JP2855408B2 - Single crystal growth equipment - Google Patents

Single crystal growth equipment

Info

Publication number
JP2855408B2
JP2855408B2 JP23561994A JP23561994A JP2855408B2 JP 2855408 B2 JP2855408 B2 JP 2855408B2 JP 23561994 A JP23561994 A JP 23561994A JP 23561994 A JP23561994 A JP 23561994A JP 2855408 B2 JP2855408 B2 JP 2855408B2
Authority
JP
Japan
Prior art keywords
single crystal
crystal
heat shield
crystal growth
sealant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23561994A
Other languages
Japanese (ja)
Other versions
JPH08104591A (en
Inventor
正之 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP23561994A priority Critical patent/JP2855408B2/en
Publication of JPH08104591A publication Critical patent/JPH08104591A/en
Application granted granted Critical
Publication of JP2855408B2 publication Critical patent/JP2855408B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、単結晶成長装置に関
し、特に液体封止チョクラルスキー(LEC)法により
化合物半導体単結晶を成長させる装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for growing a single crystal, and more particularly to an apparatus for growing a compound semiconductor single crystal by a liquid-sealed Czochralski (LEC) method.

【0002】[0002]

【従来の技術】従来、GaAsやInPなどの化合物半
導体の単結晶を製造する主要な方法として、原料と封止
剤をるつぼ内で溶融し、その原料融液表面に種結晶を接
触させて回転させながら徐々に引き上げることにより単
結晶を育成するLEC法が公知である。このLEC法に
おいては、転位が集積してなるリネージの発生を防止す
るため、結晶育成中、原料融液と育成結晶との固液界面
を理想的な下凸状、即ち育成結晶の下端がその外周から
中央にかけて原料融液中に膨出するような形状に保つこ
とが重要である。これは、得られた単結晶から切り出し
たウェハ上に、ICや半導体レーザ等の作成のためにエ
ピタキシャル膜を成長させると、リネージの発生したウ
ェハの場合には、そのリネージの発生位置上のエピタキ
シャル膜が多結晶化してしまい、良好な薄膜単結晶を得
難いからである。
2. Description of the Related Art Conventionally, as a main method for producing a single crystal of a compound semiconductor such as GaAs or InP, a raw material and a sealant are melted in a crucible, and a seed crystal is brought into contact with the surface of the raw material melt and rotated. There is known an LEC method in which a single crystal is grown by gradually pulling it while making the crystal. In this LEC method, in order to prevent the generation of lineage formed by the accumulation of dislocations, the solid-liquid interface between the raw material melt and the grown crystal has an ideal downward convex shape during crystal growth, that is, the lower end of the grown crystal has It is important to maintain a shape that swells into the raw material melt from the outer periphery to the center. This is because, when an epitaxial film is grown on a wafer cut out of the obtained single crystal for the production of an IC, a semiconductor laser, or the like, in the case of a wafer with lineage, the epitaxial film on the lineage generation position is formed. This is because the film is polycrystallized and it is difficult to obtain a good thin film single crystal.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、LEC
法で直胴部の育成段階になると、固液界面形状が下凸状
から、育成結晶の下端外周と中央との中間部分が原料融
液中に膨出したようなW字状に移行し易く、結晶中心と
外周との中間位置に転位が集積してリネージが発生し易
いという問題点があった。
SUMMARY OF THE INVENTION However, LEC
In the growth stage of the straight body by the method, the solid-liquid interface shape tends to shift from a downwardly convex shape to a W-shape such that the middle part between the lower periphery and the center of the grown crystal swells into the raw material melt. In addition, there is a problem that dislocations accumulate at an intermediate position between the crystal center and the outer periphery and lineage is easily generated.

【0004】本発明は、上記問題点を解決するためにな
されたもので、その目的とするところは、LEC法によ
りリネージのない良好な化合物半導体単結晶を育成する
ことのできる単結晶成長装置を提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a single crystal growth apparatus capable of growing a good compound semiconductor single crystal without lineage by the LEC method. To provide.

【0005】[0005]

【課題を解決するための手段】本発明者は、固液界面形
状がW字状に移行するのは直胴部の育成段階になると育
成結晶の側面や封止剤上面からの放熱量が多くなること
が原因であり、それを防ぐには結晶の側面を熱遮蔽体で
覆うことが有効であると考え、本発明を完成するに至っ
た。
The inventor of the present invention has found that when the solid-liquid interface shape shifts to a W-shape at the stage of growing the straight body portion, a large amount of heat is radiated from the side surfaces of the grown crystal and the top surface of the sealant. The inventors thought that it would be effective to cover the side surfaces of the crystal with a heat shield to prevent this, and completed the present invention.

【0006】即ち、本発明に係る単結晶成長装置は、る
つぼ内に原料及び封止剤を入れてヒータにより加熱、融
解し、その原料融液表面に種結晶を接触させて徐々に引
き上げることにより化合物半導体単結晶の成長を行なう
単結晶成長装置において、前記るつぼの上方から、融解
した前記封止剤の上面近傍まで垂下して育成結晶の側方
を覆う筒状のスカート部を有する熱遮蔽体を備え、当該
熱遮蔽体のスカート部の下端と結晶育成開始時の前記封
止剤の上面との距離は、0mmよりも大きく2mm以下
であり、前記熱遮蔽体のスカート部の熱容量は、室温に
おいて30J/K以上100J/K以下であることを特
徴とするものである。
That is, in the single crystal growing apparatus according to the present invention, a raw material and a sealant are put into a crucible, heated and melted by a heater, and a seed crystal is brought into contact with the surface of the raw material melt and gradually pulled up. In a single crystal growth apparatus for growing a compound semiconductor single crystal, a heat shield having a cylindrical skirt portion which extends from above the crucible to near the upper surface of the melted sealing agent and covers the side of the grown crystal. with a corresponding
The lower end of the skirt of the heat shield and the seal at the start of crystal growth
The distance from the top surface of the blocking agent is greater than 0 mm and 2 mm or less
The heat capacity of the skirt portion of the heat shield is at room temperature.
In particular, it should be between 30 J / K and 100 J / K.
It is a sign.

【0007】また、より好ましくは、前記熱遮蔽体のス
カート部の下端と結晶育成開始時の前記封止剤の上面と
の距離は、0.5mm以上1.5mm以下であるとよ
い。さらに、より好ましくは、前記熱遮蔽体のスカート
部の熱容量は、室温において40J/K以上80J/K
以下であるとよい。
[0007] More preferably, the heat shield body
The lower end of the cart part and the upper surface of the sealant at the start of crystal growth
Distance should be 0.5 mm or more and 1.5 mm or less
No. Still more preferably, the skirt of the heat shield
The heat capacity of the part is 40 J / K or more and 80 J / K at room temperature.
It is good to be the following.

【0008】[0008]

【作用】上記した手段によれば、LEC法に用いる単結
晶成長装置において、るつぼの上方から、融解した前記
封止剤の上面近傍まで垂下して育成結晶の側方を覆う筒
状のスカート部を有する熱遮蔽体を備え、当該熱遮蔽体
のスカート部の下端と結晶育成開始時の前記封止剤の上
面との距離は、0mmよりも大きく2mm以下で前記熱
遮蔽体のスカート部の熱容量は、室温において30J/
K以上100J/K以下としたため、結晶育成中、育成
結晶の側面からの輻射熱が熱遮蔽体によって吸収され、
結晶外周部の温度低下が防止される。それによって、固
液界面形状が常時理想的な下凸状に保たれ、リネージの
発生が防止される。従って、育成した単結晶から取得で
きるウェハの歩留まりが向上する。
According to the above-mentioned means, in the single crystal growing apparatus used in the LEC method, a cylindrical skirt portion which hangs down from above the crucible to near the upper surface of the melted sealing agent to cover the side of the grown crystal. with a heat shield having, the heat shield
Above the lower end of the skirt portion and the sealant at the start of crystal growth
The distance to the surface is greater than 0 mm and 2 mm or less,
The heat capacity of the skirt of the shield is 30 J /
Since it is K or more and 100 J / K or less, during crystal growth, radiant heat from the side surface of the grown crystal is absorbed by the heat shield,
The temperature at the outer peripheral portion of the crystal is prevented from lowering. As a result, the shape of the solid-liquid interface is always kept in an ideal downward convex shape, and generation of lineage is prevented. Therefore, the yield of the wafer that can be obtained from the grown single crystal is improved.

【0009】ここで、熱遮蔽体のスカート部の下端と結
晶育成開始時の封止剤の上面との距離が、0mmよりも大
きく2mm以下であり、より好ましくは、0.5mm以上
1.5mm以下であるのは、熱遮蔽体のスカート部の下端
が封止剤中に浸漬してしまうと成長界面の熱対流を乱す
おそれがあり、一方、熱遮蔽体のスカート部を封止剤か
ら離し過ぎると封止剤上面からの放熱を抑制する効果が
小さくなって結晶外周部の温度が低下し易くなるからで
ある。
Here, the distance between the lower end of the skirt portion of the heat shield and the upper surface of the sealant at the start of crystal growth is greater than 0 mm and 2 mm or less, more preferably 0.5 mm or more and 1.5 mm or less. The following is that if the lower end of the skirt portion of the heat shield is immersed in the sealant, heat convection at the growth interface may be disturbed, while the skirt portion of the heat shield is separated from the sealant. If too long, the effect of suppressing the heat radiation from the upper surface of the sealant becomes small, and the temperature at the outer peripheral portion of the crystal tends to decrease.

【0010】[0010]

【0011】さらに、熱遮蔽体のスカート部の熱容量
が、室温において30J/K以上100J/K以下であ
り、より好ましくは、40J/K以上80J/K以下で
あるのは、熱容量が小さ過ぎると結晶側面からの放熱を
抑制する効果が小さくなってしまい、一方、熱容量が大
き過ぎると育成した結晶の分解が起こってしまい好まし
くないからである。
Further, the heat capacity of the skirt portion of the heat shield is 30 J / K or more and 100 J / K or less at room temperature, and more preferably 40 J / K or more and 80 J / K or less when the heat capacity is too small. This is because the effect of suppressing heat radiation from the crystal side face is reduced, while if the heat capacity is too large, the grown crystal is decomposed, which is not preferable.

【0012】[0012]

【実施例】本発明に係る単結晶成長装置の実施例を図1
及び図2に基づいて以下に説明する。先ず、本発明に係
る単結晶成長装置の一構成例について説明する。図1
は、本発明に係る単結晶成長装置の一例の断面図である
が、同図において、1は不活性ガスや窒素ガスによって
加圧される高圧容器、2はるつぼ支持軸3によって回転
可能に支持されたるつぼである。このるつぼ2内に化合
物半導体の多結晶原料とB2 3 のような封止剤4が収
納される。また、高圧容器1の上方からは、るつぼ2内
に向かって引上げ軸5が回転可能且つ上下動可能に垂下
されている。
FIG. 1 shows an embodiment of a single crystal growth apparatus according to the present invention.
This will be described below with reference to FIG. First, a configuration example of a single crystal growth apparatus according to the present invention will be described. FIG.
1 is a cross-sectional view of an example of a single crystal growth apparatus according to the present invention, in which 1 is a high-pressure vessel pressurized by an inert gas or nitrogen gas, and 2 is rotatably supported by a crucible support shaft 3. It was a crucible. In this crucible 2, a polycrystalline raw material of a compound semiconductor and a sealant 4 such as B 2 O 3 are stored. In addition, from above the high-pressure vessel 1, a pulling shaft 5 is suspended so as to be rotatable and vertically movable into the crucible 2.

【0013】そして、この単結晶成長装置は、るつぼ2
の上方から、加熱により融解した封止剤(液体封止剤)
4の上面近傍まで垂下する筒状のスカート部6Aを有す
る熱遮蔽体6を備えており、育成中の結晶7の側方を覆
うようになっている。これにより、育成結晶7の側面及
び液体封止剤4の上面からの放熱が抑制され、結晶外周
部の温度低下が防止される。従って、結晶育成中、育成
結晶7と原料融液8との固液界面は下凸状に保たれる。
The apparatus for growing a single crystal comprises a crucible 2
Sealant melted by heating from above (liquid sealant)
A heat shield 6 having a cylindrical skirt 6A hanging down to the vicinity of the upper surface of the crystal 4 is provided to cover the side of the growing crystal 7. Thereby, heat radiation from the side surface of the grown crystal 7 and the upper surface of the liquid sealant 4 is suppressed, and a decrease in the temperature of the crystal outer peripheral portion is prevented. Therefore, during the crystal growth, the solid-liquid interface between the grown crystal 7 and the raw material melt 8 is maintained in a downward convex shape.

【0014】熱遮蔽体6は、例えば石英、グラファイ
ト、pBNなどでできており、図2に示すように、その
下半部に育成結晶7の直胴部に沿う円筒状のスカート部
6Aを有している。このスカート部6Aは、その内径X
1 が育成結晶7の直胴部の直径の例えば1.3倍の大き
さとなるように形成されていて、その下部がるつぼ2内
に挿入される。なお、直胴部との接触を避け、かつ結晶
側面からの放熱を有効に抑制するために、スカート部6
Aの内径X1 は、好ましくは直胴部の1.1〜1.6倍
の大きさであり、より好ましくは1.2〜1.4倍の大
きさであるとよい。
The heat shield 6 is made of, for example, quartz, graphite, pBN or the like. As shown in FIG. 2, a lower half of the heat shield 6 has a cylindrical skirt 6A along the straight body of the grown crystal 7. doing. The skirt 6A has an inner diameter X
1 is formed to have a size, for example, 1.3 times the diameter of the straight body portion of the grown crystal 7, and the lower part thereof is inserted into the crucible 2. In order to avoid contact with the straight body and effectively suppress heat radiation from the crystal side surface, the skirt 6
The inside diameter X1 of A is preferably 1.1 to 1.6 times the size of the straight body portion, and more preferably 1.2 to 1.4 times the size.

【0015】また、スカート部6Aの長さHは、スカー
ト部6Aの下端と液体封止剤4の上面との距離Lが例え
ば1mmとなり、かつ育成終了後に所望の育成長の結晶7
を原料融液8から切り離す際に結晶肩部が熱遮蔽体6の
内面に衝突しないような長さとなっている。なお、成長
界面の熱対流を乱すことなく液体封止剤4の上面からの
放熱を有効に抑制するために、スカート部6Aと液体封
止剤4との間の距離Lは、好ましくは0mmよりも大きく
2mm以下であり、より好ましくは0.5mm以上1.5mm
以下であるとよい。
The length H of the skirt portion 6A is such that the distance L between the lower end of the skirt portion 6A and the upper surface of the liquid sealant 4 is 1 mm, for example, and the crystal 7 having a desired growth length after the growth is completed.
Has a length such that the crystal shoulder does not collide with the inner surface of the heat shield 6 when the crystal is separated from the raw material melt 8. In order to effectively suppress heat radiation from the upper surface of the liquid sealant 4 without disturbing thermal convection at the growth interface, the distance L between the skirt portion 6A and the liquid sealant 4 is preferably less than 0 mm. 2 mm or less, more preferably 0.5 mm to 1.5 mm
It is good to be the following.

【0016】さらに、スカート部6Aの熱容量は、例え
ば48.5J/Kであるが、育成結晶7の分解が起らな
い範囲で結晶側面からの放熱を有効に抑制するために
は、好ましくは30J/K以上100J/K以下であ
り、より好ましくは40J/K以上80J/K以下であ
るとよい。このような熱容量とするために、本例では、
スカート部6Aの厚み(X2 −X1 )(但し、X2 はス
カート部6Aの外径である。)を2mmとしている。
Further, the heat capacity of the skirt portion 6A is, for example, 48.5 J / K, but preferably 30 J / K in order to effectively suppress heat radiation from the crystal side surface within a range where decomposition of the grown crystal 7 does not occur. / K or more and 100 J / K or less, more preferably 40 J / K or more and 80 J / K or less. In order to obtain such a heat capacity, in this example,
The thickness (X2-X1) of the skirt 6A (where X2 is the outer diameter of the skirt 6A) is 2 mm.

【0017】また、熱遮蔽体6は、スカート部6Aの外
側に、ヒータ9を囲む断熱材10上に立脚して熱遮蔽体
6自身を支持する支持脚部6Bを有しているとともに、
それら支持脚部6B及びスカート部6Aの上方には引上
げ軸5を覆う上部筒部6Cを有している。
Further, the heat shield 6 has a support leg 6B which stands on the heat insulating material 10 surrounding the heater 9 and supports the heat shield 6 itself outside the skirt 6A.
Above the support leg 6B and the skirt 6A, there is an upper cylindrical portion 6C that covers the pulling shaft 5.

【0018】次に、上記構成の単結晶成長装置を用い
て、直径2インチの鉄ドープInP単結晶の成長を行な
った具体例について説明するが、本発明は、その具体例
により何等制限されるものではない。先ず、pBN(熱
分解窒化ホウ素)製のるつぼ2内に1100gのInP
多結晶原料と液体封止剤4として500gのB2 3
0.03wt%の鉄を入れて高圧容器1内に設置した。そ
して、るつぼ2を炉内の最下部に位置させ、ヒータ9に
より炉内を昇温し、B2 3 が軟化し、さらに多結晶原
料が融解したら、るつぼ支持軸3によりるつぼ2を上昇
させて結晶育成開始位置、即ちスカート部6Aの下端と
液体封止剤4の上面との距離Lが例えば1mmとなる位置
に合わせた。
Next, a specific example in which an iron-doped InP single crystal having a diameter of 2 inches is grown using the single crystal growth apparatus having the above configuration will be described. However, the present invention is not limited by the specific example. Not something. First, 1100 g of InP was placed in a crucible 2 made of pBN (pyrolytic boron nitride).
A polycrystalline raw material and 500 g of B 2 O 3 and 0.03 wt% of iron as a liquid sealant 4 were placed in the high-pressure vessel 1. Then, the crucible 2 is positioned at the lowermost position in the furnace, the temperature of the furnace is increased by the heater 9, B 2 O 3 is softened, and when the polycrystalline raw material is melted, the crucible 2 is raised by the crucible support shaft 3. The crystal growth start position, that is, the position where the distance L between the lower end of the skirt portion 6A and the upper surface of the liquid sealant 4 is 1 mm, for example.

【0019】さらに、高圧容器1内を高圧にし、原料融
液8の液面に種結晶11を接触させ、引上げ開始温度の
調節をしてから引上げ軸5を引き上げて結晶育成を開始
した。なお、種結晶11には、(100)方位面のIn
P単結晶を用いた。
Further, the inside of the high-pressure vessel 1 was set to a high pressure, the seed crystal 11 was brought into contact with the liquid surface of the raw material melt 8, the pulling start temperature was adjusted, and then the pulling shaft 5 was pulled up to start crystal growth. It should be noted that the seed crystal 11 has a (100) orientation plane of In.
A P single crystal was used.

【0020】引上げ速度は、毎時10mmとした。そし
て、結晶育成の進行につれて原料融液8の液面が低くな
る分については、育成結晶7及び原料融液8のマスバラ
ンスに基づいてるつぼ支持軸3によるるつぼ2の上昇速
度を決め、その速度でもってるつぼ2を上昇させた。そ
れによって、結晶育成中、常時、熱遮蔽体6のスカート
部6Aの下端と液体封止剤4の上面との距離Lを略1mm
に保った。
The pulling speed was 10 mm per hour. Then, as to the amount by which the liquid level of the raw material melt 8 becomes lower as the crystal growth proceeds, the ascending speed of the crucible 2 by the crucible supporting shaft 3 is determined based on the mass balance of the grown crystal 7 and the raw material melt 8, and the speed is determined. The crucible 2 was raised. Thus, during crystal growth, the distance L between the lower end of the skirt portion 6A of the heat shield 6 and the upper surface of the liquid sealant 4 is always about 1 mm.
Kept.

【0021】育成結晶9の切離しは、固化率が0.7と
なった時点で引上げ速度を毎時75mmとすることによっ
て、結晶肩部が熱遮蔽体6に接触する直前までに終了す
るようにした。切離し後、るつぼ2を降下させ、炉内温
度が室温になるまで冷却した後、結晶を取り出した。
The separation of the grown crystal 9 is completed immediately before the crystal shoulder comes into contact with the heat shield 6 by setting the pulling speed to 75 mm / h when the solidification rate reaches 0.7. . After the separation, the crucible 2 was lowered and cooled until the furnace temperature reached room temperature, and then the crystal was taken out.

【0022】得られたInP単結晶について、その上
部、中部及び下部からそれぞれ評価用のウェハを切り出
し、リン酸と臭化水素酸とを2対1の割合で混合してな
るエッチャントにより室温で10分間エッチングして転
位密度(EPD:Etch Pit Density)の評価を行なっ
た。その結果、育成した単結晶には、下部に至るまでリ
ネージの発生がなく、高品質な単結晶を育成できたこと
がわかった。また、上記具体例と同様にして、鉄ドープ
InP単結晶及びすずドープInP単結晶をそれぞれ2
本ずつ育成したところ、いずれも、上記具体例と同様に
リネージのない高品質な単結晶が得られ、再現性のある
ことが確認された。
With respect to the obtained InP single crystal, wafers for evaluation were cut out from the upper, middle, and lower portions, respectively, and were etched at room temperature by an etchant obtained by mixing phosphoric acid and hydrobromic acid at a ratio of 2: 1. The etching was performed for minutes, and the dislocation density (EPD: Etch Pit Density) was evaluated. As a result, it was found that the grown single crystal was free of lineage up to the lower portion, and a high quality single crystal could be grown. In the same manner as in the above specific example, the iron-doped InP single crystal and the tin-doped InP single crystal
When grown individually, high-quality single crystals without any lineage were obtained in the same manner as in the above specific examples, and it was confirmed that they were reproducible.

【0023】なお、熱遮蔽体6は、上記実施例のものに
限らず、育成結晶7の直胴部を覆って結晶側面や封止剤
上面からの放熱を抑制することのできるスカート部6A
を有していれば、種々変形可能であるのはいうまでもな
い。
The heat shield 6 is not limited to that of the above embodiment, but may be a skirt 6A which covers the straight body of the grown crystal 7 and can suppress heat radiation from the crystal side surface or the sealant upper surface.
Needless to say, various modifications can be made as long as they have.

【0024】また、本発明の単結晶成長装置を用いるこ
とにより、従来の単結晶成長装置では、成長時の封止剤
中の垂直方向の最大温度勾配が140〜200℃/cmで
あったものを、スカート部の厚さ、材質を調整すること
により40℃/cmまで低くすることができる。そして、
100℃/cm以下とすることにより、EPDが104cm
-2以下の鉄ドープInP単結晶が得られ、50℃/cm以
下ではEPDが500cm-2以下の無転位単結晶が得られ
た。また、上記具体例においては、InP単結晶を育成
したが、本発明は、その他の化合物半導体、例えばGa
As、InAs、GaPの単結晶育成にも適用可能であ
る。
Further, by using the single crystal growth apparatus of the present invention, in the conventional single crystal growth apparatus, the maximum temperature gradient in the vertical direction in the encapsulant during growth was 140 to 200 ° C./cm. Can be reduced to 40 ° C./cm by adjusting the thickness and material of the skirt. And
By setting the temperature to 100 ° C./cm or less, the EPD is 10 4 cm.
-2 iron-doped InP single crystal is obtained, EPD is 500 cm -2 or less of dislocation-free single crystal obtained in the following 50 ° C. / cm. In the above specific example, an InP single crystal was grown, but the present invention relates to other compound semiconductors such as Ga.
The present invention is also applicable to single crystal growth of As, InAs, and GaP.

【0025】さらに、ドーパントも鉄やすずに限らず、
硫黄や亜鉛などを用いてもよいし、本発明によりドーパ
ントを添加しないアンドープの単結晶を育成することも
できる。
Further, the dopant is not limited to iron or tin,
Sulfur, zinc, or the like may be used, and an undoped single crystal to which no dopant is added can be grown according to the present invention.

【0026】[0026]

【発明の効果】本発明に係る単結晶成長装置によれば、
るつぼ内に原料及び封止剤を入れてヒータにより加熱、
融解し、その原料融液表面に種結晶を接触させて徐々に
引き上げることにより化合物半導体単結晶の成長を行な
う単結晶成長装置において、前記るつぼの上方から、融
解した前記封止剤の上面近傍まで垂下して育成結晶の側
方を覆う筒状のスカート部を有する熱遮蔽体を備え、当
該熱遮蔽体のスカート部の下端と結晶育成開始時の前記
封止剤の上面との距離は、0mmよりも大きく2mm以
下で、前記熱遮蔽体のスカート部の熱容量は、室温にお
いて30J/K以上100J/K以下としたため、結晶
育成中、育成結晶の側面からの輻射熱が熱遮蔽体のスカ
ート部により吸収されて結晶外周部の温度低下が防止さ
れるので、固液界面形状が常時理想的な下凸状に保た
れ、リネージの発生を防止することができる。従って、
育成した単結晶から取得できるウェハの歩留まりが向上
するという効果が得られる。
According to the single crystal growth apparatus of the present invention,
Put the raw material and sealant in the crucible and heat with a heater,
In a single crystal growth apparatus that grows a compound semiconductor single crystal by melting and gradually bringing a seed crystal into contact with the surface of the raw material melt and pulling it up, from above the crucible to near the upper surface of the melted sealant. A heat shield having a cylindrical skirt that hangs down and covers the side of the grown crystal is provided .
The lower end of the skirt portion of the heat shield and the crystal at the start of crystal growth
The distance from the top surface of the sealant is greater than 0 mm and 2 mm or less.
Below, the heat capacity of the skirt of the heat shield is at room temperature.
Therefore, since the radiant heat from the side surface of the grown crystal is absorbed by the skirt portion of the heat shield during the crystal growth and the temperature of the outer peripheral portion of the crystal is prevented from decreasing, the solid-liquid interface shape is formed. Is always kept in an ideal downward convex shape, and generation of lineage can be prevented. Therefore,
The effect that the yield of the wafer which can be obtained from the grown single crystal is improved is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る単結晶成長装置の一例の断面図で
ある。
FIG. 1 is a sectional view of an example of a single crystal growth apparatus according to the present invention.

【図2】本発明に係る単結晶成長装置に設けられた熱遮
蔽体の一例の断面図である。
FIG. 2 is a sectional view of an example of a heat shield provided in the single crystal growth apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

2 るつぼ 4 封止剤 6 熱遮蔽体 7 育成結晶 8 原料融液 9 ヒータ 11 種結晶 2 crucible 4 sealant 6 heat shield 7 growing crystal 8 raw material melt 9 heater 11 seed crystal

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 るつぼ内に原料及び封止剤を入れてヒー
タにより加熱、融解し、その原料融液表面に種結晶を接
触させて徐々に引き上げることにより化合物半導体単結
晶の成長を行なう単結晶成長装置において、前記るつぼ
の上方から、融解した前記封止剤の上面近傍まで垂下し
て育成結晶の側方を覆う筒状のスカート部を有する熱遮
蔽体を備え、当該熱遮蔽体のスカート部の下端と結晶育
成開始時の前記封止剤の上面との距離は、0mmより大
きく2mm以下であり、前記熱遮蔽体のスカート部の熱
容量は、室温において30J/K以上100J/K以下
であることを特徴とする単結晶成長装置。
1. A single crystal in which a compound semiconductor single crystal is grown by placing a raw material and a sealant in a crucible, heating and melting the raw material with a heater, and bringing a seed crystal into contact with the surface of the raw material melt and gradually pulling it up. in the growth apparatus, said from above the crucible, comprises a heat shield having a tubular skirt portion upper surface suspended to the vicinity of covering the side of the grown crystal of the sealing agent were melted, the skirt portion of the heat shield Bottom and crystal growth
The distance from the top surface of the sealant at the start of formation is larger than 0 mm.
2 mm or less, and the heat of the skirt of the heat shield
Capacity is 30 J / K or more and 100 J / K or less at room temperature
Single crystal growth apparatus, characterized in that it.
【請求項2】 前記熱遮蔽体のスカート部の下端と結晶
育成開始時の前記封止剤の上面との距離は、0.5mm
以上1.5mm以下であることを特徴とする請求項1記
載の単結晶成長装置。
2. The distance between the lower end of the skirt portion of the heat shield and the upper surface of the sealant at the start of crystal growth is 0.5 mm.
2. The structure according to claim 1 , wherein the distance is not less than 1.5 mm.
Mounting of the single crystal growth apparatus.
【請求項3】 前記熱遮蔽体のスカート部の熱容量は、
室温において40J/K以上80J/K以下であること
を特徴とする請求項1または請求項2に記載の単結晶成
長装置。
3. The heat capacity of the skirt portion of the heat shield is:
The single crystal growth apparatus according to claim 1 or 2, wherein the temperature is at least 40 J / K and at most 80 J / K at room temperature.
JP23561994A 1994-09-29 1994-09-29 Single crystal growth equipment Expired - Lifetime JP2855408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23561994A JP2855408B2 (en) 1994-09-29 1994-09-29 Single crystal growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23561994A JP2855408B2 (en) 1994-09-29 1994-09-29 Single crystal growth equipment

Publications (2)

Publication Number Publication Date
JPH08104591A JPH08104591A (en) 1996-04-23
JP2855408B2 true JP2855408B2 (en) 1999-02-10

Family

ID=16988697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23561994A Expired - Lifetime JP2855408B2 (en) 1994-09-29 1994-09-29 Single crystal growth equipment

Country Status (1)

Country Link
JP (1) JP2855408B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101030099B1 (en) * 2003-05-07 2011-04-20 스미토모덴키고교가부시키가이샤 Indium phosphide substrate, indium phosphide single crystal and process for producing them
US8815010B2 (en) 2004-04-28 2014-08-26 Nippon Mining & Metals Co., Ltd. InP single crystal wafer and method for producing InP single crystal

Also Published As

Publication number Publication date
JPH08104591A (en) 1996-04-23

Similar Documents

Publication Publication Date Title
US20050160966A1 (en) Method for producing silicon single crystal and, silicon single crystal and silicon wafer
US20060191468A1 (en) Process for producing single crystal
JP2855408B2 (en) Single crystal growth equipment
JPH1087392A (en) Production of compound semiconductor single crystal
JP2006232570A (en) METHOD FOR PRODUCING GaAs SINGLE CRYSTAL
JP2006327879A (en) Method for manufacturing compound semiconductor single crystal
JP4344021B2 (en) Method for producing InP single crystal
JP2690419B2 (en) Single crystal growing method and apparatus
JP2814796B2 (en) Method and apparatus for producing single crystal
JP2758038B2 (en) Single crystal manufacturing equipment
JP2700145B2 (en) Method for manufacturing compound semiconductor single crystal
JP2001080987A (en) Device for producing compound semiconductor crystal and production process using the same
JPH03237088A (en) Method for growing single crystal
JPH08277192A (en) Apparatus for producing compound semiconductor single crystal and its production
JP2010030868A (en) Production method of semiconductor single crystal
JPS6090897A (en) Method and apparatus for manufacturing compound semiconductor single crystal
JP2005132717A (en) Compound semiconductor single crystal and its manufacturing method
JPS606918B2 (en) Method for producing Group 3-5 compound single crystal
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
KR20230038847A (en) SiC single crystal substrate having the characteristic of low densified dislocation defect and the manufacturing method of the same
JPH10338591A (en) Production of compound semiconductor single crystal
JPH02229791A (en) Apparatus for producing compound semiconductor single crystal
JPH09142982A (en) Apparatus for growing single crystal and method for growing single crystal
JP2773441B2 (en) Method for producing GaAs single crystal
JPS60122791A (en) Pulling up method of crystal under liquid sealing