JP2700145B2 - Method for manufacturing compound semiconductor single crystal - Google Patents
Method for manufacturing compound semiconductor single crystalInfo
- Publication number
- JP2700145B2 JP2700145B2 JP19920089A JP19920089A JP2700145B2 JP 2700145 B2 JP2700145 B2 JP 2700145B2 JP 19920089 A JP19920089 A JP 19920089A JP 19920089 A JP19920089 A JP 19920089A JP 2700145 B2 JP2700145 B2 JP 2700145B2
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- crucible
- single crystal
- compound semiconductor
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、液体封止カイロポーラス法(以下、LEK法
と称する)による化合物半導体結晶の製造方法に関す
る。Description: TECHNICAL FIELD The present invention relates to a method for producing a compound semiconductor crystal by a liquid-sealed chiroporous method (hereinafter, referred to as LEK method).
[従来の技術] 一般に、GaP,GaAs,InP,CdTe等のIII−VおよびII−VI
族化合物半導体は、融点付近で高い蒸気圧を有するため
に、原料融液上をB2O3等からなる液体封止剤層で覆う液
体封止法により単結晶の成長が行なわれている。現在、
この液体封止法としては、液体封止チョクラルスキー法
(LEC法)やLEK法等が知られている。LEC法は、結晶の
成長とともに種結晶を引き上げていく方法であり、種付
けにより結晶方位が制御可能で、また高純度結晶を得や
すいため、工業化されているが、直径制御が困難であっ
て均一の直胴が得難く、また結晶成長時の融液中の温度
匂配が大きいため結晶にかかる熱応力が大きくなり転位
密度が多くなるという欠点を有している。[Prior Art] Generally, III-V and II-VI of GaP, GaAs, InP, CdTe, etc.
Since a group III compound semiconductor has a high vapor pressure near the melting point, a single crystal is grown by a liquid sealing method in which a raw material melt is covered with a liquid sealing agent layer made of B 2 O 3 or the like. Current,
As the liquid sealing method, a liquid sealing Czochralski method (LEC method), a LEK method, and the like are known. The LEC method is a method in which the seed crystal is pulled up as the crystal grows.The crystal orientation can be controlled by seeding, and high-purity crystals can be easily obtained. In addition, it is difficult to obtain a straight body, and the temperature distribution in the melt during crystal growth is large, so that the thermal stress applied to the crystal increases and the dislocation density increases.
これに対し、LEK法は、種結晶を回転はさせるものの
引上げは行わずに、耐水性るつぼ中で結晶成長を行なう
ため、成長結晶の直径はるつぼ内径に依存する。そのた
め、直径制御が容易であるとともに、結晶成長時の融液
中温度匂配が数℃/cmであってLEC法に比して1桁小さい
ため、熱応力が小さく、転位密度が少ないという利点を
有している。On the other hand, in the LEK method, the seed crystal is grown in a water-resistant crucible without rotating the seed crystal, but rotating the seed crystal. Therefore, the diameter of the grown crystal depends on the inner diameter of the crucible. As a result, the diameter can be easily controlled, and the temperature gradient in the melt during crystal growth is several degrees Celsius / cm, which is an order of magnitude smaller than the LEC method. have.
従来、かかるLEK法は、例えば第5図(a)および
(b)に示すようにして行なわれていた。Conventionally, such an LEK method has been performed, for example, as shown in FIGS. 5 (a) and 5 (b).
第5図(a)および(b)における結晶成長装置は、
密閉型の高圧容器1内の円筒状のヒータ2が配設されて
おり、このヒータ2の中央には、るつぼ3が配置されて
いる。また、このるつぼ3は、その下端に固着された支
持軸4により回転可能に支持されている。そして、この
るつぼ3中には、GaAs等の原料融液5が入れられてお
り、原料融液5の上面はB2O3等からなる液体封止剤層6
で覆われている。The crystal growth apparatus in FIGS. 5 (a) and 5 (b)
A cylindrical heater 2 in a closed high-pressure vessel 1 is provided, and a crucible 3 is provided at the center of the heater 2. The crucible 3 is rotatably supported by a support shaft 4 fixed to a lower end thereof. The crucible 3 contains a raw material melt 5 such as GaAs, and the upper surface of the raw material melt 5 has a liquid sealant layer 6 made of B 2 O 3 or the like.
Covered with.
一方、るつぼ3の上方からは、高圧容器1内に結晶引
上げ軸7が上下動かつ回転自在に垂下されており、この
結晶引上げ軸7によって種結晶を保持し、るつぼ3中の
原料融液5の表面に接触させることができるようになっ
ている。また、高圧容器1の側壁上部には、高圧の不活
性ガスを導入するためのガス導入管8が接続されてお
り、高圧容器1内部の圧力を所定圧力とすることができ
るようになっている。On the other hand, from above the crucible 3, a crystal pulling shaft 7 is suspended vertically and rotatably in the high-pressure vessel 1. The crystal pulling shaft 7 holds a seed crystal, and the raw material melt 5 in the crucible 3. Can be brought into contact with the surface. Further, a gas introduction pipe 8 for introducing a high-pressure inert gas is connected to an upper portion of the side wall of the high-pressure vessel 1 so that the pressure inside the high-pressure vessel 1 can be set to a predetermined pressure. .
従来のLEK法は、このような結晶成長装置において、
先ず、第5図(a)に示すように、結晶引上げ軸7によ
って種結晶を原料融液5中に浸漬してるつぼ3と引上げ
軸7を回転させながら引上げは行わずに単結晶を成長さ
せ、結晶9の成長終了後に、第5図(b)に示すよう
に、結晶9を原料融液5から切り離すために液体封止剤
層6上方の高圧不活性ガス10中に引き上げて冷却させる
ようにしていた。The conventional LEK method uses such a crystal growth apparatus,
First, as shown in FIG. 5 (a), the seed crystal is immersed in the raw material melt 5 by the crystal pulling shaft 7, and the crucible 3 and the pulling shaft 7 are rotated to grow a single crystal without pulling. After the growth of the crystal 9, as shown in FIG. 5 (b), the crystal 9 is pulled up into a high-pressure inert gas 10 above the liquid sealant layer 6 and cooled to separate it from the raw material melt 5. I was
[発明が解決しようとする問題点] しかしながら、上記従来のLEK法にあっては、高圧不
活性ガスで満たされた高圧不活性ガス10中で液晶の冷却
を行うため、ガスの対流によって融点付近の温度であっ
た結晶が急激に冷却されるので、結晶中の熱応力が大き
くなって転位を発生してしまった。従って、例えば、G,
Jacob,「A NOVEL CRYSTAL GROWTH METHOD FOR G
aAs:THE LIQUID ENCAPSULATED KYROPOULOS METHO
D」,J.Cryst Growth 58(1985)455に記載されている
ように、結晶9を成長軸と垂直に切断して円形ウェハと
した場合、第7図に示すように、転位密度の少ない部分
では2×103〜3×103個/cm2であってLEC法に比して1
桁程度少なくなっているが、多い部分では5×104個/cm
2の密度の転位が生じており、ウェハの面内分布が著し
く不均一となっていた。[Problems to be Solved by the Invention] However, in the above-mentioned conventional LEK method, the liquid crystal is cooled in the high-pressure inert gas 10 filled with the high-pressure inert gas, so that the convection of the gas causes the vicinity of the melting point. Since the crystal was cooled rapidly at this temperature, the thermal stress in the crystal increased, and dislocations occurred. Thus, for example, G,
Jacob, "A NOVEL CRYSTAL GROWTH METHOD FOR G
aAs: THE LIQUID ENCAPSULATED KYROPOULOS METHO
D ", J. Cryst Growth 58 (1985) 455, when crystal 9 is cut perpendicular to the growth axis to form a circular wafer, as shown in FIG. Is 2 × 10 3 to 3 × 10 3 / cm 2 , which is 1 compared to the LEC method.
It is reduced by about an order of magnitude, but 5 × 10 4 pieces / cm
Dislocations having a density of 2 occurred, and the in-plane distribution of the wafer was extremely non-uniform.
本発明は、このような問題点に鑑みてなされたもの
で、結晶中の転位密度を低減し、ウェハ面内分布を均一
化できるような化合物半導体単結晶の製造方法を提供す
ることを目的とするものである。The present invention has been made in view of such problems, and it is an object of the present invention to provide a method for manufacturing a compound semiconductor single crystal that can reduce the dislocation density in a crystal and make the distribution in a wafer plane uniform. Is what you do.
[問題点を解決するための手段] 上記問題点を解決するために、本発明者らは、るつぼ
中で結晶を冷却すれば引上げに伴なう急激な温度変化を
防止できると考え、LEK法による結晶成長終了後に結晶
を高圧不活性ガス中に引き上げ、そのままるつぼ中で冷
却することを検討した。[Means for Solving the Problems] In order to solve the above problems, the present inventors have considered that if the crystal is cooled in a crucible, it is possible to prevent a rapid temperature change accompanying pulling, and the LEK method After completion of the crystal growth, the crystal was pulled up into a high-pressure inert gas and cooled in a crucible.
一方、従来、結晶成長終了後に高圧不活性ガスに引き
上げるのは、結晶を原料融液から切り離すためと、封止
剤などとの熱膨張係数の違いによる応力でクラックが結
晶中に入るのを防止するためである。On the other hand, the conventional method of raising the pressure to a high-pressure inert gas after the completion of crystal growth is to separate the crystal from the raw material melt and to prevent cracks from entering the crystal due to the stress due to the difference in thermal expansion coefficient between the crystal and the sealant. To do that.
発明者らは、このようなクラックは冷却プロファイル
を最適化することで低減できると考え、結晶成長終了後
に種々の速度で冷却し、実験を繰り返した。その結果、
第1図に結晶断面の模式図を示すように冷却速度を5℃
/min以下とすることで結晶中のクラックの発生率を低減
できること、またるつぼ中で結晶を冷却する場合、原料
融液が全て固化するので、原料融液内の温度分布は表面
で最も低く、るつぼ底部になるに従い高温になることが
望ましいことを見出した。これは、融液の中心部で最高
温度となると、結晶成長中にるつぼの底から固化が始ま
り双晶が発生し易くなるほか、上からの固化による単結
晶部と底からの固化による多結晶部が衝突してその境界
で応力が生じ単結晶の転位密度が高くなる可能性がある
ためである。The inventors thought that such cracks could be reduced by optimizing the cooling profile, and after cooling the crystal, cooled at various rates and repeated the experiment. as a result,
As shown in FIG. 1, the cooling rate was 5 ° C.
/ min or less that the occurrence rate of cracks in the crystal can be reduced, and when cooling the crystal in the crucible, since the raw material melt is all solidified, the temperature distribution in the raw material melt is the lowest on the surface, It has been found that it is desirable that the temperature rises toward the bottom of the crucible. This is because when the maximum temperature is reached at the center of the melt, solidification starts from the bottom of the crucible during crystal growth, twins are easily generated, and a single crystal part due to solidification from the top and a polycrystal due to solidification from the bottom This is because there is a possibility that the dislocation density of the single crystal may increase due to the collision of the parts and the generation of stress at the boundary.
ただし、結晶成長後そのままるつぼ内で5℃/cm以下
の温度で冷却すればクラックの発生は防止できるもの
の、結晶中の転位密度は第2図に示すようになり、従来
方法による得られた結晶中の転位密度を示す第7図に比
べて平均転位密度は低いが、均一性はそれほど改善され
ないことが明らかになった。そこで、本発明者らはさら
に実験を重ねた結果、結晶形状と転位密度の均一性との
間には、第3図に示すような明関があり、同一重量の結
晶(1kg)を育成する場合、結晶の高さLと直径Dとの
比L/Dを0.8以上とすれば転位密度のほぼ均一な結晶が得
られることを見出した。However, if the crystal is cooled at a temperature of 5 ° C./cm or less in the crucible as it is after the crystal growth, the occurrence of cracks can be prevented, but the dislocation density in the crystal becomes as shown in FIG. 2, and the crystal obtained by the conventional method is obtained. It was found that the average dislocation density was lower than that in FIG. 7 showing the dislocation density in the middle, but the uniformity was not so much improved. Therefore, the present inventors have conducted further experiments. As a result, there is a clear relationship between the crystal shape and the uniformity of the dislocation density as shown in FIG. 3, and a crystal (1 kg) of the same weight is grown. In this case, it has been found that a crystal having a substantially uniform dislocation density can be obtained by setting the ratio L / D of the height L and the diameter D of the crystal to 0.8 or more.
本発明は、上記知見に基づいてなされたもので高圧容
器内に配置したるつぼ中の原料融液を液体封止剤層で覆
い、高圧容器内を高圧不活性ガス雰囲気とし、原料融液
に種結晶を浸漬して単結晶の成長を行なう化合物半導体
単結晶の製造方法において、単結晶の形状がその高さを
L、直径をDとしたときL/Dが0.8以上となるように育成
し、成長終了後にその単結晶を引き上げず、そのままる
つぼ内液体封止剤層下で5℃/min以下の冷却速度で室温
まで除冷することを提案するものである。The present invention has been made based on the above findings, and covers a raw material melt in a crucible arranged in a high-pressure container with a liquid sealant layer, makes the inside of the high-pressure container a high-pressure inert gas atmosphere, and seeds the raw material melt. In a method for producing a compound semiconductor single crystal in which a single crystal is grown by immersing the crystal, the height of the single crystal is L, and the diameter is D, where L / D is 0.8 or more, The present invention proposes that the single crystal is not pulled up after completion of the growth, and is cooled to room temperature at a cooling rate of 5 ° C./min or less under the liquid sealant layer in the crucible as it is.
[作用] 上記のような化合物半導体単結晶の製造方法によれ
ば、結晶成長終了後に温度変化のないるつぼ中で結晶が
冷却されるとともに、冷却速度を5℃/min以下としたの
で、液体封止剤との熱膨張率の差が緩和され、熱応力が
生じにくくなりこれによって、クラックの発生を防止で
きるとともに、L/Dを0.8以上としたので、結晶の直径が
相対的に小さくなり、中心部と外周部との温度差を小さ
くすることができ、これによって転位密度を低減させ、
かつウェハ面内分布の均一性を向上させることができ
る。[Action] According to the method for producing a compound semiconductor single crystal as described above, the crystal is cooled in a crucible having no temperature change after the crystal growth, and the cooling rate is set to 5 ° C./min or less. The difference in the coefficient of thermal expansion with the stopper is reduced, and thermal stress is less likely to occur, thereby preventing the occurrence of cracks and making the L / D 0.8 or more, so that the crystal diameter becomes relatively small, The temperature difference between the central part and the outer peripheral part can be reduced, thereby reducing the dislocation density,
In addition, the uniformity of the distribution within the wafer surface can be improved.
[実施例] (第1実施例) 結晶成長装置は従来と同一構成のもの(第5図(a)
参照)を用いた。Example (First Example) The crystal growth apparatus has the same configuration as the conventional one (FIG. 5 (a)).
Reference) was used.
まず、GaAs多結晶1.1kgの、液体封止剤としてのB2O3
を25mmの厚さとなるように秤量として内径60mmのpBN製
のるつぼ3に入れ、ヒータ2により加熱して炉内を1250
℃以上に昇温し、GaAsおよびB2O3を融解させた。このと
き、Asの揮散を防止するためガス導入管8から例えばア
ルゴンガスのような不活性ガスを導入し、高圧容器1内
を30気圧とした。First, 1.1 kg of GaAs polycrystal, B 2 O 3
Is weighed so as to have a thickness of 25 mm and placed in a crucible 3 made of pBN having an inner diameter of 60 mm.
The temperature was raised to ℃ or more, and GaAs and B 2 O 3 were melted. At this time, an inert gas such as, for example, an argon gas was introduced from the gas introduction pipe 8 to prevent the volatilization of As, and the inside of the high-pressure vessel 1 was set to 30 atm.
次に、GaAs融液の表面温度を、GaAsの融点よりもやや
高い温度に調節してから、結晶引上げ軸7を下げて、
(100)面の種結晶を原料融液5に種付けし、るつぼ3
を1℃/hrの割合で冷却しながら、30時間かけて結晶の
成長を行なった。この際、結晶引上げ軸7は5rpmで回転
させ、るつぼ3は逆方向に5rpmで回転させた。Next, after adjusting the surface temperature of the GaAs melt to a temperature slightly higher than the melting point of GaAs, the crystal pulling shaft 7 is lowered,
Seed the (100) face seed crystal into the raw material melt 5 and add
While cooling at a rate of 1 ° C./hr, a crystal was grown for 30 hours. At this time, the crystal pulling shaft 7 was rotated at 5 rpm, and the crucible 3 was rotated at 5 rpm in the opposite direction.
約30時間経過後、結晶がほぼるつぼ底部まで成長した
時点で育成を終了し、結晶およびるつぼの回転を止め、
結晶9を引上げず、るつぼ内液体封止剤層6下で結晶を
5℃/minの割合で室温まで冷却した。このようにして得
られた結晶は、フラットトプップ形で、直径60mm、長さ
75mm、重量約1.1kgの単結晶であった。Approximately 30 hours later, when the crystal has almost grown to the bottom of the crucible, terminate the growth, stop the rotation of the crystal and the crucible,
Without pulling the crystal 9, the crystal was cooled to room temperature at a rate of 5 ° C./min under the liquid sealant layer 6 in the crucible. The crystals obtained in this way are flat-topped, 60 mm in diameter and length
The single crystal was 75 mm and weighed about 1.1 kg.
このようにして得られた結晶を種付け位置から1cm下
側で切断して(100)面の円形ウェハとし、転位密度を
測定した。その結果を第4図に示す。第4図から判るよ
うに、ウェハの転位密度は2×103〜3×103個/cm2であ
り、面内分布の均一性は良好であった。The crystal thus obtained was cut 1 cm below the seeding position to form a (100) plane circular wafer, and the dislocation density was measured. The result is shown in FIG. As can be seen from FIG. 4, the dislocation density of the wafer was 2 × 10 3 to 3 × 10 3 / cm 2 , and the uniformity of the in-plane distribution was good.
(第2実施例) InP単結晶の育成を、第6図に示すような装置を用い
て行なった。(Second Example) InP single crystals were grown using an apparatus as shown in FIG.
第6図に示す結晶成長装置は、液体封止剤層6の上面
(高圧不活性ガス10との界面)から2〜3mmにおいて液
体封止剤層6を覆う熱遮蔽板14が昇降可能に設けられて
いる。この熱遮蔽板14は、高純度石英製で、周縁にフラ
ンジ部14aを有し中心には種結晶が挿通されるのに十分
なだけの径の孔14bが形成されている。In the crystal growth apparatus shown in FIG. 6, a heat shield plate 14 that covers the liquid sealant layer 6 at a distance of 2 to 3 mm from the upper surface of the liquid sealant layer 6 (the interface with the high-pressure inert gas 10) is provided so as to be able to move up and down. Have been. The heat shield plate 14 is made of high-purity quartz, has a flange portion 14a on the periphery, and has a hole 14b formed at the center with a diameter sufficient for a seed crystal to be inserted.
上記遮蔽板14で液体封止剤層6の上方を覆うようにし
たのは、遮蔽板がないとガス対流に伴う原料融液中温度
の揺らぎによってInPでは双晶が発生し易いためであ
る。上記装置で、炉内アルゴン圧力を50気圧とし炉内を
1100℃以上に昇温した他は第1実施例と同一条件、同一
方法でInP結晶の成長を行なったところ、得られたInP結
晶は、直径60mm、長さ70mm、重量約1kgの単結晶であっ
た。The reason why the shielding plate 14 covers the upper part of the liquid sealant layer 6 is that twins are easily generated in InP due to fluctuations in the temperature of the raw material melt due to gas convection without the shielding plate. With the above equipment, the argon pressure inside the furnace was set to 50 atm and the inside of the furnace was
InP crystals were grown under the same conditions and under the same conditions as in the first embodiment except that the temperature was raised to 1100 ° C. or higher. The obtained InP crystals were single crystals having a diameter of 60 mm, a length of 70 mm, and a weight of about 1 kg. there were.
本実施例で得た結晶について第1実施例の場合と同様
にしてウェハを切り出し、その転位密度を測定した。そ
の結果、転位密度は1×103〜2×103個/cm-2と低く、
しかもウェーハ面内均一性も優れていた。本実施例で
は、熱遮蔽板14を設けたことにより、高圧不活性ガス10
中の対流による原料融液5内の温度ゆらぎが低減され、
結晶の品質が向上する。A wafer was cut out of the crystal obtained in this example in the same manner as in the first example, and the dislocation density was measured. As a result, the dislocation density was as low as 1 × 10 3 to 2 × 10 3 / cm -2 ,
In addition, the wafer in-plane uniformity was excellent. In the present embodiment, the provision of the heat shield plate 14 enables the high-pressure inert gas 10
Temperature fluctuations in the raw material melt 5 due to convection inside are reduced,
The quality of the crystal is improved.
なお、本実施例において使用する熱遮蔽板14の材質
は、高純度石英に限らず、BN(窒化ボロン),グラファ
イト等の耐熱性材料であって高純度のものであればよ
い。The material of the heat shield plate 14 used in the present embodiment is not limited to high-purity quartz, but may be a high-purity heat-resistant material such as BN (boron nitride) or graphite.
以上、2つの実施例においては、いずれも結晶成長後
に、不活性ガスに比べて粘性が大きくかつ比熱の大きな
液体封止剤中で結晶を除冷しているため、高圧容器内の
ガス中で冷却する場合のような対流が液体封止剤中に生
じにくくなる。そのため、ガス中での冷却に比べて急激
かつムラの多い冷却が防止される。さらに、液体封止剤
下で冷却しているので、結晶中からのAsやP等の揮散も
防止できる。In the above two examples, in both cases, after the crystal growth, the crystal is de-cooled in the liquid sealant having a large viscosity and a large specific heat as compared with the inert gas. Convection, such as when cooling, is less likely to occur in the liquid sealant. Therefore, rapid and uneven cooling is prevented as compared with cooling in gas. Furthermore, since cooling is performed under the liquid sealant, volatilization of As, P, and the like from the crystal can be prevented.
なお、上記各実施例においては、GaAs単結晶およびIn
P単結晶の育成について説明したが、本発明はかかる実
施例に限定されるものばかりではなく、GaPやCdTe等、I
II−V族およびII−VI族化合物半導体単結晶の育成に適
用できる。In each of the above embodiments, GaAs single crystal and In
Although the growth of the P single crystal has been described, the present invention is not limited to such examples, but includes GaP, CdTe, and the like.
The present invention is applicable to the growth of II-V and II-VI compound semiconductor single crystals.
また、るつぼの形状は第5図や第6図に示すように完
全な円筒状にする必要はなく、する鉢状にした方が結晶
を取り出し易くなる。Further, the crucible does not need to have a perfect cylindrical shape as shown in FIGS. 5 and 6, and it is easier to take out a crystal by making a crucible.
[発明の効果] 以上のように、本発明の化合物半導体単結晶の製造方
法によれば、高圧容器内の配置したるつぼ中の原料融液
を液体封止剤層で覆い、高圧容器内を高圧不活性ガス雰
囲気とし、原料融液に種結晶を浸漬して単結晶の成長を
行なう化合物半導体単結晶の製造方法において、単結晶
の形状がその高さをL、直径をDとしたときL/Dが0.8以
上になるように育成し、成長終了後にその単結晶を引き
上げず、そのままるつぼ内液体封止剤層下で5℃/min以
下の冷却速度で室温まで除冷するようにしたので、結晶
成長終了後に温度変化のないるつぼ中で結晶が冷却され
るとともに冷却速度が遅いために、液体封止剤との熱膨
張率の差が緩和され、熱応力が生じにくくなりこれによ
って、クラックの発生を防止できるとともに、L/Dが0.8
以上であるため、結晶の直径が相対的に大きくなり、中
心部と外周部との温度差を小さくすることができ、これ
によって転位密度を低減させ、かつウェハ面内分布の均
一性を向上させることができるという効果がある。[Effects of the Invention] As described above, according to the method for producing a compound semiconductor single crystal of the present invention, the raw material melt in the crucible arranged in the high-pressure container is covered with the liquid sealant layer, and the high-pressure container is pressurized. In a method for producing a compound semiconductor single crystal in which an inert gas atmosphere is used and a seed crystal is immersed in a raw material melt to grow a single crystal, when the height of the single crystal is L and the diameter is D, Since the crystal was grown so that D became 0.8 or more, and the single crystal was not pulled up after the growth was completed, it was cooled down to room temperature at a cooling rate of 5 ° C./min or less under the liquid sealant layer in the crucible as it was, After the crystal growth, the crystal is cooled in the crucible where the temperature does not change and the cooling rate is slow, so that the difference in the coefficient of thermal expansion from the liquid sealant is relaxed, and thermal stress is less likely to occur, thereby causing cracks. Generation can be prevented and L / D is 0.8
As described above, the diameter of the crystal becomes relatively large, and the temperature difference between the central part and the outer peripheral part can be reduced, thereby reducing the dislocation density and improving the uniformity of the in-plane distribution of the wafer. There is an effect that can be.
第1図(a),(b),(c),(d)および(e)は
それぞれLEK法により育成した結晶をるつぼ内で冷却し
た場合における冷却速度とクラックの発生状況との関係
を示す縦断面図、 第2図は本発明の第1の構成手段(るつぼ内で5℃/min
以下の速度で冷却)のみ適用して得られた結晶のウェハ
面内転位密度の分布を示すグラフ、 第3図は育成した結晶の大きさ(高さと直径の比)とウ
ェハの転位密度の最大値と最小値の比との関係を示すグ
ラフ、 第4図は本発明の第1の実施例により得られた結晶のウ
ェハ面内転位密度の分布を示すグラフ、 第5図(a)および(b)はそれぞれ従来のLEK法にお
ける結晶成長過程および結晶冷却過程での結晶の状態を
示す縦断面図、 第6図は本発明の第2の実施例に使用した結晶成長装置
を示す縦断面図、 第7図は従来法により得られた結晶のウェハ面内転位密
度の分布を示すグラフである。 1……高圧容器、3……るつぼ、5……原料融液、6…
…液体封止剤層、7……結晶引上げ軸、8……ガス導入
管、9……育成結晶、14……熱遮蔽板。FIGS. 1 (a), (b), (c), (d) and (e) respectively show the relationship between the cooling rate and the state of crack generation when a crystal grown by the LEK method is cooled in a crucible. FIG. 2 is a first structural means of the present invention (5 ° C./min in a crucible)
FIG. 3 is a graph showing the distribution of dislocation density in the wafer plane of a crystal obtained by applying only the following cooling (cooling at the following speed). FIG. 3 shows the size (ratio of height to diameter) of the grown crystal and the maximum dislocation density of the wafer. FIG. 4 is a graph showing the relationship between the ratio of the maximum value to the minimum value, FIG. 4 is a graph showing the distribution of the in-plane dislocation density of the crystal obtained by the first embodiment of the present invention, and FIGS. b) is a longitudinal sectional view showing the state of the crystal during the crystal growth process and the crystal cooling process in the conventional LEK method, respectively. FIG. 6 is a longitudinal sectional view showing the crystal growth apparatus used in the second embodiment of the present invention. FIG. 7 is a graph showing the distribution of in-plane dislocation density of a crystal obtained by a conventional method. 1 ... high pressure vessel, 3 ... crucible, 5 ... raw material melt, 6 ...
... Liquid sealant layer, 7 ... Crystal pulling shaft, 8 ... Gas introduction tube, 9 ... Growth crystal, 14 ... Heat shield plate.
フロントページの続き (72)発明者 小田 修 埼玉県戸田市新曽南3丁目17番35号 日 本鉱業株式会社内 (56)参考文献 特開 昭60−90897(JP,A) 特開 平1−145395(JP,A)Continuation of the front page (72) Inventor Osamu Oda 3-17-35 Nishinaminami, Toda City, Saitama Prefecture Inside Japan Mining Co., Ltd. (56) References JP-A-60-90897 (JP, A) JP-A-1- 145395 (JP, A)
Claims (2)
を液体封止剤層で覆い、高圧容器内を高圧不活性ガス雰
囲気とし、原料融液に種結晶を浸漬して単結晶の成長を
行なう化合物半導体単結晶の製造方法において、育成さ
れる単結晶の形状を、その高さLと直径Dとの比L/Dを
0.8以上とし、るつぼ内液体封止剤層下において5℃/
分以下の速度で冷却を行なうようにしたことを特徴とす
る化合物半導体単結晶の製造方法。A raw material melt in a crucible placed in a high-pressure vessel is covered with a liquid sealant layer, the inside of the high-pressure vessel is set to a high-pressure inert gas atmosphere, and a seed crystal is immersed in the raw material melt to form a single crystal. In the method for producing a compound semiconductor single crystal to be grown, the shape of the single crystal to be grown is determined by adjusting the ratio L / D of the height L to the diameter D.
0.8 or more, 5 ℃ / below the liquid sealant layer in the crucible
A method for producing a compound semiconductor single crystal, characterized in that cooling is performed at a rate of not more than one minute.
て、原料融液の温度がるつぼ底部にいくほど高くなるよ
うに炉内温度を制御することを特徴とする化合物半導体
単結晶の製造方法。2. A method for producing a compound semiconductor single crystal according to claim 1, wherein the furnace temperature is controlled so that the temperature of the raw material melt becomes higher toward the bottom of the crucible. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19920089A JP2700145B2 (en) | 1989-08-02 | 1989-08-02 | Method for manufacturing compound semiconductor single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19920089A JP2700145B2 (en) | 1989-08-02 | 1989-08-02 | Method for manufacturing compound semiconductor single crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0365592A JPH0365592A (en) | 1991-03-20 |
JP2700145B2 true JP2700145B2 (en) | 1998-01-19 |
Family
ID=16403807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19920089A Expired - Lifetime JP2700145B2 (en) | 1989-08-02 | 1989-08-02 | Method for manufacturing compound semiconductor single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2700145B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4736401B2 (en) * | 2004-11-02 | 2011-07-27 | 住友金属工業株式会社 | Method for producing silicon carbide single crystal |
-
1989
- 1989-08-02 JP JP19920089A patent/JP2700145B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0365592A (en) | 1991-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4645560A (en) | Liquid encapsulation method for growing single semiconductor crystals | |
EP0751242A1 (en) | Process for bulk crystal growth | |
US4944925A (en) | Apparatus for producing single crystals | |
JP4060106B2 (en) | Unidirectionally solidified silicon ingot, manufacturing method thereof, silicon plate, solar cell substrate and sputtering target material | |
JP2700145B2 (en) | Method for manufacturing compound semiconductor single crystal | |
EP0355833B1 (en) | Method of producing compound semiconductor single crystal | |
JP2690419B2 (en) | Single crystal growing method and apparatus | |
JP3018738B2 (en) | Single crystal manufacturing equipment | |
JP2855408B2 (en) | Single crystal growth equipment | |
JP2781856B2 (en) | Method for manufacturing compound semiconductor single crystal | |
JPH11302094A (en) | Production of compound semiconductor single crystal | |
JP2531875B2 (en) | Method for producing compound semiconductor single crystal | |
JPH08277192A (en) | Apparatus for producing compound semiconductor single crystal and its production | |
JP2690420B2 (en) | Single crystal manufacturing equipment | |
JPS606918B2 (en) | Method for producing Group 3-5 compound single crystal | |
JP2726887B2 (en) | Method for manufacturing compound semiconductor single crystal | |
JP2002234792A (en) | Method of producing single crystal | |
JPS6090897A (en) | Method and apparatus for manufacturing compound semiconductor single crystal | |
JPH01145395A (en) | Production of compound semiconductor single crystal | |
JPH0341432B2 (en) | ||
JP2922038B2 (en) | Method for manufacturing compound semiconductor single crystal | |
JP2781857B2 (en) | Single crystal manufacturing method | |
JP2757865B2 (en) | Method for producing group III-V compound semiconductor single crystal | |
JPH0559879B2 (en) | ||
JP2773441B2 (en) | Method for producing GaAs single crystal |