JP2006232570A - METHOD FOR PRODUCING GaAs SINGLE CRYSTAL - Google Patents

METHOD FOR PRODUCING GaAs SINGLE CRYSTAL Download PDF

Info

Publication number
JP2006232570A
JP2006232570A JP2005045470A JP2005045470A JP2006232570A JP 2006232570 A JP2006232570 A JP 2006232570A JP 2005045470 A JP2005045470 A JP 2005045470A JP 2005045470 A JP2005045470 A JP 2005045470A JP 2006232570 A JP2006232570 A JP 2006232570A
Authority
JP
Japan
Prior art keywords
crystal
single crystal
gaas single
gaas
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005045470A
Other languages
Japanese (ja)
Inventor
Masashi Owada
将志 大和田
Takashi Suzuki
隆 鈴木
Koji Taiho
幸司 大宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2005045470A priority Critical patent/JP2006232570A/en
Publication of JP2006232570A publication Critical patent/JP2006232570A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the assembly of dislocations causing crystal defects and the polycrystallization by making the shape of the solid-liquid interface stable and flat without lowering the crystal growth speed when the shoulder part of a crystal being pulled is formed. <P>SOLUTION: The periphery of a seed crystal in a crucible is covered with an umbrella-like heat insulation cover having a flat top part. Thereby, the temperature change in the vicinity of the shoulder part in the pulling direction of the crystal can be suppressed small when the shoulder part is formed, and the temperature change in the vicinity of the shoulder part in the direction perpendicular to the pulling direction of the crystal can be also suppressed small. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、耐圧容器内のるつぼにGaAsの原料融液を入れ、その表面を液体封止剤で覆い、前記融液に種結晶を接触させると共にゆっくりと回転させながら上方へ引上げて、前記融液を前記種結晶から徐々に固化させて結晶成長させる、いわゆるLEC法(Liquid Encapsulated Czochralski)と呼ばれるGaAs単結晶の製造方法の改良に関する。   In the present invention, a raw material melt of GaAs is put in a crucible in a pressure vessel, and the surface thereof is covered with a liquid sealant, and a seed crystal is brought into contact with the melt and pulled upward while being slowly rotated. The present invention relates to an improvement in a method for producing a GaAs single crystal called a so-called LEC method (Liquid Encapsulated Czochralski) in which a liquid is gradually solidified from the seed crystal to grow a crystal.

LEC法によるGaAs単結晶の製造方法においては、GaAs原料融液中のAsは融点付近で高い蒸気圧を示すため、原料融液から解離しやすいという性質がある。このAsの解離を防止するため、原料融液の表面をB等の液体封止剤で覆うことが一般に行われており、さらにはAr等の不活性ガスを導入して原料融液の表面を加圧し、原料融液からのAsの分解蒸発を防いでいる。 In the method for producing a GaAs single crystal by the LEC method, As in the GaAs raw material melt has a high vapor pressure in the vicinity of the melting point, and therefore has a property of being easily dissociated from the raw material melt. In order to prevent this As dissociation, the surface of the raw material melt is generally covered with a liquid sealant such as B 2 O 3 , and an inert gas such as Ar is further introduced to introduce the raw material melt. Is pressed to prevent decomposition and evaporation of As from the raw material melt.

LEC法によるGaAs単結晶の製造方法の一例を図5に示す。すなわち、原料として多結晶GaAsおよび液体封止剤としてB3’を夫々入れたるつぼ1’を引上炉を構成する耐圧容器(図示せず)内に配置し、温度を上げて多結晶GaAsをGaAs融液4’にするとともに、このGaAs融液4’の表面を液体封止剤3’で覆う。そして、引上げ軸6’の下端に固着したGaAsの種結晶5’をGaAs融液4’に接触させ、引上げ軸6’をゆっくりと回転させながら上方へ引上げていくことにより、種結晶5’を起点としてGaAs融液4’を徐々に固化させて結晶成長を行い、GaAs単結晶2’を製造する。 An example of a method for producing a GaAs single crystal by the LEC method is shown in FIG. That is, a crucible 1 ′ containing polycrystalline GaAs as a raw material and B 2 O 3 3 ′ as a liquid sealant is placed in a pressure vessel (not shown) constituting a pulling furnace, and the temperature is increased. The crystal GaAs is changed to a GaAs melt 4 ′, and the surface of the GaAs melt 4 ′ is covered with a liquid sealant 3 ′. Then, the GaAs seed crystal 5 ′ fixed to the lower end of the pulling shaft 6 ′ is brought into contact with the GaAs melt 4 ′, and the pulling shaft 6 ′ is pulled upward while being slowly rotated, so that the seed crystal 5 ′ is pulled up. As a starting point, the GaAs melt 4 ′ is gradually solidified and crystal growth is performed to produce a GaAs single crystal 2 ′.

LEC法は、ボートもしくはカプセル封止された他の結晶成長方法に比べ、耐圧容器内の温度勾配が結晶の成長方向につきやすく、また、それにより結晶成長の進行が早い。よって、融液からの結晶の引き上げ速度いいかえれば結晶成長速度を早くすることができるという特長がある。しかし、引き上げ時において、結晶成長方向の温度勾配が大きいということは、結晶成長速度を早くすることができる反面、単結晶を製造するうえで、最大の問題である多結晶化が起こりやすいという問題がある。ここで、多結晶化が起こるか否かは、種結晶5’に続く結晶固化部と融液部との間の固液界面形状に大きな要因がある。図6は、種付け後引上げ結晶の肩部形成時における固液界面形状を模式的に示すものである。これによると、固液界面形状が結晶成長方向(融液側)に凹面形状を呈しており、この場合、転位は固液界面から垂直に結晶成長方向に伝播する性質があることから、転位の集合が起こりやすく、引上げ結晶2’が多結晶化しやすい。   In the LEC method, the temperature gradient in the pressure vessel tends to follow the crystal growth direction and the crystal growth proceeds faster than the other crystal growth methods in boats or encapsulated. Therefore, there is a feature that the crystal growth rate can be increased if the pulling rate of the crystal from the melt is changed. However, when pulling, the large temperature gradient in the crystal growth direction means that the crystal growth rate can be increased, but on the other hand, the biggest problem in producing a single crystal is that polycrystallization is likely to occur. There is. Here, whether or not polycrystallization occurs depends largely on the solid-liquid interface shape between the crystal solidified portion and the melt portion following the seed crystal 5 '. FIG. 6 schematically shows a solid-liquid interface shape at the time of forming the shoulder portion of the pulled crystal after seeding. According to this, the solid-liquid interface shape exhibits a concave shape in the crystal growth direction (melt side), and in this case, the dislocations propagate in the crystal growth direction perpendicularly from the solid-liquid interface. Aggregation is likely to occur, and the pulled crystal 2 ′ is likely to be polycrystallized.

また、B3’からなる液体封止剤3’の存在およびその層厚は、耐圧容器内の温度分布に影響を与えると共に、特に、結晶成長開始から間もなく、引上げ結晶の外径を目標とする直胴部の大きさに徐々に大きくしていく肩部形成過程では、結晶成長の進行に伴って結晶2’頭部がB3’の上部から出る。すると、融液4’側において、結晶2’頭部からの放熱が急激に進み、結晶2’の成長速度が早まる。このため、固液界面形状が例えば図6に示すように変化し、結晶成長の状態が不安定になりやすい。つまり、LEC法の場合は、引上げ方向における結晶の成長を確実なものとするために、温度勾配が大きく温度の揺らぎが大きい上、液体封止剤の存在により肩部形成時における固液界面形状が変化し凹面形状となりやすく、転位の集合が起こりやすく多結晶化しやすいという本質的な問題がある。 In addition, the presence of the liquid sealant 3 ′ made of B 2 O 3 3 ′ and its layer thickness affect the temperature distribution in the pressure vessel, and in particular, the outer diameter of the pulled crystal is increased soon after the start of crystal growth. In the shoulder formation process that gradually increases to the target straight body size, the crystal 2 ′ head comes out from the upper part of B 2 O 3 3 ′ as the crystal growth proceeds. Then, on the melt 4 ′ side, the heat radiation from the head of the crystal 2 ′ proceeds rapidly, and the growth rate of the crystal 2 ′ increases. For this reason, the solid-liquid interface shape changes, for example, as shown in FIG. 6, and the state of crystal growth tends to become unstable. That is, in the case of the LEC method, in order to ensure the crystal growth in the pulling direction, the temperature gradient is large and the temperature fluctuation is large, and the solid-liquid interface shape at the time of shoulder formation due to the presence of the liquid sealant There is an essential problem that the change in shape tends to be concave and the dislocations are likely to be aggregated and polycrystallized easily.

このような問題に対しては、例えば、(1)結晶の冷却速度を制御する手段として、結晶周囲に熱遮蔽体を設ける方法が提案されている(特許文献1参照)。
また、同じく、(2)結晶の冷却速度を制御する手段として、種結晶を連結するためのチャックに、るつぼの底面に対向して傘状の反射板を設ける方法が提案されている(特許文献2参照)。
特公昭51−47153号 公報 特開平5−221786号 公報
For such a problem, for example, (1) as a means for controlling the cooling rate of the crystal, a method of providing a heat shield around the crystal has been proposed (see Patent Document 1).
Similarly, (2) as a means for controlling the cooling rate of the crystal, there has been proposed a method in which a chuck for connecting the seed crystal is provided with an umbrella-shaped reflecting plate facing the bottom of the crucible (Patent Literature). 2).
Japanese Patent Publication No.51-47153 JP-A-5-221786

しかしながら、(1)の方法の場合だと、熱遮蔽体による断熱効果が固液界面付近にも及び固液界面付近での冷却速度が遅くなり、結晶の成長速度を低下させるという問題がある。また、(2)の方法の場合は、傘状の反射板の形状によって熱の反射効果が引上げ結晶の軸線上に集中し、肩部周辺付近における温度勾配の改善効果が少なく、固液界面形状の平坦化効果も少ないため、転位の集合および多結晶化が起こり得るという問題がある。   However, in the case of the method (1), there is a problem that the heat insulating effect by the heat shield is low in the vicinity of the solid-liquid interface and the cooling rate in the vicinity of the solid-liquid interface is slowed, and the crystal growth rate is lowered. In the case of the method (2), the shape of the umbrella-shaped reflecting plate concentrates the heat reflection effect on the axis of the pulling crystal, has little effect of improving the temperature gradient in the vicinity of the shoulder, and the solid-liquid interface shape. Therefore, there is a problem that dislocation aggregation and polycrystallization can occur.

そこで本発明は、結晶成長速度を低下させることなく、引上げ結晶の肩部形成時において、固液界面形状の安定化および平坦化を図ることにより、結晶欠陥の原因となる転位の集合および多結晶化を防止できるGaAs単結晶の製造方法を提供することを目的とする。   Therefore, the present invention provides a set of dislocations and polycrystals that cause crystal defects by stabilizing and flattening the solid-liquid interface shape during the formation of the shoulder portion of the pulled crystal without reducing the crystal growth rate. An object of the present invention is to provide a method for producing a GaAs single crystal that can prevent the formation of the GaAs.

請求項1に係る発明のGaAs単結晶の製造方法は、耐圧容器内のるつぼにGaAsの原料融液を入れ、その表面を液体封止剤で覆い、前記融液に種結晶を接触させると共にゆっくりと回転させながら上方へ引上げて、前記融液を前記種結晶から徐々に固化させて結晶成長させるGaAs単結晶の製造方法において、前記るつぼ内の前記種結晶の周囲を、頂部を平坦にした傘状の保温カバーによって包囲したことを特徴とする。
このように頂部を平坦にした傘状の保温カバーを用いたことにより、肩部形成時において結晶の引上げ方向における肩部付近の温度変化を小さく抑えることができると共に、結晶の引上げ方向と垂直方向における肩部付近の温度変化も小さく抑えることができる。
In the method for producing a GaAs single crystal according to the first aspect of the present invention, a raw material melt of GaAs is put in a crucible in a pressure vessel, the surface is covered with a liquid sealant, and a seed crystal is brought into contact with the melt and slowly. In the method of manufacturing a GaAs single crystal in which the melt is gradually solidified from the seed crystal while being rotated, and the crystal is grown, the umbrella around the seed crystal in the crucible is flattened at the top. It is characterized by being surrounded by a heat insulating cover.
By using the umbrella-shaped heat insulating cover having a flat top as described above, the temperature change in the vicinity of the shoulder in the pulling direction of the crystal can be suppressed at the time of forming the shoulder, and the direction perpendicular to the pulling direction of the crystal. The temperature change in the vicinity of the shoulder at can be suppressed to a small level.

請求項2に係る発明のGaAs単結晶の製造方法は、少なくとも引上げ結晶の肩部形成時において、前記保温カバーの一部を液体封止剤中に浸漬させたことを特徴とする。
このように、保温カバーの一部(下部)を液体封止剤中に浸漬させることにより、肩部形成時において肩部付近の温度変化を確実に小さく抑えることができる。
According to a second aspect of the present invention, there is provided a method for producing a GaAs single crystal, wherein at least when the shoulder portion of the pulled crystal is formed, a part of the heat insulating cover is immersed in a liquid sealant.
Thus, by immersing a part (lower part) of the heat retaining cover in the liquid sealant, the temperature change in the vicinity of the shoulder can be reliably suppressed to be small when the shoulder is formed.

請求項3に係る発明のGaAs単結晶の製造方法は、前記保温カバーが、その高さが液体封止剤の層厚以上であり、その底辺部の直径が引上げ結晶の直胴部の1.5〜2.0倍であることを特徴とする。
保温カバーの好ましい高さは、液体封止剤の層厚の1〜3倍程度、好ましくは1〜2倍程度であり、その高さが液体封止剤の層厚に満たない場合は、肩部形成時において肩部付近の温度変化の抑制効果が少なく、また、その高さが液体封止剤の3倍を越える場合は、特に結晶の引上げ方向と垂直方向における肩部付近の温度変化を小さく抑えることができない。
In the method for producing a GaAs single crystal according to a third aspect of the present invention, the heat insulating cover has a height equal to or greater than a layer thickness of the liquid sealant, and a diameter of the bottom portion of the straight body portion of the pulled crystal. It is 5 to 2.0 times.
The preferable height of the heat insulating cover is about 1 to 3 times, preferably about 1 to 2 times the layer thickness of the liquid sealant, and if the height is less than the layer thickness of the liquid sealant, The effect of suppressing the temperature change near the shoulder when forming the part is small, and if the height exceeds three times that of the liquid sealant, the temperature change near the shoulder particularly in the direction perpendicular to the crystal pulling direction is reduced. It cannot be kept small.

請求項4に係る発明のGaAs単結晶の製造方法は、前記保温カバーが、PBN(熱分解窒化ホウ素)からつくられたものであることを特徴とする。   According to a fourth aspect of the present invention, there is provided the method for producing a GaAs single crystal, wherein the heat insulating cover is made of PBN (pyrolytic boron nitride).

本発明によれば、るつぼ内の種結晶の周囲を、頂部を平坦にした傘状の保温カバーによって包囲したことにより、引上げ結晶の肩部形成時において、固液界面形状の安定化と共に平坦化を図ることができ、これにより転位の集合を抑制し多結晶化を防止し得たGaAs単結晶を得ることができる。また、結晶成長と共に保温カバーを取り外したり、移動調整可能にしたりすることにより、結晶成長速度を低下させることなく、上記効果を達成することができる。   According to the present invention, the periphery of the seed crystal in the crucible is surrounded by an umbrella-shaped heat insulating cover with a flat top, and the solid-liquid interface shape is stabilized and flattened when forming the shoulder of the pulled crystal. As a result, it is possible to obtain a GaAs single crystal in which dislocation aggregation is suppressed and polycrystallization is prevented. Moreover, the above effect can be achieved without reducing the crystal growth rate by removing the heat insulating cover or making the movement adjustable together with the crystal growth.

以下、本発明の実施の形態を図1〜4に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS.

図1は、耐圧容器(図示せず)のるつぼ1内に、GaAs融液4及び液体封止剤であるB3を収容した状態を示す。この状態において、引上げ軸の下端に連結した種結晶5の周囲を保温カバー7で覆った後、種結晶5をGaAs融液4に浸漬させる。このとき、保温カバー7も同時に下降し、保温カバー7をB3中に浸したまま、結晶を成長させていく。図2は、結晶成長の初期段階を表す。成長中の結晶2は、B3上に引き上げられておらず、保温カバー7もB3中に浸したままである。そして、図3のように、結晶成長が進行し結晶の頭部を含む肩部がB3から出た時に、保温カバー7は上方に移動され、B3内から外に出される。 FIG. 1 shows a state in which a GaAs melt 4 and B 2 O 3 3 as a liquid sealant are accommodated in a crucible 1 of a pressure vessel (not shown). In this state, after covering the periphery of the seed crystal 5 connected to the lower end of the pulling shaft with the heat insulating cover 7, the seed crystal 5 is immersed in the GaAs melt 4. At this time, the heat insulating cover 7 is also lowered simultaneously, and crystals are grown while the heat insulating cover 7 is immersed in B 2 O 3 3. FIG. 2 represents the initial stage of crystal growth. The growing crystal 2 is not pulled up on B 2 O 3 3, and the heat insulating cover 7 is also immersed in B 2 O 3 3. Then, as shown in FIG. 3, when the crystal growth proceeds and the shoulder portion including the head of the crystal comes out of B 2 O 3 3, the heat insulating cover 7 is moved upward so that the inside of B 2 O 3 3 is moved out. Is issued.

保温カバー7は、結晶2がB3上方まで成長したときの当該結晶2の急激な放熱を防止する。しかし、結晶2の肩部がB3から露出し、直胴部が目標外径に到達して安定成長を始めると、保温カバー7を設置したままでは急激な放熱の防止効果が冷却の妨げとなる。この状態では、冷却が不充分だと成長界面が凹面化し、転位の集合が起こり結晶欠陥発生の要因となる。よって、結晶2の肩部の成長が終われば、保温カバー7は、撤去若しくは影響が少ないところまで移動する必要がある。 The heat insulating cover 7 prevents the crystal 2 from abruptly dissipating heat when the crystal 2 grows above the B 2 O 3 3. However, when the shoulder portion of the crystal 2 is exposed from the B 2 O 3 3 and the straight body reaches the target outer diameter and starts to grow stably, the effect of preventing rapid heat dissipation is cooled with the heat insulating cover 7 installed. It becomes an obstacle. In this state, if the cooling is insufficient, the growth interface becomes concave and dislocations are aggregated, causing crystal defects. Therefore, when the growth of the shoulder portion of the crystal 2 is finished, the heat insulating cover 7 needs to be removed or moved to a place where the influence is small.

さらに、保温カバー7の目的は、それによってカバーされる結晶2の領域の急激な熱の分散を防ぎ、保温することにあるから、結晶2の肩部の大きさに合わせて最適な大きさを選定する必要がある。図4に保温カバーの寸法と形状を模式的に示す。保温カバー7が結晶2の肩部の大きさに対して小さすぎると、熱が保温カバー7の周囲からすり抜けて対流するため、保温効果が得られない。そこで、保温カバー7の高さはB3の層厚以上、大きさ(=底辺部の直径)は結晶の直胴部の1.5〜2.0倍のものが最適である。また、保温効果をバランスのとれたものとするためには、頂部を平坦にした傘状とすることが必要である。 Further, the purpose of the heat insulating cover 7 is to prevent the rapid heat dispersion in the region of the crystal 2 covered thereby and to maintain the heat, so that the optimum size according to the size of the shoulder portion of the crystal 2 is set. It is necessary to select. FIG. 4 schematically shows the size and shape of the heat insulating cover. If the heat insulating cover 7 is too small with respect to the size of the shoulder portion of the crystal 2, the heat passes through the periphery of the heat insulating cover 7 and convects, so that the heat insulating effect cannot be obtained. Accordingly, it is optimal that the heat insulating cover 7 has a height equal to or greater than the layer thickness of B 2 O 3 3 and a size (= diameter of the bottom side) of 1.5 to 2.0 times the straight body portion of the crystal. Moreover, in order to make the heat retention effect balanced, it is necessary to make it the umbrella shape which made the top part flat.

[実施例1]
上記方法において、100mm径、長さ300mmのGaAs単結晶を10本引き上げた。このとき、引上げ軸にはPBN製の厚さ3mmの薄い板によって形成された、頂部を平坦にした傘状の保温カバーを設置した。GaAsのチャージ量は20kg、雰囲気ガス、圧力はAr20kg/cm、引上げ速度は8mm/hである。
[Example 1]
In the above method, 10 GaAs single crystals having a diameter of 100 mm and a length of 300 mm were pulled up. At this time, an umbrella-shaped heat insulating cover made of a thin plate having a thickness of 3 mm made of PBN and having a flat top was installed on the pulling shaft. The charge amount of GaAs is 20 kg, the atmospheric gas, the pressure is Ar 20 kg / cm 2 , and the pulling speed is 8 mm / h.

[比較例1]
これに対し、次のような比較例を実施した。100mm径、長さ300mmのGaAs単結晶を10本引き上げた。このとき、引上げ軸には保温カバーも何も設置しなかった。GaAsのチャージ量は20kg、雰囲気ガス、圧力はAr20kg/cm、引上げ速度は8mm/hとした。
[Comparative Example 1]
On the other hand, the following comparative example was implemented. Ten GaAs single crystals having a diameter of 100 mm and a length of 300 mm were pulled up. At this time, no heat insulation cover was installed on the pulling shaft. The charge amount of GaAs was 20 kg, the atmospheric gas, the pressure was Ar 20 kg / cm 2 , and the pulling rate was 8 mm / h.

表1に、実施例1、比較例1の方法により夫々成長した結晶の成長結果を示す。この結果、肩部形成時において種結晶の周囲を保温カバーで覆わないより、保温カバーで覆ったほうが単結晶を歩留まりよく成長できることがわかる。

Figure 2006232570
Table 1 shows the growth results of the crystals grown by the methods of Example 1 and Comparative Example 1, respectively. As a result, it can be seen that the single crystal can be grown with a higher yield by covering the seed crystal with the heat insulating cover than when covering the seed crystal with the heat insulating cover when forming the shoulder portion.
Figure 2006232570

本発明の実施形態を示すGaAs単結晶成長方法の模式図である。It is a schematic diagram of the GaAs single crystal growth method which shows embodiment of this invention. 同GaAs単結晶の製造方法において、結晶肩部がB層中から突出していない状態を示す模式図である。In the manufacturing method of the GaAs single crystal is a schematic diagram showing a state in which the crystal shoulder does not protrude from the B 2 O 3 layer in. 同GaAs単結晶の製造方法において、結晶肩部がB層中から突出した状態を示す模式図である。In the manufacturing method of the GaAs single crystal is a schematic view showing a state where the crystal shoulders protruding from B 2 O 3 layer in. 保温カバーの寸法と形状の最適関係を見た模式図である。It is the schematic diagram which looked at the optimal relationship between the dimension and shape of a heat insulating cover. 従来のGaAs単結晶の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the conventional GaAs single crystal. 従来のGaAs単結晶の製造方法において、結晶の肩部形成時の状態を示す模式図である。It is a schematic diagram which shows the state at the time of the shoulder part formation of the crystal | crystallization in the manufacturing method of the conventional GaAs single crystal.

符号の説明Explanation of symbols

1 るつぼ
2 結晶
3 B(液体封止剤)
4 GaAs融液
5 種結晶
6 引上げ軸
7 保温カバー
1 crucible 2 crystal 3 B 2 O 3 (liquid sealant)
4 GaAs melt 5 Seed crystal 6 Pull-up shaft 7 Thermal insulation cover

Claims (4)

耐圧容器内のるつぼにGaAsの原料融液を入れ、その表面を液体封止剤で覆い、前記融液に種結晶を接触させると共に回転させながら上方へ引上げて、前記融液を前記種結晶から徐々に固化させて結晶成長させるGaAs単結晶の製造方法において、前記るつぼ内の前記種結晶の周囲を、頂部を平坦にした傘状の保温カバーによって包囲したことを特徴とするGaAs単結晶の製造方法。   The raw material melt of GaAs is put into a crucible in a pressure vessel, the surface is covered with a liquid sealant, the seed crystal is brought into contact with the melt and pulled upward while rotating, and the melt is pulled from the seed crystal. A method for producing a GaAs single crystal, wherein the seed crystal in the crucible is surrounded by an umbrella-shaped heat insulation cover having a flat top portion in a method for producing a GaAs single crystal that is gradually solidified and grown. Method. 少なくとも引上げ結晶の肩部形成時において、前記保温カバーの一部を液体封止剤中に浸漬させたことを特徴とする、請求項1記載のGaAs単結晶の製造方法。   2. The method for producing a GaAs single crystal according to claim 1, wherein a part of the heat insulating cover is immersed in a liquid sealant at least when the shoulder portion of the pulled crystal is formed. 前記保温カバーは、その高さが液体封止剤の層厚以上であり、その底辺部の直径が引上げ結晶の直胴部の1.5〜2.0倍であることを特徴とする、請求項1又は2記載のGaAs単結晶の製造方法。   The heat insulation cover has a height equal to or greater than a layer thickness of the liquid sealant, and a diameter of a bottom portion of the heat insulation cover is 1.5 to 2.0 times that of a straight body portion of the pulled crystal. Item 3. A method for producing a GaAs single crystal according to Item 1 or 2. 前記保温カバーは、PBN(熱分解窒化ホウ素)からつくられたものであることを特徴とする、請求項1〜3のいずれかに記載のGaAs単結晶の製造方法。   The method for producing a GaAs single crystal according to any one of claims 1 to 3, wherein the heat insulating cover is made of PBN (pyrolytic boron nitride).
JP2005045470A 2005-02-22 2005-02-22 METHOD FOR PRODUCING GaAs SINGLE CRYSTAL Pending JP2006232570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005045470A JP2006232570A (en) 2005-02-22 2005-02-22 METHOD FOR PRODUCING GaAs SINGLE CRYSTAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005045470A JP2006232570A (en) 2005-02-22 2005-02-22 METHOD FOR PRODUCING GaAs SINGLE CRYSTAL

Publications (1)

Publication Number Publication Date
JP2006232570A true JP2006232570A (en) 2006-09-07

Family

ID=37040637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005045470A Pending JP2006232570A (en) 2005-02-22 2005-02-22 METHOD FOR PRODUCING GaAs SINGLE CRYSTAL

Country Status (1)

Country Link
JP (1) JP2006232570A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090951A1 (en) * 2010-12-27 2012-07-05 住友金属工業株式会社 DEVICE FOR PRODUCING SiC SINGLE CRYSTALS, JIG USED IN SAID PRODUCTION DEVICE, AND METHOD OF PRODUCING SiC SINGLE CRYSTALS
WO2013108567A1 (en) * 2012-01-20 2013-07-25 トヨタ自動車株式会社 Seed crystal isolating spindle for single crystal production device and method for producing single crystals
WO2013161999A1 (en) * 2012-04-26 2013-10-31 京セラ株式会社 Holding body, crystal growing method, and crystal growing apparatus
CN113550008A (en) * 2021-07-14 2021-10-26 济南大学 Device and method for growing oversized lithium niobate crystal

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090951A1 (en) * 2010-12-27 2012-07-05 住友金属工業株式会社 DEVICE FOR PRODUCING SiC SINGLE CRYSTALS, JIG USED IN SAID PRODUCTION DEVICE, AND METHOD OF PRODUCING SiC SINGLE CRYSTALS
JP2012136386A (en) * 2010-12-27 2012-07-19 Sumitomo Metal Ind Ltd DEVICE FOR PRODUCING SiC SINGLE CRYSTAL, TOOL USED IN PRODUCTION DEVICE, AND METHOD OF PRODUCING SiC SINGLE CRYSTAL
CN103282558A (en) * 2010-12-27 2013-09-04 新日铁住金株式会社 Device for producing sic single crystals, jig used in said production device, and method of producing sic single crystals
US9388508B2 (en) 2010-12-27 2016-07-12 Toyota Jidosha Kabushiki Kaisha Manufacturing apparatus of SiC single crystal, jig for use in the manufacturing apparatus, and method for manufacturing SiC single crystal
WO2013108567A1 (en) * 2012-01-20 2013-07-25 トヨタ自動車株式会社 Seed crystal isolating spindle for single crystal production device and method for producing single crystals
JP2013147397A (en) * 2012-01-20 2013-08-01 Toyota Motor Corp Seed crystal isolating spindle used in single crystal production device, and method for producing single crystal
CN104066874A (en) * 2012-01-20 2014-09-24 丰田自动车株式会社 Seed crystal isolating spindle for single crystal production device and method for producing single crystals
WO2013161999A1 (en) * 2012-04-26 2013-10-31 京セラ株式会社 Holding body, crystal growing method, and crystal growing apparatus
US20150068444A1 (en) * 2012-04-26 2015-03-12 Kyocera Corporation Holder, crystal growing method, and crystal growing apparatus
JPWO2013161999A1 (en) * 2012-04-26 2015-12-24 京セラ株式会社 Holder, crystal growth method and crystal growth apparatus
CN113550008A (en) * 2021-07-14 2021-10-26 济南大学 Device and method for growing oversized lithium niobate crystal
CN113550008B (en) * 2021-07-14 2023-06-23 山东恒元半导体科技有限公司 Device and method for growing oversized lithium niobate crystal

Similar Documents

Publication Publication Date Title
KR102140604B1 (en) METHOD FOR GROWING β-Ga₂O₃BASED SINGLE CRYSTAL
JP4203603B2 (en) Method for producing semiconductor bulk polycrystal
CN108823636A (en) Monocrystalline silicon growing device and monocrystalline silicon growing method
JP2007284301A (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
JP4844428B2 (en) Method for producing sapphire single crystal
JP2006232570A (en) METHOD FOR PRODUCING GaAs SINGLE CRYSTAL
JP2008247706A (en) Method for growing corundum single crystal, corundum single crystal and corundum single crystal wafer
TWI580827B (en) Sapphire single crystal nucleus and its manufacturing method
WO2021020539A1 (en) Scalmgo4 single crystal, preparation method for same, and free-standing substrate
JP4930166B2 (en) Method for producing aluminum oxide single crystal
JP2005298254A (en) Compound semiconductor single crystal growth vessel and method for producing compound semiconductor single crystal by using the same
JP2007022865A (en) Method for manufacturing silicon single crystal
JP2010064936A (en) Method for producing semiconductor crystal
JPH1087392A (en) Production of compound semiconductor single crystal
JP6825728B1 (en) Single crystal manufacturing equipment
JP2018095490A (en) Method for manufacturing silicon single crystal, silicon single crystal and silicon single crystal wafer
JP2007045640A (en) Forming method of semiconductor bulk crystal
JP2004277266A (en) Method for manufacturing compound semiconductor single crystal
JPH11302094A (en) Production of compound semiconductor single crystal
JP2010030868A (en) Production method of semiconductor single crystal
JP2814796B2 (en) Method and apparatus for producing single crystal
WO2022249614A1 (en) Monocrystal production device
JP2010030847A (en) Production method of semiconductor single crystal
JP2855408B2 (en) Single crystal growth equipment
JP2005343737A (en) Apparatus for manufacturing compound semiconductor single crystal