JPH1087392A - Production of compound semiconductor single crystal - Google Patents

Production of compound semiconductor single crystal

Info

Publication number
JPH1087392A
JPH1087392A JP11906997A JP11906997A JPH1087392A JP H1087392 A JPH1087392 A JP H1087392A JP 11906997 A JP11906997 A JP 11906997A JP 11906997 A JP11906997 A JP 11906997A JP H1087392 A JPH1087392 A JP H1087392A
Authority
JP
Japan
Prior art keywords
crystal
crucible
compound semiconductor
single crystal
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11906997A
Other languages
Japanese (ja)
Other versions
JP3806791B2 (en
Inventor
Kenji Kohiro
健司 小廣
Akira Noda
朗 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP11906997A priority Critical patent/JP3806791B2/en
Publication of JPH1087392A publication Critical patent/JPH1087392A/en
Application granted granted Critical
Publication of JP3806791B2 publication Critical patent/JP3806791B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce compound semiconductor single crystals, especially compound semiconductor single crystals of zinc-blend structure such as GaAs and InP, by a VGF method or VB method in high yield by preventing generation of twin crystals at a crystal diameter increasing part. SOLUTION: In production of the compound semiconductor single crystals, a crucible 1, which has a seed crystal setting part 1a at a center of a bottom part, a bottom surface of which inclines with a prescribed angle α of 80 deg.<= and <90 deg. to a vertical direction so that the botton surface gradually is lowered toward its center and in which a corner part between the bottom surface and a flank has radius of curvature of 0<= to <=10mm, is used. At the time of executing crystal growing by the VGF method (vertical gradient freezing method) or VB method (vertical Bridman method), the temp. gradient of a molten raw material 3 at least at an inclined bottom part of the crucible 1, that is, in a region from a solid-liquid boundary between the seed crystal 2 and the molten raw material 3 at a point of crystal growing starting to beginning of growing of a straight cylindrical part of the crystals, is set to 1<= to <5 deg.C/cm, preferably 2<= to <=4.5 deg.C/cm and more preferably 3<= to <=4 deg.C/cm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、化合物半導体単結
晶の製造方法に関し、例えば化合物半導体の原料融液を
冷却して垂直方向に単結晶を成長させる垂直グラジェン
トフリージング(以下、VGFとする。)法や垂直ブリ
ッジマン(以下、VBとする。)法に適用して有用な技
術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a compound semiconductor single crystal, for example, vertical gradient freezing (hereinafter referred to as VGF) in which a raw material melt of a compound semiconductor is cooled to grow a single crystal in a vertical direction. The present invention relates to a technique which is useful when applied to the method and the vertical Bridgman (hereinafter referred to as VB) method.

【0002】[0002]

【従来の技術】一般に、化合物半導体単結晶インゴット
を製造するにあたって、液体封止チョクラルスキー(L
EC)法もしくは水平ブリッジマン(HB)法が工業的
に用いられている。LEC法には、大口径で断面形状が
円形のウエハーが得られる、液体封止剤(B2 3 )を
使用しているため高純度の結晶が得られるなどの長所が
ある反面、結晶成長方向の温度勾配が大きいため結晶中
の転位密度が高くなり、その結晶を用いて作製したFE
T(電界効果トランジスタ)等の電子デバイスの電気的
な特性が劣化してしまうという短所がある。一方、HB
法には、結晶成長方向の温度勾配が小さいため低転位密
度の結晶が得られるという長所がある反面、るつぼ内で
化合物半導体の原料融液を固化させるため大口径化が困
難である、得られたウエハーの断面形状はかまぼこ形に
なってしまうなどの短所がある。
2. Description of the Related Art Generally, in manufacturing a compound semiconductor single crystal ingot, a liquid-sealed Czochralski (L) is used.
The EC) method or the horizontal Bridgman (HB) method is used industrially. Although the LEC method, the cross-sectional shape with a large diameter circular wafer is obtained, which has advantages such as high purity crystals are obtained due to the use of liquid sealant (B 2 0 3), crystal growth The dislocation density in the crystal increases due to the large temperature gradient in the direction, and the FE fabricated using the crystal
There is a disadvantage that electrical characteristics of electronic devices such as T (field effect transistor) are deteriorated. On the other hand, HB
The method has the advantage that a crystal having a low dislocation density can be obtained because the temperature gradient in the crystal growth direction is small, but it is difficult to increase the diameter because the raw material melt of the compound semiconductor is solidified in the crucible. In addition, there is a disadvantage that the cross-sectional shape of the wafer becomes a semi-cylindrical shape.

【0003】そこで、LEC法とHB法のそれぞれの長
所を併せ持つ単結晶製造方法として、垂直グラジェント
フリージング(VGF)法や垂直ブリッジマン(VB)
法が提案されている。これらVGF法やVB法は、円筒
形のるつほを使用するため円形のウエハーが得られる、
結晶成長方向の温度勾配が小さいため低転位密度の結晶
が容易に得られるという長所を有する。しかし、VGF
法及びVB法においては、炉内のわずかな温度変動の影
響あるいはるつほ壁の凹凸や異物の影響を受けやすく、
双晶や多結晶が発生しやすいという欠点がある。
Therefore, as a single crystal manufacturing method having both advantages of the LEC method and the HB method, a vertical gradient freezing (VGF) method and a vertical Bridgman (VB) method have been proposed.
A law has been proposed. In these VGF and VB methods, a circular wafer is obtained because of using a cylindrical reed.
Since the temperature gradient in the crystal growth direction is small, a crystal having a low dislocation density can be easily obtained. However, VGF
Method and the VB method are susceptible to the effects of slight temperature fluctuations in the furnace or the irregularities and foreign matter on the crucible wall,
There is a disadvantage that twins and polycrystals are easily generated.

【0004】それらの欠点のうち、炉内の温度変動の影
響については、近年の温調技術の発展により解消されて
きている。また、るつぼ壁からの多結晶の発生について
も、液体封止剤(B2 3 )の使用により防止できるよ
うになった。
[0004] Among these drawbacks, the influence of temperature fluctuations in the furnace has been solved by the recent development of temperature control technology. Also, the generation of polycrystals from the crucible wall can be prevented by using the liquid sealant (B 2 O 3 ).

【0005】しかしながら、双晶の発生に対しては未だ
有効な防止策は提案されていない。特に、結晶の直胴部
よりも、結晶育成開始点から直胴部に至るまでの結晶増
径部における双晶発生の確率が高く、単結晶製造の歩留
りを低下させる主な原因となっている。
[0005] However, no effective preventive measures have yet been proposed for the generation of twins. In particular, the probability of twinning in the crystal diameter-increased portion from the crystal growth start point to the straight body portion is higher than that of the straight body portion of the crystal, which is a main cause of lowering the yield of single crystal production. .

【0006】GaAsやInPやGaPのような閃亜鉛
鉱型構造の化合物半導体単結晶を種結晶を用いて育成す
る場合、種結晶から直胴部へ至る増径部の角度と双晶の
発生確率との間には密接な関係があることがわかってい
る。すなわち、(100)方位の結晶を育成する場合、
増径部に(111)ファセット面が現れ、このファセッ
ト面から双晶が発生する。このことは、本発明者らの行
った実験でも確認されている。すなわち、本発明者らが
結晶育成を行ったところ、双晶の発生した結晶では、全
ての双晶がファセット成長に沿って発生していた。
When a compound semiconductor single crystal having a zinc blende structure such as GaAs, InP, or GaP is grown using a seed crystal, the angle of the diameter-increased portion from the seed crystal to the straight body and the probability of twinning are generated. It turns out that there is a close relationship between That is, when growing a crystal of (100) orientation,
A (111) facet surface appears in the diameter-increased portion, and twins are generated from the facet surface. This has been confirmed in experiments performed by the present inventors. That is, when the present inventors performed crystal growth, in the crystal in which twins were generated, all twins were generated along facet growth.

【0007】(111)ファセットは(100)方位と
54.7°の角度をなす。従って、一般には、(11
1)ファセット面が現れるのを防ぐために、増径部の角
度を[90°−54.7°]すなわち35.3°以下と
している。しかし、増径部の角度を小さくすると、得ら
れた結晶は増径部の長いものとなってしまい、ウエハー
の収率が低下し生産性が悪い。そこで、増径部の角度を
40°〜50°程度にするという試みもなされている
が、双晶の発生抑止という点では十分な効果が得られて
いない。
The (111) facet makes an angle of 54.7 ° with the (100) orientation. Therefore, in general, (11
1) In order to prevent the appearance of the facet surface, the angle of the increased diameter portion is set to [90 ° -54.7 °], that is, 35.3 ° or less. However, when the angle of the diameter-increased portion is reduced, the obtained crystal has a long diameter-increased portion, and the yield of the wafer is reduced, resulting in poor productivity. Therefore, attempts have been made to set the angle of the diameter-increased portion to about 40 ° to 50 °, but a sufficient effect has not been obtained in terms of suppressing the generation of twins.

【0008】また、特開平5−194073号公報に
は、増径部の角度が80°〜100°となるようなるつ
ぼを用いるとともに、種結晶近傍の領域を局所的に過冷
却状態にして略水平な方向に結晶を成長させ、さらに結
晶を上凸状をなすように成長させた後、原料融液を5℃
/cm〜15℃/cmの温度勾配下で冷却して固化させるよ
うにした結晶製造方法が開示されている。この製造方法
では、5℃/cm〜15℃/cmの温度勾配を保持しつつ原
料融液を冷却するために、ヒートシンクに冷却媒体用の
配管を設け、その配管内に冷却用媒体を流してヒートシ
ンクの放熱性を高めるようにしている。なお、特開平5
−194073号公報によれば、温度勾配が5℃/cm未
満では、原料融液の等温面が融液側に凸状態になるよう
に融液の温度分布を制御し難く、単結晶が成長し難いと
されている。また、温度勾配が15℃/cmを超えると急
激に固化してしまい、デンドライトが生じて多結晶化し
やすいとされている。
In Japanese Patent Application Laid-Open No. Hei 5-194073, a crucible in which the angle of the diameter-increased portion is 80 ° to 100 ° is used, and a region near the seed crystal is locally supercooled to be substantially cooled. A crystal is grown in a horizontal direction, and the crystal is grown so as to have an upward convex shape.
A crystal production method is disclosed, which is cooled and solidified under a temperature gradient of 15 / cm to 15 ° C / cm. In this manufacturing method, in order to cool the raw material melt while maintaining a temperature gradient of 5 ° C./cm to 15 ° C./cm, a pipe for a cooling medium is provided on a heat sink, and a cooling medium is flowed through the pipe. The heat radiation of the heat sink is improved. Note that Japanese Patent Application Laid-Open
According to -194073, when the temperature gradient is less than 5 ° C./cm, it is difficult to control the temperature distribution of the melt so that the isothermal surface of the material melt is convex toward the melt, and a single crystal grows. It is difficult. Further, it is said that when the temperature gradient exceeds 15 ° C./cm, the material is rapidly solidified, dendrites are generated, and polycrystallization is likely to occur.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記特
開平5−194073号公報に開示された結晶製造方法
には、次のような問題があることが本発明者らにより明
らかとされた。すなわち、特開平5−194073号で
は、原料融液の等温面が融液側に凸状態になるように融
液の温度分布を制御するために、冷却時の温度勾配を5
℃/cm以上にしなければならないとしている。しかし、
温度勾配が5℃/cm以上では原料融液中の対流による温
度ゆらぎは十分に小さくならず、双晶や多結晶が発生し
やすい。すなわち、十分に満足できる程度に双晶や多結
晶の発生を抑制することができない。また、ヒートシン
ク内に冷却媒体用の配管を設置するため、多大なコスト
がかかるという欠点もあった。
However, it has been found by the present inventors that the crystal manufacturing method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 5-194073 has the following problems. That is, in Japanese Patent Application Laid-Open No. 5-194073, a temperature gradient during cooling is controlled by 5 to control the temperature distribution of the melt so that the isothermal surface of the raw material melt is convex toward the melt.
It must be at least ° C / cm. But,
When the temperature gradient is 5 ° C./cm or more, temperature fluctuation due to convection in the raw material melt is not sufficiently reduced, and twins and polycrystals are easily generated. That is, the generation of twins and polycrystals cannot be sufficiently suppressed. In addition, there is also a disadvantage that a large cost is required because the piping for the cooling medium is provided in the heat sink.

【0010】本発明は、上記問題点を解決するためにな
されたもので、結晶増径部にて双晶が発生するのを防い
で高い歩留まりで化合物半導体単結晶、特にGaAsや
InP等のように閃亜鉛鉱型構造の化合物半導体単結晶
をVGF法やVB法により製造することができる単結晶
製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is intended to prevent twins from being generated in a crystal diameter-increased portion and to obtain a high yield of a compound semiconductor single crystal, especially GaAs or InP. It is another object of the present invention to provide a single crystal manufacturing method capable of manufacturing a compound semiconductor single crystal having a zinc blende structure by a VGF method or a VB method.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明者らは、略平坦な底面形状のるつぼを用いて
結晶成長を行うことによって、双晶の発生確率の高い増
径部を形成することなく結晶を成長させることができる
と考えた。また、原料融液から結晶を上凸状に成長させ
ずに平坦状に成長させることにより、原料融液中の温度
勾配を5℃/cm未満にでき、温度ゆらぎを小さくするこ
とができると考えた。さらに、育成結晶の、結晶肩部か
ら直胴部へ移行する部分の曲率半径が大きいと、その部
分の結晶成長に要する時間が長くなって発生するファセ
ット数も増え、従って双晶が発生し易くなるので、結晶
肩部から直胴部へ移行する部分の曲率半径を所定範囲内
の値とすることが有効であると考えた。
Means for Solving the Problems To achieve the above object, the present inventors performed crystal growth by using a crucible having a substantially flat bottom surface, thereby increasing the diameter of a diameter-increased portion having a high probability of twinning. It was thought that a crystal could be grown without forming a crystal. Also, by growing the crystal from the raw material melt in a flat shape without growing in an upwardly convex shape, the temperature gradient in the raw material melt can be made less than 5 ° C./cm, and the temperature fluctuation can be reduced. Was. Furthermore, if the radius of curvature of the portion of the grown crystal that transitions from the crystal shoulder to the straight body is large, the time required for crystal growth in that portion becomes longer, and the number of facets generated increases, so twins are more likely to occur. Therefore, it was considered effective to set the radius of curvature of the transition from the crystal shoulder to the straight body to a value within a predetermined range.

【0012】本発明は、上記着眼に基づきなされたもの
で、底部中央に種結晶の設置部を有するるつぼの該種結
晶設置部内に種結晶を設置し、該るつぼ内に化合物半導
体の原料及び封止剤を入れ、そのるつぼを気密容器内に
封入した後、該気密容器を縦型の加熱炉内に設置して前
記原料及び前記封止剤をヒータにより加熱融解し、得ら
れた原料融液を下側から徐々に冷却して前記種結晶から
上方に向かって固化させることにより化合物半導体、特
に閃亜鉛鉱型構造の化合物半導体の単結晶を成長させる
にあたって、前記るつぼとして、その底面がその中心に
向かって徐々に低くなるように垂直方向に対して80°
以上90°未満の所定角度をなして傾斜したるつぼを用
いるとともに、結晶成長時に少なくともその傾斜したる
つぼ底部分の結晶成長方向の温度勾配を1℃/cm以上5
℃/cm未満、好ましくは2℃/cm以上4.5℃/cm以
下、より好ましくは3℃/cm以上4℃/cm以下となるよ
うに制御するものである。また、本発明は、前記るつぼ
の底面と側面との境界部分、すなわち育成結晶の、結晶
肩部から直胴部への移行部分に相当する角部の曲率半径
を0mm以上10mm以下とするものである。
The present invention has been made based on the above point of view, wherein a seed crystal is set in a seed crystal setting portion of a crucible having a seed crystal setting portion in the center of the bottom, and the raw material and sealing of the compound semiconductor are placed in the crucible. After filling the crucible into an airtight container, the crucible is placed in a vertical heating furnace, and the raw material and the sealant are heated and melted by a heater. Is gradually cooled from the lower side and solidified upward from the seed crystal to grow a single crystal of a compound semiconductor, particularly a compound semiconductor having a zinc blende type structure. 80 ° to the vertical direction so that it gradually decreases toward
In addition to using a crucible inclined at a predetermined angle of 90 ° or more and less than 90 °, the temperature gradient in the crystal growth direction at least at the bottom of the crucible at the time of crystal growth is 1 ° C./cm or more.
The temperature is controlled to be less than 2 ° C / cm, preferably 2 ° C / cm to 4.5 ° C / cm, more preferably 3 ° C / cm to 4 ° C / cm. In the present invention, the radius of curvature of the boundary between the bottom surface and the side surface of the crucible, that is, the radius of curvature of the corner corresponding to the transition from the crystal shoulder to the straight body of the grown crystal is 0 mm or more and 10 mm or less. is there.

【0013】それによって、増径部を形成することなく
原料融液から結晶が平坦状に成長する。また、原料融液
を冷却して固化させる際の温度勾配が小さいため、温度
ゆらぎが小さくなる。また、育成結晶の、結晶肩部から
直胴部への移行部分の結晶成長時間が短くなり、ファセ
ットの発生が抑制され、双晶の発生が防止される。本発
明者らの研究によれば、原料及び封止剤を封入した気密
容器の、るつぼ底に対応する箇所の外側に接して設けた
熱電対により温度ゆらぎを測定した結果、温度ゆらぎは
±0.1℃以下であるのが適当である。
As a result, crystals grow flat from the raw material melt without forming a diameter-increasing portion. Further, since the temperature gradient at the time of cooling and solidifying the raw material melt is small, the temperature fluctuation is reduced. Further, the crystal growth time of the transition portion of the grown crystal from the crystal shoulder portion to the straight body portion is shortened, generation of facets is suppressed, and generation of twins is prevented. According to the study of the present inventors, as a result of measuring the temperature fluctuation with a thermocouple provided in contact with the outside of the portion corresponding to the bottom of the crucible of the hermetic container in which the raw material and the sealant are sealed, the temperature fluctuation is ± 0. It is appropriate that the temperature is not more than 0.1 ° C.

【0014】[0014]

【発明の実施の形態】図1には、本発明の実施に使用さ
れるるつぼが示されている。また、図2には、本発明を
VGF法に適用した際に使用される結晶成長炉の概略が
示されている。
FIG. 1 shows a crucible used in the practice of the present invention. FIG. 2 schematically shows a crystal growth furnace used when the present invention is applied to the VGF method.

【0015】本発明に係る単結晶製造方法では、図1に
示すように、るつぼ1の底部中央に種結晶設置部1aが
設けられ、かつるつぼ1の底面1bがその中心に向かっ
て徐々に低くなるように垂直方向に対して80°以上9
0°未満の所定角度αをなして傾斜するように形成され
てなるるつぼ1を用いる。るつぼ1の底面1aの角度α
が80°以上90°未満である理由は、80°未満では
増径部分の温度勾配がつき易く、その結果温度ゆらぎが
大きくなって、双晶が発生するためであり、90°以上
では増径部分で他粒界が成長し、多結晶となるからであ
る。
In the method for producing a single crystal according to the present invention, as shown in FIG. 1, a seed crystal installation portion 1a is provided at the center of the bottom of the crucible 1, and the bottom surface 1b of the crucible 1 is gradually lowered toward the center. 80 ° or more with respect to vertical direction 9
A crucible 1 formed to be inclined at a predetermined angle α of less than 0 ° is used. Angle α of bottom surface 1a of crucible 1
The reason why is less than 80 ° and less than 90 ° is that if the angle is less than 80 °, the temperature gradient of the diameter-increased portion is apt to be formed, and as a result, the temperature fluctuation becomes large and twins are generated. This is because another grain boundary grows in the portion and becomes polycrystalline.

【0016】また、るつぼ1は、その底面1bと側面1
cとの境界部分、すなわち育成結晶の、結晶肩部から直
胴部への移行部分に相当する角部1dの曲率半径が0mm
以上10mm以下となっているものである。るつぼ1の、
底面1bと側面1cとの間の角部1dの曲率半径が0mm
以上10mm以下である理由は、本発明者らの検討結果に
よれば、その曲率半径が10mmよりも大きいと、双晶の
発生確率が増大してしまい、好ましくないからである。
また、その曲率半径の下限については、曲率半径が小さ
いほどファセットの発生を防止することができるので、
曲率半径0mm、すなわち角部1dが曲面になっていなく
てもよい。
The crucible 1 has a bottom surface 1b and a side surface 1b.
The radius of curvature of the corner portion 1d corresponding to the boundary portion with c, that is, the transition portion from the crystal shoulder portion to the straight body portion of the grown crystal is 0 mm.
It is not less than 10 mm. Crucible 1
The radius of curvature of the corner 1d between the bottom surface 1b and the side surface 1c is 0 mm.
The reason for being not less than 10 mm is that according to the study results of the present inventors, if the radius of curvature is larger than 10 mm, the probability of twinning increases, which is not preferable.
As for the lower limit of the radius of curvature, the smaller the radius of curvature, the more the occurrence of facets can be prevented.
The radius of curvature may be 0 mm, that is, the corner 1d may not be a curved surface.

【0017】そして、図2に示すように、るつぼ1の種
結晶設置部1a内に種結晶2を入れ、るつぼ1内に化合
物半導体の原料3と封止剤4を入れる。気密容器5の蒸
気圧制御部(リザーバ)5a内に蒸気圧制御用の元素6
を入れ、さらに気密容器5の結晶育成部5b内のサセプ
タ7上にそのるつぼ1を設置し、気密容器5内を真空排
気してキャップ5cにより封止する。蒸気圧制御用元素
6は、成長させる単結晶の構成元素のうち揮発し易い元
素よりなる単体もしくは化合物である。
Then, as shown in FIG. 2, the seed crystal 2 is put in the seed crystal setting portion 1a of the crucible 1, and the compound semiconductor raw material 3 and the sealant 4 are put in the crucible 1. The element 6 for controlling the vapor pressure is provided in the vapor pressure control section (reservoir) 5a of the airtight container 5.
The crucible 1 is placed on the susceptor 7 in the crystal growing section 5b of the hermetic container 5, and the inside of the hermetic container 5 is evacuated and sealed with the cap 5c. The vapor pressure controlling element 6 is a simple substance or a compound composed of an element that is easily volatilized among the constituent elements of the single crystal to be grown.

【0018】その気密容器5を縦型加熱炉8内の所定位
置に設置し、ヒータ9により加熱して原料3及び封止剤
4を融解させる。特に限定しないが、ヒータ9として例
えば少なくとも結晶育成部用ヒータ9A、種結晶部用ヒ
ータ9B及び蒸気圧制御部用ヒータ9Cからなる円筒状
の3段構成のヒータを用いるとよい。
The hermetic container 5 is placed at a predetermined position in a vertical heating furnace 8 and heated by a heater 9 to melt the raw material 3 and the sealant 4. Although not particularly limited, for example, a cylindrical three-stage heater including at least a heater 9A for a crystal growing unit, a heater 9B for a seed crystal unit, and a heater 9C for a vapor pressure control unit may be used as the heater 9.

【0019】それら各ヒータ9A,9B,9Cの各出力
を調整して、種結晶2側から原料融液3の上方に向かっ
て徐々に高温となるような所定の温度勾配を維持しつつ
徐々に原料融液3を下部から融点以下の温度に冷却する
ことにより単結晶10を上方に向かって成長させる。そ
の際、気密容器5内の蒸気圧は、蒸気圧制御部用ヒータ
9Cの出力調整により適当な圧力に保たれる。
The outputs of the heaters 9A, 9B, and 9C are adjusted to gradually increase the temperature from the seed crystal 2 toward the upper part of the raw material melt 3 while maintaining a predetermined temperature gradient. The single crystal 10 is grown upward by cooling the raw material melt 3 from below to a temperature below the melting point. At that time, the steam pressure in the airtight container 5 is maintained at an appropriate pressure by adjusting the output of the heater 9C for the steam pressure control unit.

【0020】ここで、冷却時の温度勾配については、少
なくともるつぼ1の傾斜した底部分、すなわち結晶育成
開始時点の種結晶2と原料融液3との固液界面から結晶
の直胴部の育成が開始されるまでの領域(図1参照、同
図のDの領域)における温度勾配が、1℃/cm以上5℃
/cm未満、好ましくは2℃/cm以上4.5℃/cm以下、
より好ましくは3℃/cm以上4℃/cm以下となるのが適
当である。その理由は、温度勾配が1℃/cm未満では雰
囲気温度の影響を受け易くなるからであり、5℃/cm以
上では温度ゆらぎが大きくなるからである。また、温度
勾配が2℃/cm〜4.5℃/cmであれば、適正な育成速
度と単結晶化率が得られるという利点が有り、さらに温
度勾配が3℃/cm〜4℃/cmであれば、より好ましい。
Here, regarding the temperature gradient during cooling, at least the inclined bottom portion of the crucible 1, that is, the growth of the straight body of the crystal from the solid-liquid interface between the seed crystal 2 and the raw material melt 3 at the start of crystal growth. The temperature gradient in the region (see FIG. 1 and region D in FIG. 1) until the start of the heating is 1 ° C./cm or more and 5 ° C.
/ Cm, preferably 2 ° C / cm or more and 4.5 ° C / cm or less,
More preferably, the temperature is 3 ° C./cm or more and 4 ° C./cm or less. The reason is that when the temperature gradient is less than 1 ° C./cm, the temperature is easily affected by the ambient temperature, and when the temperature gradient is 5 ° C./cm or more, the temperature fluctuation becomes large. Further, if the temperature gradient is 2 ° C./cm to 4.5 ° C./cm, there is an advantage that an appropriate growth rate and a single crystallization rate can be obtained, and the temperature gradient is 3 ° C./cm to 4 ° C./cm. Is more preferable.

【0021】また、気密容器5の、るつぼ底に対応する
箇所の外側に熱電対11を接して設け、その熱電対11
により温度ゆらぎを測定して温度ゆらぎが所定範囲内の
大きさになっていることを確認する。なお、その測定し
た温度ゆらぎが所定範囲内の大きさになるように各ヒー
タ9A,9B,9Cの出力を調整するようにしてもよ
い。温度ゆらぎの許容範囲については、予備実験等によ
り求めておく。図2に示す構成でもって予備実験を行っ
た結果、温度ゆらぎの許容範囲は±0.1℃以下である
ことがわかった。その理由は、温度ゆらぎがその許容範
囲を逸脱すると、双晶や多結晶が発生しやすくなるから
である。
A thermocouple 11 is provided in contact with the outside of the airtight container 5 at a position corresponding to the bottom of the crucible.
And confirm that the temperature fluctuation is within a predetermined range. The outputs of the heaters 9A, 9B, 9C may be adjusted so that the measured temperature fluctuation is within a predetermined range. The allowable range of the temperature fluctuation is obtained through preliminary experiments and the like. As a result of conducting a preliminary experiment with the configuration shown in FIG. 2, it was found that the allowable range of the temperature fluctuation was ± 0.1 ° C. or less. The reason is that if the temperature fluctuations deviate from the allowable range, twins and polycrystals are likely to be generated.

【0022】上記実施形態によれば、るつぼ1の底面1
bがその中心に向かって徐々に低くなるように垂直方向
に対して80°以上90°未満の所定角度αをなして傾
斜しているとともに、底面1bと側面1cとの間の角部
1dの曲率半径が0mm以上10mm以下であるようなるつ
ぼ1を用い、少なくともその傾斜したるつぼ底部分(前
記領域D)の結晶成長方向の温度勾配が1℃/cm以上5
℃/cm未満、好ましくは2℃/cm以上4.5℃/cm以
下、より好ましくは3℃/cm以上4℃/cm以下となるよ
うに制御しながら原料融液3を徐々に冷却してVGF法
により化合物半導体単結晶を成長させるようにしたた
め、結晶10の増径部が形成されずにまず原料融液3か
ら結晶10がるつぼ1の底面1bに沿って平坦状に成長
した後、固液界面が平坦状をなしたままさらに結晶10
が上方に向かって成長する。従って、結晶増径部がない
ため、得られた単結晶インゴットからのウエハーの収率
が高く生産性がよい。また、原料融液3の固化時の温度
勾配が小さく、温度ゆらぎが小さいのに加えて、結晶肩
部から直胴部ヘ移行する際のファセットの発生が抑制さ
れるので、双晶や多結晶の発生が抑制され、高い歩留ま
りで単結晶が得られる。
According to the above embodiment, the bottom surface 1 of the crucible 1
b is inclined at a predetermined angle α of 80 ° or more and less than 90 ° with respect to the vertical direction so as to gradually decrease toward the center thereof, and the corner 1d between the bottom surface 1b and the side surface 1c is formed. A crucible 1 having a radius of curvature of 0 mm or more and 10 mm or less is used, and at least the temperature gradient in the crystal growth direction of the inclined crucible bottom (region D) is 1 ° C./cm or more.
The raw material melt 3 is gradually cooled while controlling so as to be less than 2 ° C./cm, preferably 2 ° C./cm or more and 4.5 ° C./cm or less, more preferably 3 ° C./cm or more and 4 ° C./cm or less. Since the compound semiconductor single crystal is grown by the VGF method, the crystal 10 grows flat from the raw material melt 3 along the bottom surface 1b of the crucible 1 without forming the diameter-increased portion of the crystal 10 and then solidifies. Crystals 10 with the liquid interface still flat
Grow upward. Therefore, since there is no crystal diameter increasing part, the yield of the wafer from the obtained single crystal ingot is high and the productivity is good. In addition, the temperature gradient at the time of solidification of the raw material melt 3 is small, the temperature fluctuation is small, and the generation of facets at the transition from the crystal shoulder to the straight body is suppressed. Is suppressed, and a single crystal can be obtained with a high yield.

【0023】さらに、加熱炉8は冷却媒体用の配管等が
不要であるため、従来の加熱炉をそのまま使うことがで
きるので、コストの増加を招くことなく、双晶や多結晶
のない高品質の単結晶が高歩留まりで得られる。
Furthermore, since the heating furnace 8 does not require piping for a cooling medium, a conventional heating furnace can be used as it is, and therefore, high quality without twins or polycrystals can be obtained without increasing costs. Is obtained with a high yield.

【0024】なお、上記実施の形態においては本発明を
VGF法に適用した場合について説明したが、本発明は
VB法にも適用可能である。
In the above embodiment, the case where the present invention is applied to the VGF method has been described, but the present invention is also applicable to the VB method.

【0025】[0025]

【実施例】以下に、実施例及び比較例を挙げて本発明の
特徴とするところを明らかとする。なお、本発明は、以
下の各実施例により何ら限定されるものではない。
EXAMPLES The features of the present invention will be clarified below with reference to examples and comparative examples. The present invention is not limited by the following embodiments.

【0026】(実施例1)るつぼとして、直径が約3イ
ンチで厚さが3mmの図1に示す形状のpBN製るつぼ1
を用いた。また、垂直方向に対してるつぼ1の底面1b
がなす角度αを87℃とした。また、るつぼ1の、底面
1bと側面1cとの間の角部1dの曲率半径を4mmとし
た。
(Example 1) As a crucible, a pBN crucible 1 having a diameter of about 3 inches and a thickness of 3 mm and having a shape shown in FIG. 1 was used.
Was used. Also, the bottom surface 1b of the crucible 1 in the vertical direction
Was made to be 87 ° C. The radius of curvature of the corner 1d of the crucible 1 between the bottom surface 1b and the side surface 1c was 4 mm.

【0027】るつぼ1の種結晶設置部1aにGaAs単
結晶よりなる種結晶2を入れ、さらにるつぼ1内に原料
3として約3kgのGaAs多結晶と封止剤4として適量
のB2 3 を入れた。続いて、気密容器5である石英ア
ンプルの蒸気圧制御部5aに蒸気圧制御用元素6として
8gの砒素を入れ、原料3及び封止剤4を入れたるつぼ
1を石英アンプル内のサセプタ7上に設置した後、キャ
ップ5cにより真空封止した。そして、気密容器5を図
2に示すように3段ヒータ構成の縦型加熱炉8内に設置
した。なお、原料3としてGaAs多結晶を用いる代わ
りに、るつぼ1内にGaとAsを入れてそれらを直接合
成させるようにしてもよい。
A seed crystal 2 made of GaAs single crystal is put into the seed crystal setting portion 1 a of the crucible 1, and about 3 kg of GaAs polycrystal as a raw material 3 and an appropriate amount of B 2 O 3 as a sealant 4 are further placed in the crucible 1. I put it. Subsequently, 8 g of arsenic is added as a vapor pressure control element 6 to the vapor pressure control unit 5 a of the quartz ampoule, which is the hermetic container 5, and the crucible 1 containing the raw material 3 and the sealant 4 is placed on the susceptor 7 in the quartz ampoule. , And vacuum sealed with a cap 5c. Then, the airtight container 5 was installed in a vertical heating furnace 8 having a three-stage heater configuration as shown in FIG. Instead of using GaAs polycrystal as the raw material 3, Ga and As may be put in the crucible 1 and they may be directly synthesized.

【0028】結晶育成部用ヒータ9A及び種結晶部用ヒ
ータ9Bにより、種結晶2の上端と原料3が1238℃
〜1255℃の温度となるようにるつぼ1を加熱して原
料3及び封止剤4を融解させるとともに、蒸気圧制御部
用ヒータ9Cにより蒸気圧制御部5aを605℃となる
ように加熱した。また、るつぼ1の傾斜した底部分すな
わち結晶育成開始時点の種結晶2と原料融液3との固液
界面から結晶の直胴部の育成が開始されるまでの領域D
における温度勾配が3.5℃/cmとなるようにした。こ
の時の熱電対11により測定した温度ゆらぎは±0.0
6℃であった。
The upper end of the seed crystal 2 and the raw material 3 are heated to 1238 ° C. by the heater 9A for the crystal growing part and the heater 9B for the seed crystal part.
The crucible 1 was heated to a temperature of 121255 ° C. to melt the raw material 3 and the encapsulant 4, and the vapor pressure control unit 5a was heated to 605 ° C. by the vapor pressure control unit heater 9C. Further, a region D from the inclined bottom portion of the crucible 1, that is, the solid-liquid interface between the seed crystal 2 and the raw material melt 3 at the start of crystal growth to the start of growth of the crystal straight body portion.
Was adjusted to 3.5 ° C./cm. At this time, the temperature fluctuation measured by the thermocouple 11 was ± 0.0
6 ° C.

【0029】この状態で、結晶の育成速度が毎時2mmと
なるように加熱炉8の設定温度を連続的に下げて結晶の
育成を開始した。結晶育成開始から約30時間経過した
時点で原料融液3はすべて固化した。その後、加熱炉8
全体を毎時100℃の降温速度で冷却し、室温近くまで
冷えた時点で加熱炉8内から気密容器5を取り出し、気
密容器5を壊して結晶を取り出した。得られた結晶は直
径約3インチで全長約12cmの結晶方位(100)のG
aAs単結晶であり、その結晶性を調べたところ双晶や
多結晶は全く発生していなかった。また、この単結晶イ
ンゴットを切断して転位密度を調ぺたところ、結晶のど
の領域においても転位密度は1000cm-2以下であっ
た。
In this state, the crystal growth was started by continuously lowering the set temperature of the heating furnace 8 so that the crystal growth rate was 2 mm / h. About 30 hours after the start of crystal growth, the raw material melt 3 was completely solidified. Then, heating furnace 8
The whole was cooled at a cooling rate of 100 ° C./hour, and when cooled to near room temperature, the airtight container 5 was taken out of the heating furnace 8, and the airtight container 5 was broken to take out a crystal. The obtained crystal has a diameter of about 3 inches and a total length of about 12 cm.
It was an aAs single crystal, and when its crystallinity was examined, no twin or polycrystal was generated. When the dislocation density was adjusted by cutting this single crystal ingot, the dislocation density was 1000 cm −2 or less in any region of the crystal.

【0030】上記実施例と同一の条件でGaAsの単結
晶成長を20回行ったところ、そのうち18回について
は、双晶や多結晶のない単結晶が得られた。
When GaAs single crystal was grown 20 times under the same conditions as in the above embodiment, a single crystal without twins or polycrystals was obtained 18 times.

【0031】(実施例2)るつぼ1の、底面1bと側面
1cとの間の角部1dの曲率半径を10mmとした以外
は、上記実施例1と同じ条件で、GaAsの単結晶成長
を5回行った。その結果、4回の結晶成長については、
双晶や多結晶のない単結晶が得られた。上記実施例1よ
りも曲率半径を少し大きくした(4mmを10mmとした)
ところ、単結晶の歩留りが少し低下したが、後述する比
較例よりも歩留りが良かった。
Example 2 A single crystal of GaAs was grown under the same conditions as in Example 1 except that the radius of curvature of the corner 1d between the bottom surface 1b and the side surface 1c of the crucible 1 was 10 mm. I went there. As a result, for four crystal growths,
A single crystal without twins or polycrystals was obtained. The radius of curvature was made slightly larger than in Example 1 above (4 mm was changed to 10 mm).
However, although the yield of the single crystal was slightly reduced, the yield was better than that of a comparative example described later.

【0032】なお、GaAs以外にもInPやGaPな
どの閃亜鉛鉱型構造の化合物半導体をVGF法やVB法
により製造する場合にも本発明は有効である。
The present invention is also effective when a compound semiconductor having a zinc blende structure such as InP or GaP is manufactured by VGF or VB method other than GaAs.

【0033】(比較例1)垂直方向に対してるつぼの底
面のなす角度αが30°であるようなpBN製のるつぼ
を用い、上記実施例1と同様にして、GaAs単結晶の
製造を行った。なお、るつぼ底の角度α以外の条件は上
記実施例1と同じであった。得られた結晶には種結晶か
ら直胴部に至るまでの結晶増径部に双晶が発生してお
り、方位が変わってしまったため、その結晶を半導体基
板用の結晶として使用することは不可能であった。同一
の条件でGaAsの単結晶成長を5回行ったところ、得
られた5本の結晶のうち2本は単結晶であったが、3本
の結晶には双晶が発生しており使用不可能であった。
Comparative Example 1 A GaAs single crystal was manufactured in the same manner as in Example 1 above, using a pBN crucible in which the angle α formed by the bottom of the crucible with respect to the vertical direction was 30 °. Was. The conditions other than the crucible bottom angle α were the same as those in the first embodiment. In the obtained crystal, twins are generated in the crystal diameter increasing portion from the seed crystal to the straight body portion, and the orientation has changed, so that it is impossible to use the crystal as a crystal for a semiconductor substrate. It was possible. When GaAs single crystal was grown five times under the same conditions, two of the obtained five crystals were single crystals, but three crystals had twins and were unusable. It was possible.

【0034】(比較例2)上記実施例1と同じるつぼ1
を使用し、るつぼ1の傾斜した底部分(前記領域D)の
温度勾配を15℃/cmに設定して、上記実施例1と同様
にしてGaAs単結晶の製造を行った。なお、るつぼ1
の底部分の温度勾配以外の条件は上記実施例と同じであ
った。結晶成長時の温度ゆらぎを熱電対11により測定
したところ、±0.3℃であった。得られた結晶にはそ
の増径部に多結晶が発生しており、その結晶を半導体基
板用の結晶として使用することは不可能であった。同一
の条件でGaAsの単結晶成長を5回行ったところ、得
られた5本の結晶のうち単結晶であったのは1本だけで
あり、他の4本の結晶には多結晶が発生しており使用不
可能であった。また、1本だけ得られた単結晶のGaA
s結晶を切断して転位密度を調べたところ、結晶のどの
領域においても転位密度は5000cm-2を超えていた。
Comparative Example 2 The same crucible 1 as in Example 1
The GaAs single crystal was manufactured in the same manner as in Example 1 except that the temperature gradient of the inclined bottom portion (the region D) of the crucible 1 was set to 15 ° C./cm. In addition, crucible 1
The conditions other than the temperature gradient at the bottom of were the same as in the above example. The temperature fluctuation during the crystal growth was measured by the thermocouple 11, and was found to be ± 0.3 ° C. In the obtained crystal, polycrystal was generated in the diameter-increased portion, and it was impossible to use the crystal as a crystal for a semiconductor substrate. When GaAs single crystal growth was performed five times under the same conditions, only one of the obtained five crystals was a single crystal, and polycrystals were generated in the other four crystals. And was unusable. In addition, only one single-crystal GaAs
When the dislocation density was examined by cutting the s crystal, the dislocation density exceeded 5000 cm -2 in any region of the crystal.

【0035】[0035]

【発明の効果】本発明によれば、るつぼ底部の種結晶設
置部内に種結晶を設置し、そのるつぼ内に化合物半導体
の原料及び封止剤を入れ、そのるつぼを気密容器内に封
入した後、該気密容器を縦型の加熱炉内に設置して前記
原料及び前記封止剤をヒータにより加熱融解し、得られ
た原料融液を下側から徐々に冷却して前記種結晶から上
方に向かって固化させることにより化合物半導体の単結
晶を成長させるにあたって、前記るつぼとして、その底
面がその中心に向かって徐々に低くなるように垂直方向
に対して80°以上90°未満の所定角度をなして傾斜
したるつぼを用いるとともに、結晶成長時に少なくとも
その傾斜したるつぼ底部分の結晶成長方向の温度勾配を
1℃/cm以上5℃/cm未満となるように制御して結晶成
長を行うようにしたため、結晶の増径部が形成されずに
結晶育成開始後すぐに直胴部の育成が開始されるので、
得られた単結晶インゴットからのウエハーの収率が高く
生産性がよい。また、原料融液の固化時の温度勾配が小
さく、温度ゆらぎが小さいため、双晶及び多結晶の発生
が抑制され、高い歩留まりで単結晶が得られる。さら
に、加熱炉は冷却媒体用の配管等が不要であるため、従
来の加熱炉をそのまま使うことができるので、コストの
増加を招くことなく、高品質の単結晶が高歩留まりで得
られる。
According to the present invention, a seed crystal is set in a seed crystal setting portion at the bottom of a crucible, a raw material of a compound semiconductor and a sealant are put in the crucible, and the crucible is sealed in an airtight container. Placing the airtight container in a vertical heating furnace, heating and melting the raw material and the sealant with a heater, and gradually cooling the obtained raw material melt from below to upward from the seed crystal. In growing the single crystal of the compound semiconductor by solidifying the crucible, the crucible forms a predetermined angle of 80 ° or more and less than 90 ° with respect to the vertical direction such that the bottom surface gradually decreases toward the center thereof. In addition to using a crucible inclined at the time of crystal growth, crystal growth is performed by controlling the temperature gradient in the crystal growth direction at least at the bottom portion of the crucible during crystal growth to be 1 ° C./cm or more and less than 5 ° C./cm. Because, because after the crystal growth start to not formed increased diameter of the crystal is immediately the development of the straight body portion is started,
The yield of wafers from the obtained single crystal ingot is high and the productivity is good. Further, since the temperature gradient at the time of solidification of the raw material melt is small and the temperature fluctuation is small, the generation of twins and polycrystals is suppressed, and a single crystal can be obtained with a high yield. Furthermore, since a heating furnace does not require piping for a cooling medium, a conventional heating furnace can be used as it is, so that a high-quality single crystal can be obtained at a high yield without increasing costs.

【0036】また、本発明によれば、前記るつぼの底面
と側面との境界部分の曲率半径が0mm以上10mm以下で
あるため、育成結晶の、結晶肩部から直胴部への移行部
分の結晶成長時間が短くなり、ファセットの発生が抑制
され、双晶の発生が防止される。
Further, according to the present invention, since the radius of curvature at the boundary between the bottom surface and the side surface of the crucible is 0 mm or more and 10 mm or less, the crystal at the transition from the crystal shoulder to the straight body of the grown crystal. The growth time is shortened, generation of facets is suppressed, and generation of twins is prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施に使用されるるつぼの一例の断面
図である。
FIG. 1 is a cross-sectional view of an example of a crucible used for carrying out the present invention.

【図2】本発明をVGF法に適用した際に使用される結
晶成長炉の概略図である。
FIG. 2 is a schematic view of a crystal growth furnace used when the present invention is applied to a VGF method.

【符号の説明】[Explanation of symbols]

1 るつぼ 1a 種結晶設置部 1b るつぼの底面 1c るつぼの側面 1d るつぼの角部 2 種結晶 3 原料 4 封止剤 5 気密容器 8 加熱炉(結晶成長炉) 9 ヒータ 10 単結晶 DESCRIPTION OF SYMBOLS 1 Crucible 1a Seed crystal installation part 1b Crucible bottom 1c Crucible side 1d Crucible corner 2 Seed crystal 3 Raw material 4 Sealant 5 Airtight container 8 Heating furnace (crystal growth furnace) 9 Heater 10 Single crystal

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 底部中央に種結晶の設置部を有するるつ
ぼの該種結晶設置部内に種結晶を設置し、該るつぼ内に
化合物半導体の原料及び封止剤を入れ、そのるつぼを気
密容器内に封入した後、該気密容器を縦型の加熱炉内に
設置して前記原料及び前記封止剤をヒータにより加熱融
解し、得られた原料融液を下側から徐々に冷却して前記
種結晶から上方に向かって固化させることにより化合物
半導体の単結晶を成長させるにあたって、前記るつぼと
して、その底面がその中心に向かって徐々に低くなるよ
うに垂直方向に対して80°以上90°未満の所定角度
をなして傾斜したるつぼを用いるとともに、結晶成長時
に少なくともその傾斜したるつぼ底部分の結晶成長方向
の温度勾配を1℃/cm以上5℃/cm未満となるように制
御することを特徴とする化合物半導体単結晶の製造方
法。
1. A crucible having a seed crystal setting part at the center of the bottom, a seed crystal is set in the seed crystal setting part, a raw material of a compound semiconductor and a sealant are put in the crucible, and the crucible is placed in an airtight container. Then, the hermetic container is placed in a vertical heating furnace, the raw material and the sealant are heated and melted by a heater, and the obtained raw material melt is gradually cooled from the lower side to cool the seed. When growing a single crystal of a compound semiconductor by solidifying upward from the crystal, as the crucible, the crucible has an angle of 80 ° or more and less than 90 ° with respect to the vertical direction so that the bottom surface is gradually lowered toward the center. A crucible inclined at a predetermined angle is used, and at the time of crystal growth, a temperature gradient in a crystal growth direction at least at a bottom portion of the inclined crucible is controlled to be 1 ° C./cm or more and less than 5 ° C./cm. You Method for producing a compound semiconductor single crystal.
【請求項2】 前記るつぼの底面と側面との境界部分の
曲率半径は0mm以上10mm以下であることを特徴とする
請求項1記載の化合物半導体単結晶の製造方法。
2. The method for producing a compound semiconductor single crystal according to claim 1, wherein a radius of curvature of a boundary portion between the bottom surface and the side surface of the crucible is 0 mm or more and 10 mm or less.
【請求項3】 好ましくは、前記るつぼ底部分の結晶成
長方向の温度勾配を2℃/cm以上4.5℃/cm以下とな
るように制御することを特徴とする請求項1または2記
載の化合物半導体単結晶の製造方法。
3. The method according to claim 1, wherein the temperature gradient in the crystal growth direction of the crucible bottom is controlled to be 2 ° C./cm or more and 4.5 ° C./cm or less. A method for producing a compound semiconductor single crystal.
【請求項4】 より好ましくは、前記るつぼ底部分の結
晶成長方向の温度勾配を3℃/cm以上4℃/cm以下とな
るように制御することを特徴とする請求項1または2記
載の化合物半導体単結晶の製造方法。
4. The compound according to claim 1, wherein the temperature gradient in the crystal growth direction of the crucible bottom is controlled to be 3 ° C./cm or more and 4 ° C./cm or less. A method for manufacturing a semiconductor single crystal.
【請求項5】 閃亜鉛鉱型構造の化合物半導体単結晶を
成長させることを特徴とする請求項1、2、3または4
記載の化合物半導体単結晶の製造方法。
5. A compound semiconductor single crystal having a zinc-blende structure is grown.
The production method of the compound semiconductor single crystal according to the above.
JP11906997A 1996-07-18 1997-05-09 Method for producing compound semiconductor single crystal Expired - Lifetime JP3806791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11906997A JP3806791B2 (en) 1996-07-18 1997-05-09 Method for producing compound semiconductor single crystal

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-189198 1996-07-18
JP18919896 1996-07-18
JP11906997A JP3806791B2 (en) 1996-07-18 1997-05-09 Method for producing compound semiconductor single crystal

Publications (2)

Publication Number Publication Date
JPH1087392A true JPH1087392A (en) 1998-04-07
JP3806791B2 JP3806791B2 (en) 2006-08-09

Family

ID=26456871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11906997A Expired - Lifetime JP3806791B2 (en) 1996-07-18 1997-05-09 Method for producing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JP3806791B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6334897B1 (en) 1998-03-31 2002-01-01 Japan Energy Corporation Method of manufacturing compound semiconductor single crystal
KR100359229B1 (en) * 2000-03-15 2002-11-04 네오세미테크 주식회사 Method for Growing n-Type GaAs Monocrystal by Means of VFG
JP2006213549A (en) * 2005-02-02 2006-08-17 Hitachi Cable Ltd Method for manufacturing compound semiconductor single crystal
CN100338268C (en) * 2004-04-09 2007-09-19 日立电线株式会社 Furnace for growing compound semiconductor single crystal and method of growing the same by using the furnace
US7785416B2 (en) * 2003-07-03 2010-08-31 Hitachi Chemical Company, Ltd. Crucible and single crystal growth method using crucible
CN102653881A (en) * 2012-04-20 2012-09-05 镇江环太硅科技有限公司 Method for casting large-grained silicon ingot
CN104911690A (en) * 2015-07-01 2015-09-16 清远先导材料有限公司 Growing method and growing device for indium phosphide single crystal
WO2023221667A1 (en) * 2022-05-19 2023-11-23 山西中科晶电信息材料有限公司 Semi-insulating gallium arsenide single crystal, preparation method therefor, and device for growing same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6334897B1 (en) 1998-03-31 2002-01-01 Japan Energy Corporation Method of manufacturing compound semiconductor single crystal
KR100359229B1 (en) * 2000-03-15 2002-11-04 네오세미테크 주식회사 Method for Growing n-Type GaAs Monocrystal by Means of VFG
US7785416B2 (en) * 2003-07-03 2010-08-31 Hitachi Chemical Company, Ltd. Crucible and single crystal growth method using crucible
CN100338268C (en) * 2004-04-09 2007-09-19 日立电线株式会社 Furnace for growing compound semiconductor single crystal and method of growing the same by using the furnace
US7314518B2 (en) 2004-04-09 2008-01-01 Hitachi Cable, Ltd. Furnace for growing compound semiconductor single crystal and method of growing the same by using the furnace
JP2006213549A (en) * 2005-02-02 2006-08-17 Hitachi Cable Ltd Method for manufacturing compound semiconductor single crystal
JP4529712B2 (en) * 2005-02-02 2010-08-25 日立電線株式会社 Method for producing compound semiconductor single crystal
CN102653881A (en) * 2012-04-20 2012-09-05 镇江环太硅科技有限公司 Method for casting large-grained silicon ingot
CN104911690A (en) * 2015-07-01 2015-09-16 清远先导材料有限公司 Growing method and growing device for indium phosphide single crystal
WO2023221667A1 (en) * 2022-05-19 2023-11-23 山西中科晶电信息材料有限公司 Semi-insulating gallium arsenide single crystal, preparation method therefor, and device for growing same

Also Published As

Publication number Publication date
JP3806791B2 (en) 2006-08-09

Similar Documents

Publication Publication Date Title
WO1999050481A1 (en) Method of manufacturing compound semiconductor single crystal
US20060260536A1 (en) Vessel for growing a compound semiconductor single crystal, compound semiconductor single crystal, and process for fabricating the same
JP3806791B2 (en) Method for producing compound semiconductor single crystal
JP4120016B2 (en) Method for producing semi-insulating GaAs single crystal
JP2007106669A (en) METHOD FOR MANUFACTURING SEMI-INSULATING GaAs SINGLE CRYSTAL
TWI287592B (en) InP single crystal wafer and InP single crystal manufacturing method
JP2006232570A (en) METHOD FOR PRODUCING GaAs SINGLE CRYSTAL
JP3648703B2 (en) Method for producing compound semiconductor single crystal
JP4344021B2 (en) Method for producing InP single crystal
JP2010059052A (en) METHOD AND APPARATUS FOR PRODUCING SEMI-INSULATING GaAs SINGLE CRYSTAL
JPH10259100A (en) Production of garium-arsenic single crystal
JP3831913B2 (en) Method for producing compound semiconductor single crystal
EP0476389A2 (en) Method of growing single crystal of compound semiconductors
JP3806793B2 (en) Method for producing compound semiconductor single crystal
JP2004277266A (en) Method for manufacturing compound semiconductor single crystal
JP2855408B2 (en) Single crystal growth equipment
JP2814796B2 (en) Method and apparatus for producing single crystal
JP2001080987A (en) Device for producing compound semiconductor crystal and production process using the same
JPH03237088A (en) Method for growing single crystal
JPH09175892A (en) Production of single crystal
JPH03193689A (en) Production of compound semiconductor crystal
JP2922038B2 (en) Method for manufacturing compound semiconductor single crystal
JPH10212192A (en) Method for growing bulk crystal
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
US20070068446A1 (en) Compound semiconductor single crystal and production process thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term