、本発明の半導体単結
晶の製造方法は、長尺るつぼ内の融液に種子結晶を接触
させ、はじめほぼ上記長尺るつぼの内径までかさ状に広
がった単結晶を成長させた後、その下方に、極低温度勾
配および低成長速度、すなわち温度勾配と成長速度との
積を1℃/h以下とした条件下で単結晶を成長させるも
のでるる。
In order to achieve all of these objectives, the method for manufacturing a semiconductor single crystal of the present invention involves bringing a seed crystal into contact with the melt in a long crucible, and forming a single crystal that initially spreads into an umbrella shape almost to the inner diameter of the long crucible. After growing a crystal, a single crystal is grown below it under conditions of an extremely low temperature gradient and a low growth rate, that is, the product of the temperature gradient and the growth rate is 1° C./h or less.

単結晶は上記長尺るつぼ内で成長する。また、化合物中
の揮発成分の散逸を防ぐために、液体封止材を用いて単
結晶のまわりを覆うか、当該揮発成分雰囲気中で成長さ
せる。
A single crystal is grown within the elongated crucible. Further, in order to prevent the volatile components in the compound from dissipating, the single crystal is covered with a liquid sealing material or grown in an atmosphere of the volatile components.

さらに、成長した単結晶を融液から切離した後直ちに室
温に取り出さずにその状態で数時間以上保持することに
よシ、さらに結晶の均一性を向上できる。
Furthermore, the uniformity of the crystal can be further improved by holding the grown single crystal in that state for several hours or more without immediately removing it to room temperature after separating it from the melt.

また、このような方法を実施するために、本発明による
化合物半導体単結晶の製造装置は、断面円形の長尺るつ
ぼの外周に当該るりほの長さ以上にわたって配置した少
なくとも上下2つの独立した、すなわち独立して温度制
御の可能な加熱ヒータと、上記長尺るつぼと種子結晶と
を所定の速度で上記加熱ヒータに対し相対的に上昇させ
る機構とを備えたものでろる。上記長尺るつほの長さ以
上にわたって配置された加熱ヒータによル、長尺るつぼ
内における単結晶の全成長過程にわたって極低温度勾配
が達成される。
In addition, in order to carry out such a method, the compound semiconductor single crystal production apparatus according to the present invention provides at least two independent crucibles, upper and lower, disposed around the outer periphery of an elongated crucible with a circular cross section over the length of the ruriho. That is, it may be equipped with a heater whose temperature can be controlled independently, and a mechanism for raising the elongated crucible and the seed crystal at a predetermined speed relative to the heater. An extremely low temperature gradient is achieved over the entire growth process of the single crystal in the elongated crucible by means of the heater arranged over the length of the elongated crucible.

以下、実施例を用いて本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail using Examples.

〔実施例〕〔Example〕

第2図(a)は本発明の一実施例を示す製造装置の断面
図で、1は長尺るつぼ、2はGaAs融液、3は液体封
止材、4は種子結晶、5は種子結晶から成長したGaA
s単結晶、6aは上部加熱ヒータ、6bは下部加熱ヒー
タ、7はるつぼ回転サセプタ、8は温度勾配制御用ヒー
タ、9は結晶引上支持シャフトでるる。また第2図(b
)は典型的な軸方向の温度分布を示す。ただし、図には
高圧容器はしるされていないが、本図に示した各部は約
100 気圧に耐える高圧容器に入っている。
FIG. 2(a) is a sectional view of a manufacturing apparatus showing an embodiment of the present invention, in which 1 is a long crucible, 2 is a GaAs melt, 3 is a liquid sealant, 4 is a seed crystal, and 5 is a seed crystal. GaA grown from
s single crystal, 6a an upper heater, 6b a lower heater, 7 a crucible rotating susceptor, 8 a temperature gradient control heater, and 9 a crystal pulling support shaft. Also, Figure 2 (b
) shows a typical axial temperature distribution. However, although the high-pressure vessel is not marked in the figure, each part shown in this figure is housed in a high-pressure vessel that can withstand approximately 100 atmospheres.

次に、本発明の一実施例を示す製造方法を、GaAs 
について第3図を用いて詳細に説明する。
Next, a manufacturing method showing an embodiment of the present invention will be described.
This will be explained in detail using FIG.

まず、母材料でろるGaとAs を化学量論的組成に秤
量し、パイロリティックBN (pBN)るつぼ1の中
に入れ、かつ液体封止材としてB2O3をその上に加え
てから、圧力容器内を窒素ガスによシ約60気圧にする
。次いで、上部加熱ヒータ6a によjりB2O3から
なる液体封止材3を形成する。すなわち、上部加熱ヒー
タ6a によって約400℃まで加熱してB2O3を溶
融することにより、挿入したGa とAs をB2O3
で覆い、これによJ)Asの解離を最小限に防ぐことが
できる。次に下部加熱ヒータ6b によりGaAsの融
点でるる1328℃以上にしてGaAs 融液とする。
First, Ga and As as base materials are weighed to a stoichiometric composition, placed in a pyrolytic BN (pBN) crucible 1, and B2O3 is added thereon as a liquid sealant, and then placed in a pressure vessel. to about 60 atmospheres using nitrogen gas. Next, a liquid sealing material 3 made of B2O3 is formed using the upper heater 6a. That is, by heating the upper heater 6a to approximately 400°C and melting B2O3, the inserted Ga and As are converted into B2O3.
J) This can minimize the dissociation of As. Next, the melting point of GaAs is raised to 1328° C. or higher using the lower heater 6b to form a GaAs melt.

このとき上部加熱ヒータ6a の出力も下部加熱ヒータ
6b と同時に上昇させ、GaAs 融点より少し低い
温度に設定する。ここで、用いた長尺るつぼ1は内径5
5mm−、長さ10鋸の大きさで、GaAsは約1.5
kf加えた。ここで圧力容器の圧力を3気圧に下げた。
At this time, the output of the upper heater 6a is also increased at the same time as the output of the lower heater 6b, and is set to a temperature slightly lower than the melting point of GaAs. Here, the long crucible 1 used had an inner diameter of 5
5 mm-, length 10 saws, GaAs is about 1.5
Added kf. Here, the pressure in the pressure vessel was lowered to 3 atmospheres.

これは、揮発成分でめるA6の蒸気圧が単体では60〜
70気圧でるるために、上述したようにはじめは圧力を
60気圧程度に高めておくことが望ましいが、GaAs
 化合物の状態ではそれが1〜3気圧となり、一方、融
液の対流を抑えて低温度勾配を達成するためには圧力は
低い方が望ましいためである。
This means that the vapor pressure of A6 alone, which is made up of volatile components, is 60~
As mentioned above, it is desirable to increase the pressure to around 60 atm in order to obtain a pressure of 70 atm.
This is because in the state of a compound, the pressure is 1 to 3 atm, and on the other hand, a lower pressure is desirable in order to suppress convection of the melt and achieve a low temperature gradient.

次に、GaAgのくlOO〉軸をもつ種子結晶4全Ga
As融液2に接触させて、上部加熱ヒータ6aおよび温
度勾配制御用゛ヒータ8によりて種子結晶4とGaAs
融液の界面近くの縦方向温度勾配を第2図(b)に示す
ように5℃/儒になるように調整した(第3図6))。
Next, the seed crystal 4 with the GaAg ClOO〉 axis
The seed crystal 4 and the GaAs are brought into contact with the As melt 2 by the upper heater 6a and the temperature gradient control heater 8.
The longitudinal temperature gradient near the interface of the melt was adjusted to 5° C./F as shown in FIG. 2(b) (FIG. 3, 6)).

この時、るつは1は回転サセプタTにより毎時5回転で
回転させておく。
At this time, the rotary susceptor 1 is rotated at 5 revolutions per hour.

次に、下部加熱ヒータ6bの出力を制御し、徐々に温度
を下げて、種子結晶4からGaAs 結晶を徐々に広け
ていく。このとき、成長するGaAa結晶の横方向成長
速度が毎時10 manになるように下部加熱ヒータ6
bの出力を調整する。こうして、約2,5時間後には種
子結晶4からGaAs 融液2を覆うGaAs薄板結晶
5′を形成した(第3図(b) 、 (c) )。この
薄板結晶5′の形成が本発明の特徴の一つで、その効果
はGaAs 融液2の表面をほぼ完全に(例えば99%
)8にうことによシGaAs融液からのAs蒸発が抑え
られ、結晶の化学量論的組成比が変化しないことおよび
周辺のヒータからの不純物混入が抑制されることでるる
Next, the output of the lower heater 6b is controlled to gradually lower the temperature and gradually spread the GaAs crystal from the seed crystal 4. At this time, the lower heater 6 is turned on so that the lateral growth rate of the growing GaAa crystal is 10 man/hour.
Adjust the output of b. In this way, after about 2.5 hours, a GaAs thin plate crystal 5' covering the GaAs melt 2 was formed from the seed crystal 4 (FIGS. 3(b) and 3(c)). The formation of this thin plate crystal 5' is one of the features of the present invention, and its effect is to completely cover the surface of the GaAs melt 2 (for example, 99%).
) 8) In particular, the evaporation of As from the GaAs melt is suppressed, the stoichiometric composition ratio of the crystal remains unchanged, and the contamination of impurities from the surrounding heaters is suppressed.

この薄板結晶5′を成長させる過程では種子結晶4は支
持棒9を介して毎時0.1 mmのきわめてゆつくシし
た速さで上昇させ、部品の発生等を抑えた。
In the process of growing this thin plate crystal 5', the seed crystal 4 was raised via the support rod 9 at a very slow speed of 0.1 mm/hour to suppress the generation of parts.

次に、るつぼ1をサセプタ7e介して毎時2mmの速さ
で上昇させるとともに、支持棒9による種子結晶4の上
昇速度も毎時2mmにして全体を、上部・下部加熱ヒー
タ内で上昇させた。これにより、上部・下部加熱ヒータ
で形成され次極低温度勾配(はじめの設定は5℃/儒で
るるか、薄板結晶5′を形成する過程で下部加熱ヒータ
6b Th降温する結果、2〜3℃にの極低温度勾配が
得られる)下でゆっくりと結晶が薄板結晶5′の下に成
長する。前述したように薄板結晶5′を形成する除の温
度制御によシ結晶径はるつは1の内径とほぼ同程度とな
plその直径を有する<ioo>軸結晶が得られた(第
3図(d) 、 (e) )。
Next, the crucible 1 was raised via the susceptor 7e at a rate of 2 mm/hour, and the seed crystal 4 was raised at a rate of 2 mm/hour by the support rod 9, so that the entire crucible was raised in the upper and lower heaters. As a result, as a result of the extremely low temperature gradient (the initial setting is 5°C/F) formed by the upper and lower heaters, the temperature of the lower heater 6b Th decreases by 2 to 3 in the process of forming the thin plate crystal 5'. The crystals slowly grow under the thin plate crystal 5' under a very low temperature gradient of 50°C. As mentioned above, by controlling the temperature during the formation of the thin plate crystal 5', the crystal diameter was approximately the same as the inner diameter of 1. Figures (d), (e)).

ここで、成長した単結晶は極低温度勾配で成長すること
および成長結晶は一定温度の上部加熱ヒータ6aの中に
存在していることから、転位の発生が抑えられる。得ら
れた結晶の転移は100個以下でめった。無転位化は、
薄板結晶5′の広げ方、すなわち種子結晶4の上昇速度
と下部ヒータ6bの温度の下げ方を制御することにより
達成できる。
Here, since the grown single crystal is grown at an extremely low temperature gradient and the grown crystal is present in the upper heater 6a at a constant temperature, the generation of dislocations is suppressed. The number of transitions in the obtained crystals was 100 or less. No dislocation is achieved by
This can be achieved by controlling the way the thin plate crystal 5' spreads, that is, the rate of rise of the seed crystal 4 and the way the temperature of the lower heater 6b is lowered.

なお、るつぼ1および種子結晶4の同期上昇速度t?2
 mrnを越える速度とし′fc場合には、単結晶の取
得が困難でめった。この場合、温度勾配と上昇速度、す
なわち成長速度とは一定の相関を有し、両者の積が1℃
/h以下でるるときに良好な結果が得られた。温度勾配
が小さいときは成長速度を多少速め、逆に成長速度を小
さくするときには温度勾配をやや大きめにとることが可
能でるる。
Note that the synchronous rising speed t? of the crucible 1 and the seed crystal 4? 2
When the speed exceeds mrn'fc, it is difficult and rare to obtain a single crystal. In this case, there is a certain correlation between the temperature gradient and the rate of increase, that is, the growth rate, and the product of the two is 1°C.
/h or less, good results were obtained. When the temperature gradient is small, the growth rate can be increased somewhat, and conversely, when the growth rate is decreased, the temperature gradient can be made slightly larger.

さて、結晶終端ではサセプタTの上昇を止め、かつ支持
棒9の上昇速度を毎時20mmとするとともに温度勾配
制御ヒータ8の出力を上げて加熱し、成長したGaAs
結晶5と融液2とを切り離すと同時に支持棒9の上昇を
止めた。こうすることにより液体封止材3は結晶をつつ
むことになシ、Ga’As結晶表面からのAsの解離を
抑える効果を生ずる(第3図(f))。その後、ヒータ
温度を徐々に下げ、B2O3が固化する前に結晶を上方
に引上げ、圧力容器から取り出した。こうして得られた
約1kfのインゴットから(100)ウェハを切り出し
、KOHエツチングによシ転位を検出した結果、ウェハ
の周辺を除いて100個以下でめった。
Now, at the end of the crystal, the rising of the susceptor T is stopped, the rising speed of the support rod 9 is set to 20 mm per hour, and the output of the temperature gradient control heater 8 is increased to heat the grown GaAs.
At the same time as the crystal 5 and the melt 2 were separated, the lifting of the support rod 9 was stopped. By doing so, the liquid sealing material 3 does not enclose the crystal, but has the effect of suppressing the dissociation of As from the surface of the Ga'As crystal (FIG. 3(f)). Thereafter, the heater temperature was gradually lowered, and before the B2O3 solidified, the crystals were pulled upward and taken out from the pressure vessel. (100) wafers were cut from the approximately 1 kf ingot obtained in this manner, and as a result of detecting dislocations by KOH etching, less than 100 dislocations were detected except at the periphery of the wafer.

本実施例では、薄板結晶5′の成長過程において種子結
晶の引上速度全毎時0.1mmとしたが、この薄板結晶
5゛の形成には前述したように引上速度と下部加熱ヒー
タ6bによる降温速度の組合せで転位発生を抑えること
が可能で、薄板結晶5′の形成方法は上述した例に限る
ものではない。要は、種子結晶から無転位の薄板結晶5
′をできるだけ短時間に形成することによりGaAs 
融液からのAsの離散を極力抑えることが肝要で、本発
明の主旨はこのかさ状の薄板結晶5′の形成とその後の
極低温度勾配、低成長速度での成長による無転位単結晶
の製造にある。
In this embodiment, the total pulling speed of the seed crystal was set to 0.1 mm/hour during the growth process of the thin plate crystal 5', but the formation of the thin plate crystal 5' depends on the pulling speed and the lower heater 6b as described above. The generation of dislocations can be suppressed by combining the temperature reduction rate, and the method for forming the thin plate crystal 5' is not limited to the above-mentioned example. In short, from the seed crystal to a dislocation-free thin plate crystal 5
′ by forming GaAs in the shortest possible time.
It is important to suppress the dispersion of As from the melt as much as possible, and the gist of the present invention is to form this umbrella-shaped thin plate crystal 5' and then grow it at an extremely low temperature gradient and at a low growth rate to form a dislocation-free single crystal. In manufacturing.

なお、上述したよりなゆつく9とした単結晶成長におい
ては、GaAs融液内での熱対流による温度の安定性お
よび不純物混入の均一性が必ずしもよくないが、融液2
の液面に垂直あるいは水平方向から強磁場を印加させる
ことにより、この対流を抑えることが可能でるる。第4
図はそのような創造装置を示す断面図である。ここで4
、第2図に示した支持棒9、サセプタ7および高圧容器
は省略してるる。また左右は対称であることから右手分
のみ示した。この場合、磁界発生マグネット11によl
) GaAs融液2に500〜2000エルステツドの
磁場を印加した結果、融液内の温度変#は無磁場下で±
5℃あったものが500 エルステッド印加で±1℃に
、さらに尚磁場印加では±1℃以下に抑えられた。10
00エルステツドの磁場を印加し、上述しfc実施例に
示したと同様の製造方法でCr (クロム) k O,
1wt ppm添加して同様に2インチ径単結晶(長さ
約10 cm )を得て、インゴットの上端から下端で
のCr#度を分析した結果、第5図に示すように、無磁
場下での成長インゴット、内でのCr分布(同図中(イ
))に比べ、磁場下でのインゴット(同図中(ロ))で
はCr濃度分布が均一となる領域が存在することが確か
められた。これは磁場印加により融液内での対流が抑え
られた結果、無磁場下での正規凝固とは異つ念安定II
!固となる六めで、不純物濃度が均一なインゴットの取
得が図れることを示すものである。さらに1000エル
ステツドより大きい高磁界を印加した場合には、理想的
には第5図中の一点破線(ハ)で示すようにインゴット
内でのCr濃度一定の領域が〜80チ以上を占めること
になる。
In addition, in the above-mentioned slower single crystal growth of 9, the temperature stability due to thermal convection in the GaAs melt and the uniformity of impurity mixing are not necessarily good, but the melt 2
This convection can be suppressed by applying a strong magnetic field vertically or horizontally to the liquid surface. Fourth
The figure is a sectional view showing such a creation device. here 4
, the support rod 9, susceptor 7 and high pressure vessel shown in FIG. 2 are omitted. Also, since the left and right sides are symmetrical, only the right hand is shown. In this case, the magnetic field generating magnet 11
) As a result of applying a magnetic field of 500 to 2000 oersted to the GaAs melt 2, the temperature change # in the melt was ±± under no magnetic field.
What was 5°C was suppressed to ±1°C by applying 500 oersteds, and further suppressed to below ±1°C by applying a magnetic field. 10
Applying a magnetic field of 00 oersted, Cr (chromium) k O,
A 2-inch diameter single crystal (about 10 cm in length) was similarly obtained by adding 1 wt ppm, and the Cr# degree from the top to the bottom of the ingot was analyzed. Compared to the Cr distribution within the grown ingot ((a) in the same figure), it was confirmed that there is a region where the Cr concentration distribution is uniform in the ingot grown under a magnetic field ((b) in the same figure). . This is because convection within the melt is suppressed by applying a magnetic field, resulting in psychostatic stability II, which is different from normal solidification in the absence of a magnetic field.
! This shows that it is possible to obtain an ingot that is hard and has a uniform impurity concentration. Furthermore, when a high magnetic field greater than 1000 oersteds is applied, ideally the region with a constant Cr concentration in the ingot occupies ~80 oers or more, as shown by the dashed line (c) in Figure 5. Become.

上述した実施例では、長尺るつぼ内での結晶成長を、上
部・下部ヒータを固定し、この上部・下部ヒータによっ
て形成される低温度勾配下でるつぼおよび種子結晶を同
期上昇させて行ったが、この場合、結晶5と融液2の固
液界面と低温度勾配域との相対位置関係が鍵なのでルシ
、るつぼおよび種子結晶を動かさないで上部・下部加熱
ヒータ6a 、 6b全体を下降させても全く同様に単
結晶成長が実現できる。要するにるつほおよび種子結晶
をヒータに対して相対的に上昇さぜることでめる。
In the above example, crystal growth in a long crucible was performed by fixing the upper and lower heaters and raising the crucible and seed crystal synchronously under the low temperature gradient formed by the upper and lower heaters. In this case, since the relative positional relationship between the solid-liquid interface between the crystal 5 and the melt 2 and the low temperature gradient region is the key, the entire upper and lower heaters 6a and 6b are lowered without moving the crucible, the crucible, and the seed crystal. Single crystal growth can be achieved in exactly the same way. In short, it is achieved by raising the melting point and the seed crystal relative to the heater.

次に、本発明の他の実施例について第6図を用いて説明
する。第6図において、第2図と同一記号は相当部分を
示すが、長尺るつは1の上方には金属ヒ素12を挿入で
きるヒ素溜め13および結晶引上支持シャフト9の周辺
にB2O3からなる封止材14を接触させるような構造
をもつるつばカバー15ならびに金属ヒ素12t−加熱
するヒ素圧制御用ヒータ16が設置されている。この図
全体が高圧容器内に設置されていること位云うまでもな
い。また、るつぼカバー15と長尺るっは1とはすり合
せで抜き差しができるようになっている。
Next, another embodiment of the present invention will be described using FIG. 6. In FIG. 6, the same symbols as in FIG. 2 indicate corresponding parts, but the long melt consists of an arsenic reservoir 13 above 1 into which metal arsenic 12 can be inserted, and B2O3 around the crystal pulling support shaft 9. A flange cover 15 having a structure to bring the sealing material 14 into contact with the metal arsenic 12t and a heater 16 for controlling the arsenic pressure are installed. It goes without saying that this entire figure is installed inside a high-pressure vessel. Further, the crucible cover 15 and the long glass 1 can be inserted and removed by sliding them together.

本構成により結晶を製造するには、前述した実施例とは
少し異なり、長尺るりぼ1の内には母材料のGa とA
sのみを化学量論比に挿入し、液体封止材3は使用しな
い。具体的には、母材料のGaとAsと全長尺るりは内
に入れた後、ヒ素溜め13に金属ヒ素12を入れかっ封
止材14金入れたるりl!カバー15′ft結晶引上支
持シャフト9とともに降下させてるつぼカバー15と長
尺るっは1とをすシ合わせる。次に、高圧容器内の圧力
を上昇させる。次いで、ヒ素圧制御用ヒータ16を約7
00℃に加熱し金属ヒ素12t−昇華させてるりぼカバ
ー15および長尺るりぼ1で構成される空間17に一ヒ
素溜め13とシャフト9とのすき間を通してヒ素蒸気雰
囲気とする。このとき、高圧容器内の圧力はヒ素蒸気圧
よシ高くすることにょシ空間17よりヒ素が外に逃げな
いようにする。
In order to produce a crystal with this configuration, it is slightly different from the above-mentioned embodiment.
Only s is inserted into the stoichiometric ratio, and the liquid sealant 3 is not used. Specifically, after putting the base materials Ga and As and the entire length inside, the metal arsenic 12 is put into the arsenic reservoir 13, and the encapsulant 14-karat gold is put in. The cover 15'ft is lowered together with the crystal pulling support shaft 9, and the long glass plate 1 and the crucible cover 15 are brought together. Next, the pressure inside the high-pressure container is increased. Next, the arsenic pressure control heater 16 is
Metal arsenic (12t) is heated to 00 DEG C. and sublimated, and an arsenic vapor atmosphere is created by passing through the gap between the arsenic reservoir 13 and the shaft 9 into the space 17 constituted by the ruribo cover 15 and the elongated ruribo 1. At this time, the pressure inside the high-pressure container is made higher than the arsenic vapor pressure to prevent arsenic from escaping from the space 17.

一方上記ヒ素圧制御用ヒータの予熱によシ封止材15の
B2O3は溶融してシャフト9に接触し、シャフト9と
ヒ素溜め14との間の1mm程度のすき間は高粘性のB
2O3によフふさがれ、ヒ素蒸気は空間17から逃げな
゛いことになる。このよりにした後、下部ヒータ6bで
まず母合金のGaを溶かし、その後徐々に上部ヒータ6
a と下部ヒータ6b とを加熱してGa As融液2
を合成する。
On the other hand, due to the preheating of the arsenic pressure control heater, the B2O3 of the sealing material 15 melts and comes into contact with the shaft 9, and the gap of approximately 1 mm between the shaft 9 and the arsenic reservoir 14 is filled with highly viscous B2O3.
The arsenic vapor cannot escape from the space 17 because it is blocked by 2O3. After this twisting, the lower heater 6b first melts the mother alloy Ga, and then the upper heater 6b gradually melts the mother alloy Ga.
a and the lower heater 6b to heat the GaAs melt 2.
Synthesize.

これ以後は前記実施例で示したように種子結晶4を接触
させた後、温度分布、成長速度を制御してるつぼ内にJ
P結晶を成長させた。この全工程中、金属ヒ素12は加
熱されておシ、したがって空間17でのヒ素圧は制御さ
れているためにQa As融液の合成および結晶成長中
でのヒ素の解離は防ぐことができ、またその解離の程度
はヒ素圧制御用ヒータ16の出力調整で制御できる。
After this, as shown in the above example, after contacting the seed crystal 4, the temperature distribution and growth rate are controlled and the seed crystal is placed in the crucible.
P crystal was grown. During this whole process, the metal arsenic 12 is heated, and therefore the arsenic pressure in the space 17 is controlled, so that dissociation of arsenic during the synthesis and crystal growth of the QaAs melt can be prevented. Further, the degree of dissociation can be controlled by adjusting the output of the arsenic pressure control heater 16.

こうして得られた結晶の表面は、液体封止材3と接して
いないことおよびヒ素圧下での成長であることから、非
常に滑らかで金属光沢があった。
The surface of the crystal thus obtained was very smooth and had a metallic luster because it was not in contact with the liquid sealant 3 and was grown under arsenic pressure.

(100)ウェハを切り出して転位ピッl検出すると、
結晶表面からの転位発生はきわめて少なくウェハ平均で
100個以下でめった。
(100) When a wafer is cut out and dislocation pits are detected,
The occurrence of dislocations from the crystal surface was extremely rare, with an average of 100 or less dislocations per wafer.

本実施例において、さらにるっは全体に500工ルステ
ツド以上の磁場を印加できる装置を設け、磁場印加を行
なった場合、さらに高均質な単結晶が得られると七は、
前述した実施例の場合とr#J様でめる。また、るっは
カバー15の構造自体は、第6図に示した形態に限られ
るものではなく、空間17にヒ累蒸気圧が印加できるこ
と、すなわち液体封止材3を用いる代りに、ヒ素蒸気雰
囲気中で成長させることによりヒ素の散逸を防ぐことが
できればよい。
In this example, a device capable of applying a magnetic field of 500 microns or more to the entire structure was installed, and when the magnetic field was applied, an even more homogeneous single crystal could be obtained.
In the case of the above-mentioned embodiment and Mr. r#J. Furthermore, the structure of the cover 15 itself is not limited to the form shown in FIG. It is sufficient if the dissipation of arsenic can be prevented by growing in an atmosphere.

上述した各実施例において、成長した単結晶5を融液2
から切シ離した後(この時結晶のまわり灯液体封止材3
もしくはヒ素蒸気で覆われている。
In each of the embodiments described above, the grown single crystal 5 is placed in the melt 2.
After separating it from the crystal (at this time, the liquid sealing material 3
Or covered with arsenic vapor.

第3図(f)参照)、この状態で5時間保持した後に、
温度を室温に下げて取り出すことによって、結晶の均一
性をさらに向上させることができた。これは、例えばこ
のような保持を行なってから取り出した結晶のカソード
・ルミネッセンス強度分布を観測したところ、このよう
な保持を行なわずに直ちに室温に取り出したものに比較
してその分布が均一でロシかつバックグラクンドの強度
も上昇していることからも確認できる。なお、上記保持
時間はその時の保持温度との関係で異な9、例えば保持
時間が800〜900℃と低い場合には10時間以上の
保持が必要で、逆に上述した実施例における1200℃
前後よりも高い温度では5時間よりも短い時間でも均一
性向上の効果が得られる。
(see Figure 3(f)), and after being maintained in this state for 5 hours,
By lowering the temperature to room temperature and taking it out, the uniformity of the crystals could be further improved. This is because, for example, when we observed the cathode luminescence intensity distribution of a crystal taken out after performing this kind of holding, we found that the distribution was more uniform and had a lower resistance than that of a crystal taken out immediately to room temperature without such holding. This can also be confirmed from the fact that the strength of the background has also increased. Note that the above holding time varies depending on the holding temperature at that time 9. For example, if the holding time is as low as 800 to 900°C, holding for 10 hours or more is required;
At a temperature higher than before and after, the effect of improving uniformity can be obtained even for a time shorter than 5 hours.

上記温度は、目的とする化合物によって異なる。The above temperature varies depending on the target compound.

以上、[1−V族化合物半導体の代表側であるGaAs
 を例に説明したが、本発明はこれに限定されるもので
はなく、揮発性成分を含む他の化合物、例えばInP、
 InAg、 GaPのような■−V族、まfcZnS
、 Zn5e、ZnTeやCdS 。
As mentioned above, [GaAs, which is a representative side of the 1-V group compound semiconductor]
has been described as an example, but the present invention is not limited thereto, and other compounds containing volatile components, such as InP,
■-V group like InAg, GaP, and fcZnS
, Zn5e, ZnTe and CdS.

CdSeのような ■−■族化合物、さらにはPb5n
Te、Pb5eTe のような三元化合物の均一単結晶
育成にも適用できることは容易に理解できる。
■-■ group compounds such as CdSe, and even Pb5n
It is easy to understand that this method can also be applied to the growth of uniform single crystals of ternary compounds such as Te and Pb5eTe.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、例えば長尺るつ
ぼの長さ以上にわたって配置された上下2つの独立した
ヒータによって実現される極低温度勾配と低成長速度下
での結晶成長、さらには融液表面を単結晶でほぼ全面的
に榎うことにょシ、結晶欠陥でるる転位を極めて少なく
できるとともに、成長速度が遅く、上部加熱ヒータ内で
長時間保たれることにより結晶内の歪が解消される。ま
た、種子結晶からるつぼ内径近くまでかさ状結晶を形成
することにより、融液表面からの揮発成分の離散、さら
にはヒータ材や周辺の容器からの融液中への不純物混入
が避けられる。
As explained above, according to the present invention, crystal growth can be achieved under extremely low temperature gradients and low growth rates, which are realized by, for example, two independent heaters arranged over the length of a long crucible, and By covering almost the entire surface of the melt with a single crystal, it is possible to extremely reduce the number of dislocations caused by crystal defects, and the growth rate is slow, and by being kept in the upper heater for a long time, strain within the crystal can be reduced. It will be resolved. Furthermore, by forming an umbrella crystal from the seed crystal to near the inner diameter of the crucible, it is possible to avoid dispersion of volatile components from the surface of the melt and furthermore to avoid contamination of impurities into the melt from heater materials and surrounding containers.

さらに、揮発成分蒸気雰囲気内で育成を行なう場合には
、液体封止材を用いる必要がないことから、表面がきわ
めて滑らかで金属光沢がろ力、したがって結晶表面から
の欠陥導入がきわめて少ない高品質結晶が得られ、また
、液体封止材を用いる場合も揮発成分蒸気雰囲気内で行
なう場合も、育成した単結晶を切離した後、室温に取シ
出す前に数時間保持した場合には、結晶の均一性をさら
に向上させることができる。
Furthermore, when growing in a volatile component vapor atmosphere, there is no need to use a liquid encapsulant, so the surface is extremely smooth and has a metallic luster, resulting in high quality with very few defects introduced from the crystal surface. Crystals are obtained, and whether the process is carried out using a liquid encapsulant or in a volatile component vapor atmosphere, if the grown single crystal is separated and held for several hours before being taken out to room temperature, The uniformity can be further improved.

また、本発明による方法は、るつほに対して種子結晶を
引上げるものではなく、るつは内で結晶全成長させるも
のではめるが、いわゆるボート法と異なり、結晶成長時
および育成後の冷却時に結晶がるつぼに直接接していな
いため、るりは材と結晶との界面から歪が導入されるこ
とがなく、その点からも低転位化が実現できる。
In addition, the method according to the present invention does not involve pulling up the seed crystal to the rutsutsuho, but rather allows the entire crystal to grow within the rutsutsutsu. However, unlike the so-called boat method, the seed crystal is Since the crystals are not in direct contact with the crucible during cooling, no strain is introduced from the interface between the material and the crystals, which also makes it possible to achieve low dislocations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は従来の単結晶引上げ装置の構成例を示す
断面図、同図(b)はその温度分布を示す図、第2図(
a)は本発明の一実施例を示す断面図、同図ら)はその
温度分布を示す図、第3図(a)〜(f)は結晶成長過
程を示す図、第4図は本発明の他の実施例を示す図、第
5図は結晶中のCrの成長軸方向の分布と印加磁場との
関係を示す図、第6図は本発明のさらに他の実施例全売
す断面図でるる。 1・・・・るつぼ、2・・曇番融L 3・壷・・液体封
止材(B203)、4・・・・種子結晶、5・・・・単
結晶、5′ ・・・・かさ状の薄板結晶、611L−拳
・・上部加熱ヒータ、6b ・・・・下部加熱ヒータ、
T・・・・るつはサセプタ、8−−・・温度勾配制御用
ヒータ、9・・・・結晶引上支持シャフト、11・・・
・磁界発生マグネット、12・・−・金属ヒ素、13・
e・・ヒ素溜め、14拳・・・封止材、15・・・・る
つぼカバー、16・・・・ヒ累圧制御用ヒータ、11・
・・φるつは内空間。 特許出願人 日本電信電話公社 住友電気工業株式会社 代理人 山川政樹 第1 (0) (b) j&& 第4図 第5図 インコ°/トJ(crn) 第6図
Figure 1 (a) is a cross-sectional view showing an example of the configuration of a conventional single crystal pulling apparatus, Figure 1 (b) is a diagram showing its temperature distribution, and Figure 2 (
a) is a cross-sectional view showing an embodiment of the present invention, FIGS. 3(a) to 3(f) are views showing the temperature distribution, FIG. Figure 5 is a diagram showing the relationship between the distribution of Cr in the crystal in the direction of the growth axis and the applied magnetic field; Figure 6 is a cross-sectional view of yet another embodiment of the present invention. Ruru. 1... Crucible, 2... Temperature L 3. Jar... Liquid sealing material (B203), 4... Seed crystal, 5... Single crystal, 5'... Umbrella shaped thin plate crystal, 611L-fist...upper heater, 6b...lower heater,
T: Susceptor, 8: Temperature gradient control heater, 9: Crystal pulling support shaft, 11:
・Magnetic field generating magnet, 12... Metal arsenic, 13.
e... Arsenic reservoir, 14... Sealing material, 15... Crucible cover, 16... Heater for cumulative pressure control, 11...
・φRutsu is the inner space. Patent Applicant Nippon Telegraph and Telephone Public Corporation Sumitomo Electric Industries Co., Ltd. Agent Masaki Yamakawa No. 1 (0) (b) j&&

Claims (5)

【特許請求の範囲】[Claims] (1)長尺るつは内に目的とする化合物半導体の母材料
と液体封止材とを溶融した後、上記化合物半導体と同種
の種子結晶を上記液体封止材を通して化合物半導体融液
に接触させる工程と、上記融液の温度を徐々に下げて上
記種子結晶から単結晶を徐々に成長させほぼ上記長尺る
つ、はの内径までかさ状に広ける工程と、このかさ状の
単結晶の下方に連続的に、温度勾配と成長速度との積を
1℃/h以下とした条件下で単結晶を成長させる工程と
を含むこと全特徴とする化合物半導体単結晶の製造方法
(1) After melting the target compound semiconductor base material and liquid encapsulant in a long melt, a seed crystal of the same type as the compound semiconductor is brought into contact with the compound semiconductor melt through the liquid encapsulant. a step of gradually lowering the temperature of the melt to gradually grow a single crystal from the seed crystal and expanding it into an umbrella shape almost up to the inner diameter of the long melt; 1. A method for manufacturing a compound semiconductor single crystal, comprising the step of continuously growing the single crystal under conditions where the product of temperature gradient and growth rate is 1° C./h or less.
(2)長尺るつぼ内に目的とする化合物半導体の母材料
と液体封止材とを溶融した後、上記化合物半導体と同種
の種子結晶を上記液体封止材を通して化”金物半導体融
液に接触させる工程と、上記融液の温度を徐々に下げて
上記種子結晶から単結晶を除徐に成長させほぼ上記長尺
るつほの内径までかさ状に広げる工程と、このかさ状の
単結晶の下方に連続的に、温度勾配と成長速度との積を
1℃/h以下とした条件下で単結晶を成長させる工程と
、成長した単結晶を融液から切シ離した後、室温に取シ
出す前にその状態で数時間以上保持する工程とを含むこ
とを特徴とする化合物半導体単結晶の製造方法。
(2) After melting the target compound semiconductor base material and liquid encapsulant in a long crucible, seed crystals of the same type as the compound semiconductor are brought into contact with the metal semiconductor melt through the liquid encapsulant. a step of gradually lowering the temperature of the melt to gradually grow a single crystal from the seed crystal and expanding it into an umbrella shape almost to the inner diameter of the elongated melt; A process of continuously growing a single crystal downward under conditions where the product of temperature gradient and growth rate is 1°C/h or less, and after cutting the grown single crystal from the melt, it is brought to room temperature. 1. A method for producing a compound semiconductor single crystal, comprising the step of holding it in that state for several hours or more before releasing it.
(3)長尺るつは内に目的とする化合物半導体の母材料
を溶融した楓、当該化合物半導体と同種の種子結晶を化
合物半導体融液に接触させる工程と、上記融液の温度を
徐々に下げて上記種子結晶から単結晶を徐々に成長させ
ほぼ上記長尺るつほの内径までかさ状に広げる工程と、
このかさ状の単結晶の下方に連続的に、温度勾配と成長
速度との積を1℃/h以下とした条件下で単結晶を成長
させる工程とを含み、これら各工程を上記目的とする化
合物半導体中の揮発成分の蒸気雰囲気内で行なうことを
特命とする化合物半導体単結晶の製造方法。
(3) The process of bringing into contact the compound semiconductor melt with a maple tree in which the target compound semiconductor base material is melted in a long melt, and a seed crystal of the same type as the compound semiconductor, and gradually increasing the temperature of the melt. a step of gradually growing a single crystal from the seed crystal and expanding it into an umbrella shape almost to the inner diameter of the elongated crystal;
Continuously growing the single crystal under the umbrella-shaped single crystal under conditions where the product of temperature gradient and growth rate is 1° C./h or less, and each of these steps has the above purpose. A method for manufacturing compound semiconductor single crystals that is specially designed to be carried out in a vapor atmosphere of volatile components in compound semiconductors.
(4)長尺るつぼ内に目的とする化合物半導体の母材料
金溶融した後、当該化合物半導体と同種の種子結晶を化
合物半導体融液に接触させる工程と、上記融液の温度を
徐々に下げて上記種子結晶から単結晶を徐々に成長させ
ほぼ上記長尺るつほの内径までかさ状に広げる工程と、
このかさ状の単結晶の下方に連続的に、温度勾配と成長
速度との積を1℃/h以下とした条件下で単結晶を成長
させる工程と、成長した単結晶を融液から切刃能した後
、室温に取シ出す前にその状態で数時間以上保持する工
程とを含み、これら各工程を上記目的とする化合物半導
体中の揮発成分の蒸気雰囲気内で行なうことを特徴とす
る化合物半導体単結晶の製造方法。
(4) After melting the target compound semiconductor base material gold in a long crucible, a step of bringing a seed crystal of the same type as the compound semiconductor into contact with the compound semiconductor melt, and gradually lowering the temperature of the melt. Gradually growing a single crystal from the seed crystal and expanding it into an umbrella shape almost up to the inner diameter of the long rutsuho;
A process of continuously growing a single crystal under the umbrella-shaped single crystal under conditions where the product of temperature gradient and growth rate is 1°C/h or less, and removing the grown single crystal from the melt with a cutting blade. and holding it in that state for several hours or more before taking it out to room temperature, and each of these steps is carried out in an atmosphere of vapor of volatile components in the compound semiconductor for the above-mentioned purpose. A method for manufacturing semiconductor single crystals.
(5)目的とする化合物半導体の母材料を溶融する断面
円形の長尺るつぼと、この長尺るつぼの外周に当該長尺
るつほの長さ以上にわたって配置した少なくとも上下2
つ以上の独立した加熱ヒータと、この加熱ヒータに対し
て相対的に、上記長尺るつぼおよび当該るつぼ内に支持
した種子結晶を所定の速度で同期上昇させる機構と、こ
れら長尺るつほおよび加熱ヒータを収容する圧力容器と
を備えたことを特徴とする化合物半導体単結晶の製造装
置。
(5) An elongated crucible with a circular cross section for melting the target compound semiconductor base material, and at least two upper and lower crucibles arranged around the outer periphery of the elongated crucible over the length of the elongated crucible.
two or more independent heaters, a mechanism for synchronously raising the elongated crucible and the seed crystal supported in the crucible at a predetermined speed relative to the heater; 1. A compound semiconductor single crystal manufacturing apparatus, comprising: a pressure vessel housing a heater.
JP19828783A 1983-10-25 1983-10-25 Method and apparatus for manufacturing compound semiconductor single crystal Pending JPS6090897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19828783A JPS6090897A (en) 1983-10-25 1983-10-25 Method and apparatus for manufacturing compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19828783A JPS6090897A (en) 1983-10-25 1983-10-25 Method and apparatus for manufacturing compound semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPS6090897A true JPS6090897A (en) 1985-05-22

Family

ID=16388610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19828783A Pending JPS6090897A (en) 1983-10-25 1983-10-25 Method and apparatus for manufacturing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPS6090897A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60210591A (en) * 1984-04-05 1985-10-23 Hitachi Cable Ltd Production of semiinsulating gaas single crystal
JPH01145395A (en) * 1987-11-30 1989-06-07 Nippon Mining Co Ltd Production of compound semiconductor single crystal
JPH02124792A (en) * 1988-10-31 1990-05-14 Hitachi Chem Co Ltd Method for growing single crystal
JPH02192490A (en) * 1988-12-12 1990-07-30 Showa Denko Kk Production of single crystal and temperature measuring jig therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58135626A (en) * 1982-02-08 1983-08-12 Nippon Telegr & Teleph Corp <Ntt> Manufacture of compound semiconductor single crystal and manufacturing device thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58135626A (en) * 1982-02-08 1983-08-12 Nippon Telegr & Teleph Corp <Ntt> Manufacture of compound semiconductor single crystal and manufacturing device thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60210591A (en) * 1984-04-05 1985-10-23 Hitachi Cable Ltd Production of semiinsulating gaas single crystal
JPH01145395A (en) * 1987-11-30 1989-06-07 Nippon Mining Co Ltd Production of compound semiconductor single crystal
JPH02124792A (en) * 1988-10-31 1990-05-14 Hitachi Chem Co Ltd Method for growing single crystal
JPH02192490A (en) * 1988-12-12 1990-07-30 Showa Denko Kk Production of single crystal and temperature measuring jig therefor
JP2609712B2 (en) * 1988-12-12 1997-05-14 昭和電工株式会社 Single crystal manufacturing method and temperature measuring jig therefor

Similar Documents

Publication Publication Date Title
US5871580A (en) Method of growing a bulk crystal
JP4966007B2 (en) InP single crystal wafer and method of manufacturing InP single crystal
JPS6090897A (en) Method and apparatus for manufacturing compound semiconductor single crystal
EP0036891A1 (en) Minimization of strain in single crystals.
JPH10218699A (en) Growth of compound semiconductor single crystal
JP4784095B2 (en) Compound semiconductor single crystal and method and apparatus for manufacturing the same
JP3018738B2 (en) Single crystal manufacturing equipment
JP2002274995A (en) Method of manufacturing silicon carbide single crystal ingot
JP2010030868A (en) Production method of semiconductor single crystal
JP2612897B2 (en) Single crystal growing equipment
JP2010030847A (en) Production method of semiconductor single crystal
JP3806793B2 (en) Method for producing compound semiconductor single crystal
JP2700145B2 (en) Method for manufacturing compound semiconductor single crystal
JP5698171B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
JPH0952789A (en) Production of single crystal
JP2002029881A (en) Method of producing compound semiconductor single crystal
JPH0524964A (en) Production of compound semiconductor single crystal
JPH03193689A (en) Production of compound semiconductor crystal
JPS6385082A (en) Method for growing single crystal and apparatus thereof
JP2885452B2 (en) Boat growth method for group III-V compound crystals
JP2005132717A (en) Compound semiconductor single crystal and its manufacturing method
JPH08104591A (en) Apparatus for growing single crystal
JPS6065794A (en) Production of high-quality gallium arsenide single crystal
JPH11322489A (en) Production of semiconductor single crystal