JPH11130579A - Production of compound semiconductor single crystal and apparatus for producing the same - Google Patents

Production of compound semiconductor single crystal and apparatus for producing the same

Info

Publication number
JPH11130579A
JPH11130579A JP30010197A JP30010197A JPH11130579A JP H11130579 A JPH11130579 A JP H11130579A JP 30010197 A JP30010197 A JP 30010197A JP 30010197 A JP30010197 A JP 30010197A JP H11130579 A JPH11130579 A JP H11130579A
Authority
JP
Japan
Prior art keywords
crystal
diameter
thermal conductivity
single crystal
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30010197A
Other languages
Japanese (ja)
Inventor
Masaya Itani
賢哉 井谷
Michinori Wachi
三千則 和地
Seiji Mizuniwa
清治 水庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP30010197A priority Critical patent/JPH11130579A/en
Publication of JPH11130579A publication Critical patent/JPH11130579A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To stably seed a raw material melt by forming the solid-liquid interface of a seeding part into an upwardly convex surface in order to suppress the growth of a polycrystal from the seeding part when producing a compound semiconductor single crystal by a vertical gradient freezing(VGF) method. SOLUTION: A seed crystal 1 of the same shape as that of a diameter increasing part is arranged in the diameter increasing part increasing the diameter in the vertical directions and formed in the lower part of a growth vessel 4 and a seeding part thereof is defined in a region where a low-heat conductivity member 6 arranged on the periphery of the diameter increasing part is present. Thereby, the outflow of the latent heat generated when growing a single crystal from the seeding part to the outside of the radial direction is suppressed by the low-heat conductivity member 6 and a vessel support 7 which is a high-heat conductivity member is installed in the lower part of the growth vessel 4 to efficiently release the latent heat generated in the growth part from the lower part of the seed crystal 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、GaAs、Ga
P、InP等のIII −V族化合物半導体や、CdTe等
のII−VI族化合物半導体の単結晶を、VB法、VGF法
又はLEC法によって製造する方法及びその装置に関す
るものである。
TECHNICAL FIELD The present invention relates to GaAs, Ga
The present invention relates to a method for manufacturing a single crystal of a III-V compound semiconductor such as P or InP or a II-VI compound semiconductor such as CdTe by a VB method, a VGF method or an LEC method, and an apparatus therefor.

【0002】[0002]

【従来の技術】III −V族に代表される化合物半導体の
単結晶の製造技術としては、引き上げ法などが知られて
いるが、この引き上げ法による化合物半導体単結晶の製
造においては、融液の分解などの問題があるため、一般
には酸化ホウ素などの液体封止剤が使用されている(L
EC法:Liquid Encapsulated C
zochralski法)。
2. Description of the Related Art As a technique for producing a compound semiconductor single crystal represented by the group III-V, a pulling method or the like is known. In the production of a compound semiconductor single crystal by this pulling method, a melt is used. Due to problems such as decomposition, a liquid sealant such as boron oxide is generally used (L
EC method: Liquid Encapsulated C
zochralski method).

【0003】近年、半導体レーザや発光ダイオード用の
導電性基板の大口径化、低転位化が進み、III −V族に
代表される化合物半導体の単結晶の成長方法として、こ
れまでの横型ボート法(HB法、GF法)に代わって、
垂直ブリッジマン(VB)法、垂直グラディエントフリ
ーズ(VGF)法が注目されている。
In recent years, the diameter of a conductive substrate for a semiconductor laser or a light emitting diode has been increased and the dislocation thereof has been reduced. As a method of growing a single crystal of a compound semiconductor represented by the group III-V, a conventional horizontal boat method has been used. (HB method, GF method)
The vertical Bridgman (VB) method and the vertical gradient freeze (VGF) method have attracted attention.

【0004】このVB法及びVGF法は、PBN製の成
長容器(ルツボ)の下部に種結晶を設置し、その上に化
合物半導体原料を置き、上部が高く下部が低い温度分布
を設けた縦型電気炉の中で、種結晶側の下部から上部に
向かって結晶固化させるものである。
In the VB method and the VGF method, a vertical crystal in which a seed crystal is placed at a lower portion of a growth vessel (crucible) made of PBN, a compound semiconductor material is placed thereon, and a temperature distribution having a high upper portion and a lower portion is provided. In the electric furnace, the crystal is solidified from the lower part on the seed crystal side to the upper part.

【0005】III −V族化合物半導体単結晶をVB法又
はVGF法により成長させる場合、成長容器底の結晶収
容部に種結晶をおき、あらかじめ合成しておいた多結晶
原料を入れ、解離蒸気圧を印加するか、液体封止剤(B
2 3 )で上方を覆って炉内に不活性ガスを封入するか
して多結晶原料を融解し、さらに種結晶上部を融解して
種付けを行い、結晶成長が行われる。
[0005] When a group III-V compound semiconductor single crystal is grown by the VB method or the VGF method, a seed crystal is placed in a crystal accommodating portion at the bottom of a growth vessel, a polycrystalline material synthesized in advance is charged, and a dissociation vapor pressure is set. Or a liquid sealant (B
The polycrystalline raw material is melted by covering the upper part with 2 O 3 ) to fill an inert gas in the furnace, and the upper part of the seed crystal is melted for seeding, and crystal growth is performed.

【0006】VB法又はVGF法の単結晶製造装置にお
いて使用される成長容器4の形状は、通常、図6に示す
ように、種結晶収容部a、増径部b及び直胴部cを有す
るルツボ34から成る。即ち、径が一定な縦長の円筒形
をしている直胴部cと、この直胴部cの下部に略円錐状
に形成された増径部bと、この増径部bの円錐形状の最
下端に種結晶を収容すべく突設された種保持細管部から
成る種結晶収容部aとである。このルツボ34全体を、
対応する形状のグラファイトや石英から成る容器支持体
17で支持し、その状態で上記電気炉のホットゾーン内
で高温部から低温部へ移動することにより、ルツボ34
中の化合物半導体原料を融解して原料融液2を作成し、
さらに底部の種結晶1の上部を融解して種付けを行い、
下方より上方に向かって一方向に固化させて行く。なお
図6中、9は固液界面、10は種付け(シーディング)
部を示す。
The shape of a growth vessel 4 used in a single crystal manufacturing apparatus of the VB method or the VGF method usually has a seed crystal accommodating portion a, a diameter increasing portion b, and a straight body portion c as shown in FIG. It comprises a crucible 34. That is, a straight body portion c having a vertically long cylindrical shape with a constant diameter, a diameter increasing portion b formed in a substantially conical shape below the straight body portion c, and a conical shape of the diameter increasing portion b. A seed crystal accommodating portion a comprising a seed holding thin tube portion projecting at the lowermost end to accommodate the seed crystal. The whole crucible 34
The crucible 34 is supported by a container support 17 made of graphite or quartz of a corresponding shape and moved from a high temperature part to a low temperature part in the hot zone of the electric furnace in this state.
Melting the compound semiconductor material therein to form a material melt 2;
Further, the upper part of the seed crystal 1 at the bottom is melted and seeded,
It solidifies in one direction from above to below. In FIG. 6, 9 is a solid-liquid interface, 10 is seeding (seeding).
Indicates a part.

【0007】従来、このVB法及びVGF法では化合物
半導体の単結晶化自体が困難であり、これまで工業的量
産化には不向きであると考えられていた。しかし、低温
度勾配(数℃/cm)下での結晶成長が可能であるという
利点を有することから、結晶欠陥の少ない良質の単結晶
育成方法として見直されつつあり、様々な手段で改良さ
れている。VB法を改良した単結晶製造方法としては、
例えば、特公昭58−500757号や特開昭64−5
2693号の技術が提案されている。
Conventionally, it is difficult to single crystallize a compound semiconductor by the VB method and the VGF method, and it has been considered that this method is not suitable for industrial mass production. However, it has the advantage of being able to grow crystals under a low temperature gradient (several degrees Celsius / cm), and is being reviewed as a high-quality single crystal growth method with few crystal defects, and has been improved by various means. I have. As a single crystal production method improved from the VB method,
For example, Japanese Patent Publication No. 58-50757 and Japanese Patent Application Laid-Open No.
No. 2693 has been proposed.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、VB
法、VGF法では成長中の固液界面の制御が難しく単結
晶化が難しい。即ち、単結晶成長のためには、固液界面
が融液に向かってやや凸の形状を有し、それが成長中に
亙って維持されることが好ましいが、図6に示す従来の
単結晶製造装置では、温度勾配を急峻にしても、種付け
部10よりやや凹面に成長しやすく、種付け部10での
ルツボ壁部の固液界面9は上方向に凹面となってしまう
傾向があった。
SUMMARY OF THE INVENTION However, VB
In the method and the VGF method, it is difficult to control the solid-liquid interface during growth, and it is difficult to perform single crystallization. In other words, for single crystal growth, it is preferable that the solid-liquid interface has a slightly convex shape toward the melt, which is preferably maintained throughout the growth. In the crystal manufacturing apparatus, even if the temperature gradient is steep, it tends to grow slightly more concavely than the seeding part 10, and the solid-liquid interface 9 of the crucible wall at the seeding part 10 tends to be concave upward. .

【0009】これは図5(a)(b)に示すように、種
結晶収容部aにおける種結晶1の径方向の温度を比較し
た場合、結晶外側である結晶ルツボ壁部Bの温度が、結
晶中心部Aの温度よりも低くなってしまうためである。
なお、参考のため図5(b)中にヒータ部Cの温度を同
時に示す。
As shown in FIGS. 5 (a) and 5 (b), when the temperature in the radial direction of the seed crystal 1 in the seed crystal accommodating portion a is compared, the temperature of the crystal crucible wall B on the outer side of the crystal becomes: This is because the temperature becomes lower than the temperature of the crystal center portion A.
The temperature of the heater section C is also shown in FIG. 5B for reference.

【0010】固液界面9が上方向に凹面であった場合、
結晶外側であるルツボ壁から結晶成長してしまうため、
ルツボ壁部に付着した異物や種結晶周りへの原料融液2
の流れ込みによる種結晶1の表面荒れの影響を受け易く
なり、多結晶化してしまうという問題があった。
When the solid-liquid interface 9 is concave upward,
Because the crystal grows from the crucible wall outside the crystal,
Material melt 2 around foreign matter and seed crystal attached to crucible wall
, The seed crystal 1 is susceptible to the influence of the surface roughness due to the inflow, and polycrystallized.

【0011】こうしたことから、図5(a)の如く、種
結晶1の周囲が酸化ホウ素(B2 3 )から成る液体封
止剤3で被覆されるように構成することにより、種付け
部10でのメニスカスを安定させ、種付けを容易にする
方法も提案されている(特開平1−278490)。し
かし、このような対策を行っても種結晶の表面荒れや、
ルツボの種結晶部の肉厚むらによる円周方向の熱的対称
性のずれにより、種付けを安定させることはできなかっ
た。
Therefore, as shown in FIG. 5 (a), by configuring the periphery of the seed crystal 1 to be covered with the liquid sealant 3 made of boron oxide (B 2 O 3 ), A method of stabilizing the meniscus in the above-described method and facilitating seeding has also been proposed (Japanese Patent Laid-Open No. 1-278490). However, even if such measures are taken, the surface roughness of the seed crystal and
The seeding could not be stabilized due to the thermal symmetry deviation in the circumferential direction due to the uneven thickness of the seed crystal part of the crucible.

【0012】そこで、本発明は、上記課題を解決し、V
B法又はVGF法によって化合物半導体単結晶を製造す
るに当たり、上述のような種付け部からの多結晶成長を
抑制するため、種付け部の固液界面を上方向に凸面にし
て、安定した種付けを可能にし、高品質、大口径の化合
物半導体単結晶を歩留り良く製造することができる化合
物半導体単結晶の製造方法及び装置を提供することを目
的とする。
Therefore, the present invention solves the above-mentioned problems, and
In producing a compound semiconductor single crystal by the B method or the VGF method, in order to suppress the polycrystalline growth from the seeding part as described above, the solid-liquid interface of the seeding part is convex upward, and stable seeding is possible. Accordingly, it is an object of the present invention to provide a method and an apparatus for producing a compound semiconductor single crystal, which can produce a high-quality, large-diameter compound semiconductor single crystal with high yield.

【0013】[0013]

【課題を解決するための手段】本発明者等は、上記目的
を達成するために鋭意研究した結果、VB法又はVGF
法によって化合物半導体単結晶を製造するに際し、種付
け部の固液界面が凹面となる原因は、種結晶の中央部か
らの有効な熱放出が行われていないためであることを見
い出した。即ち、図6のように、種結晶1と原料融液2
を入れたルツボ34の全体を、グラファイト製や石英製
の容器支持体17で支えた構造の場合、同図中に矢印1
1で示したように、ルツボ34の外側に向う熱の流れが
生ずる。固液界面9はその熱の流れに垂直に形成しやす
く、結果として、固液界面9は融液2に向って凹の形状
となる。一旦、凹になると凸に転じにくく結果として多
結晶化しやすい。
Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and have found that the VB method or the VGF
In producing a compound semiconductor single crystal by the method, it has been found that the reason why the solid-liquid interface of the seeding portion is concave is that effective heat release from the central portion of the seed crystal is not performed. That is, as shown in FIG.
In the case of a structure in which the entire crucible 34 in which is filled is supported by a container support 17 made of graphite or quartz, an arrow 1 in FIG.
As shown in FIG. 1, heat flows toward the outside of the crucible 34. The solid-liquid interface 9 tends to form perpendicular to the heat flow, and as a result, the solid-liquid interface 9 has a concave shape toward the melt 2. Once it is concave, it is difficult to turn into a convex and consequently polycrystal is easily formed.

【0014】そこで本発明は、成長容器の増径部で種付
けを行うようにしたものである。
In the present invention, the seeding is performed at the enlarged diameter portion of the growth vessel.

【0015】即ち、本発明の単結晶製造方法は、成長容
器内における下部に種結晶、及びその上部に化合物半導
体単結晶の原料融液を配置し、前記種結晶から上方に向
かって結晶を成長させる化合物半導体単結晶の製造方法
において、成長容器の下部に形成された上方向に増径す
る増径部内に該増径部と同一形状の種結晶を配置し、そ
の成長容器の増径部の周囲に低熱伝導率部材を設置する
と共に、該低熱伝導率部材より下方の成長容器部分を囲
繞するように成長容器の下部に高熱伝導率部材を設置
し、種付けを前記低熱伝導率部材の存在する増径部の領
域中で行うものである(請求項1)。
That is, according to the method for producing a single crystal of the present invention, a seed crystal is disposed at a lower portion in a growth vessel, and a raw material melt of a compound semiconductor single crystal is disposed at an upper portion thereof, and the crystal is grown upward from the seed crystal. In the method for producing a compound semiconductor single crystal to be formed, a seed crystal having the same shape as the diameter-increased portion is arranged in an diameter-increased portion formed upward in the lower portion of the growth vessel, and A low thermal conductivity member is provided around the low thermal conductivity member, and a high thermal conductivity member is provided at the lower portion of the growth vessel so as to surround a growth vessel portion below the low thermal conductivity member, and the seeding of the low thermal conductivity member is performed. This is performed in the area of the diameter increasing portion (claim 1).

【0016】本発明によれば、種付け部の位置を、増径
部の周囲に設置した断熱材等の成る低熱伝導率部材が存
在する領域中に設定しているため、種付け部から成長す
る際に発生する潜熱が径方向外側へ流れ出すのが抑制さ
れる。また、種結晶底部中心に熱伝導率の大きい部材を
設置しているので、成長部で発生した潜熱を種結晶の下
部から効率良く放出させることができ、種付け時の熱の
流れが、種結晶中心から下方向に流れるように制御され
る。このため、固液界面が上方向に凸面となり、種付け
を安定に行うことが可能となり、例えば直径75mm以上
の比較的大型の化合物半導体単結晶を欠陥の少ない高品
質の状態で歩留り良く製造することができるようにな
る。また種結晶中心部が冷却されているため、種付け部
のみならず、直胴部も凸面に成長を行うことができるた
め、高歩留りの単結晶収率を得ることができる。
According to the present invention, since the position of the seeding portion is set in the region where the low thermal conductivity member such as a heat insulating material installed around the diameter-increasing portion is present, when the seeding portion grows from the seeding portion. The flow of the latent heat generated to the outside in the radial direction is suppressed. In addition, since a member with high thermal conductivity is installed at the center of the seed crystal bottom, the latent heat generated in the growth part can be efficiently released from the lower part of the seed crystal, and the heat flow during seeding is reduced. It is controlled to flow downward from the center. For this reason, the solid-liquid interface becomes a convex surface in the upward direction, so that seeding can be stably performed. For example, a relatively large compound semiconductor single crystal having a diameter of 75 mm or more can be manufactured in a high quality state with few defects and high yield. Will be able to In addition, since the seed crystal center is cooled, not only the seeding portion but also the straight body can be grown on a convex surface, so that a high yield of single crystal can be obtained.

【0017】本発明には、VB法又はVGF法によって
化合物半導体単結晶を製造するに当たり、使用する成長
容器として、通常の種結晶収容部がなく、下方向に縮径
する下部構造を有した成長容器を用いた形態だけでな
く、種結晶収容部と結晶成長用直胴部との間に上方向に
増径する増径部を有する通常の成長容器を用いた形態
(請求項2)も含まれる。そして、このいずれの形態の
成長容器であっても、その成長容器の下部に成長容器の
底部と同一形状の種結晶を配置する一方、成長容器の増
径部の周囲には、断熱材の如き低熱伝導率部材つまり熱
容量の大きい部材を設置し、成長容器における種結晶の
下部には高熱伝導率部材つまり熱容量の小さい部材を設
置することにより、種付け部の固液界面を上方向に凸面
にし、多結晶成長を抑制した安定した種付けを行うこと
ができる。また、比較的簡単な加工を行った種結晶を使
用することで安定な種付けをすることができ、高品質、
大口径の化合物半導体単結晶を歩留り良く製造すること
ができる。
According to the present invention, there is provided a growth vessel having a lower structure which does not have a normal seed crystal accommodating portion and has a diameter reduced in a downward direction as a growth vessel used for producing a compound semiconductor single crystal by the VB method or the VGF method. Not only the form using a container, but also a form using a normal growth container having a diameter increasing portion that increases in the upward direction between the seed crystal accommodating portion and the crystal growth straight body portion (Claim 2) is included. It is. In any of these types of growth vessels, a seed crystal having the same shape as the bottom of the growth vessel is arranged at the lower portion of the growth vessel. By installing a low heat conductivity member, that is, a member having a large heat capacity, and installing a high heat conductivity member, that is, a member having a small heat capacity, below the seed crystal in the growth vessel, the solid-liquid interface of the seeding portion is made convex upward, Stable seeding with suppressed polycrystalline growth can be performed. In addition, stable seeding can be achieved by using seed crystals that have been processed relatively easily, and high quality,
A large-diameter compound semiconductor single crystal can be manufactured with high yield.

【0018】また本発明の他の製造方法(請求項3)
は、引き上げ法を用いて成長させる化合物半導体単結晶
の製造方法において、使用する種結晶として上方向に縮
径するテーパ部を有した種結晶を使用し、当該種結晶の
テーパ部で種結晶付けを行うものである。この種結晶に
は上記請求項1又は2の方法で製造した種結晶を使用す
ることができ、該種結晶を融液に接した時点から例えば
数mm程度溶かし込むことで当該種結晶のテーパ部で種結
晶付けを行うことができる。
Another manufacturing method of the present invention (Claim 3)
Is a method of manufacturing a compound semiconductor single crystal grown by using a pulling method, wherein a seed crystal having a tapered portion whose diameter is reduced upward is used as a seed crystal to be used, and seeding is performed at the tapered portion of the seed crystal. Is what you do. The seed crystal can be a seed crystal produced by the method of claim 1 or 2, and is melted, for example, about several mm from the point of contact with the melt to form a tapered portion of the seed crystal. Can be used for seeding.

【0019】更に、本発明の化合物半導体単結晶の製造
装置は、成長容器内における下部に種結晶、及びその上
部に化合物半導体単結晶の原料融液を配置し、前記種結
晶から上方に向かって結晶を成長させる化合物半導体単
結晶の製造装置の形態(請求項4)において、又は、種
結晶収容部と結晶成長用直胴部との間に上方向に増径す
る増径部を有する成長容器における下部に種結晶、及び
その上部に化合物半導体単結晶の原料融液を配置し、前
記種結晶から上方に向かって結晶を成長させる化合物半
導体単結晶の製造装置の形態(請求項5)において、成
長容器の増径部の周囲に低熱伝導率部材を設置すると共
に、該低熱伝導率部材より下方の成長容器部分を囲繞す
るように成長容器の下部に高熱伝導率部材を設置し、種
付け位置を前記低熱伝導率部材の存在する増径部の領域
中に設定したものである。
Further, in the apparatus for producing a compound semiconductor single crystal according to the present invention, a seed crystal is disposed at a lower portion in a growth vessel, and a raw material melt of the compound semiconductor single crystal is disposed at an upper portion thereof, and upward from the seed crystal. In the form of an apparatus for manufacturing a compound semiconductor single crystal for growing a crystal (Claim 4), or a growth vessel having a diameter increasing portion which increases in diameter upward between a seed crystal accommodating portion and a crystal growth straight body portion. In the form of an apparatus for producing a compound semiconductor single crystal in which a seed crystal is disposed at a lower part of the above and a raw material melt of the compound semiconductor single crystal is disposed at an upper part thereof and the crystal is grown upward from the seed crystal, A low thermal conductivity member is installed around the enlarged diameter portion of the growth vessel, and a high thermal conductivity member is installed at the lower portion of the growth vessel so as to surround the growth vessel portion below the low thermal conductivity member, and the seeding position is set. Said low It is obtained by setting in the region of increased diameter in the presence of conductivity member.

【0020】[0020]

【発明の実施の形態】以下、本発明を図示の実施形態に
基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on the illustrated embodiment.

【0021】図1に本発明による化合物半導体単結晶の
製造方法の実施形態を、また図2にこの実施形態で用い
た製造装置の詳細を示す。
FIG. 1 shows an embodiment of a method of manufacturing a compound semiconductor single crystal according to the present invention, and FIG. 2 shows details of a manufacturing apparatus used in this embodiment.

【0022】図2において、VB法又はVGF法による
成長容器4は、その下部が下方に縮径する円錐形状に形
成され、その円錐形先端つまり下端から上方向に増径す
る増径部bと、これに続く上方の結晶成長用直胴部cと
から成る。即ち、ここでの成長容器4には、通常の種保
持細管部から成る種結晶収容部a(図6参照)がなく、
下方向に縮径する下部構造を有したルツボ14が用いら
れている。
In FIG. 2, the growth vessel 4 formed by the VB method or the VGF method has a lower portion formed in a conical shape whose diameter is reduced downward, and a diameter-increasing portion b whose diameter increases upward from the conical tip, that is, the lower end. , Followed by an upper crystal growth straight body c. That is, the growth vessel 4 here does not have the seed crystal accommodating portion a (see FIG. 6) composed of a normal seed holding capillary portion.
A crucible 14 having a lower structure whose diameter is reduced downward is used.

【0023】このルツボ14の下部つまり底部には、ル
ツボ14の底部と同形状(ここでは円錐形状)の種結晶
1が配置される。この種結晶1は、その上端が、ルツボ
14の増径部bの周囲に設置された断熱材から成る低熱
伝導率部材6つまり熱容量の大きい部材に達するよう
に、加工・配置されている。
A seed crystal 1 having the same shape (here, a conical shape) as the bottom of the crucible 14 is arranged at a lower portion, that is, a bottom of the crucible 14. The seed crystal 1 is processed and arranged so that the upper end thereof reaches a low thermal conductivity member 6 made of a heat insulating material provided around the diameter-increased portion b of the crucible 14, that is, a member having a large heat capacity.

【0024】ルツボ14を支持する受け台として、増径
部bの周囲の上部には、上記断熱材から成る低熱伝導率
部材6を設置すると共に、この低熱伝導率部材6より下
方の成長容器増径部bの部分つまり種結晶1の周囲を囲
繞するように、成長容器の下部に、熱伝導率の大きい高
熱伝導率部材から成る容器支持体7を設置している。
As a support for supporting the crucible 14, a low thermal conductivity member 6 made of the above-mentioned heat insulating material is installed on the upper part around the diameter-increasing portion b, and a growth container below the low thermal conductivity member 6 is added. A vessel support 7 made of a high thermal conductivity member having a high thermal conductivity is provided at the lower part of the growth vessel so as to surround the diameter b, that is, the periphery of the seed crystal 1.

【0025】本製造装置においては、種結晶1を、ヒー
タ5を備えた成長炉内における温度勾配の急峻な部分に
配置する。昇温は種付け部10付近の増径部bに設けた
熱電対8の検知出力をモニタリングしながら行い、種結
晶1が溶解する際に発生する融解熱を検出した時点で、
昇温を停止し、種付けを開始する。
In the present manufacturing apparatus, the seed crystal 1 is disposed in a portion having a steep temperature gradient in a growth furnace provided with the heater 5. The temperature increase is performed while monitoring the detection output of the thermocouple 8 provided in the diameter increasing portion b near the seeding portion 10, and when the heat of fusion generated when the seed crystal 1 is melted is detected,
Stop heating and start seeding.

【0026】この状態で10時間以上保持し、ルツボ1
4を下方向に−3.0mm/hrで下降することで、成長を
開始する。成長時の種結晶1の径方向の温度分布を図1
(b)に示す。曲線Aは図1(a)に示す結晶中心部A
の温度、曲線Bは図1(a)に示す結晶ルツボ壁部Bの
温度、曲線Cは図1(a)に示すヒータ部Cの温度変化
を示す。
This state is maintained for 10 hours or more.
4 is lowered at a rate of -3.0 mm / hr to start growth. Figure 1 shows the temperature distribution in the radial direction of the seed crystal 1 during growth.
(B). Curve A is the crystal center A shown in FIG.
The curve B shows the temperature of the crystal crucible wall B shown in FIG. 1A, and the curve C shows the temperature change of the heater C shown in FIG. 1A.

【0027】この図1(b)中の曲線Aと曲線Bの比較
から分かるように、低熱伝導率部材6が存在する領域中
における種結晶1の径方向の温度は、結晶外側である結
晶ルツボ壁部Bの温度の方が、結晶中心部Aの温度より
も高くなっている。これは、上記増径部bの周囲の上部
に低熱伝導率部材6を設置すると共に、種結晶1の周囲
に高熱伝導率部材である容器支持体7を設置した作用効
果による。
As can be seen from the comparison between the curves A and B in FIG. 1B, the temperature in the radial direction of the seed crystal 1 in the region where the low thermal conductivity member 6 exists is the crystal crucible outside the crystal. The temperature of the wall portion B is higher than the temperature of the crystal center portion A. This is due to the effect of installing the low thermal conductivity member 6 on the upper portion around the diameter-increased portion b and installing the container support 7 as a high thermal conductivity member around the seed crystal 1.

【0028】そこで、種付け部10の位置を、増径部b
の周囲に設置した断熱材から成る低熱伝導率部材6が存
在する領域中に設定する。これによって種付け部10か
ら成長する際に発生する潜熱が、径方向外側へ流れ出す
のが抑制される。また、種結晶1の下部には、熱伝導率
の大きい高熱伝導率部材の容器支持体7が設置してある
ため、成長部で発生した潜熱を種結晶1の下部から効率
良く放出させることができる。
Therefore, the position of the seeding portion 10 is changed to the diameter increasing portion b.
Is set in a region where the low thermal conductivity member 6 made of a heat insulating material is installed around the device. Thereby, the latent heat generated when growing from the seeding portion 10 is suppressed from flowing outward in the radial direction. Further, since the container support 7 of a high thermal conductivity member having a high thermal conductivity is provided below the seed crystal 1, the latent heat generated in the growth portion can be efficiently released from the lower portion of the seed crystal 1. it can.

【0029】以上の作用効果により、種結晶1中の熱の
流れは、図1に矢印11で示すように、種結晶1中心か
ら下方向に向かうようになり、固液界面9が上方向に凸
面となり、種付けを安定に行うことができる。また種結
晶1中心部が冷却されているため、種付け部のみなら
ず、直胴部も凸面に成長を行うことができるため、高歩
留りの単結晶収率を得ることができる。
By the above-described effects, the heat flow in the seed crystal 1 is directed downward from the center of the seed crystal 1 as shown by an arrow 11 in FIG. It becomes a convex surface, and seeding can be performed stably. In addition, since the central part of the seed crystal 1 is cooled, not only the seeding part but also the straight body part can be grown on a convex surface, so that a high yield of single crystal can be obtained.

【0030】上記の作用効果は、成長容器として、図3
に示すような通常の成長容器(通常ルツボ)34を使用
することでも得ることができる。使用する種結晶1とし
て、通常ルツボで成長した単結晶の種結晶から増径部を
一体物として切り出し、種付けを増径部b周囲に設置し
た断熱材6の存在する領域中で行うことで、上述と同様
の効果を得ることができる。また種付けのために新たな
種結晶の加工を行う必要がなく、低コストで高歩留りの
単結晶を得ることができる。
The above operation and effect can be obtained by using the growth container shown in FIG.
It can also be obtained by using a normal growth container (normal crucible) 34 as shown in FIG. As the seed crystal 1 to be used, a diameter-increased portion is cut out as an integral body from a single crystal seed crystal usually grown in a crucible, and seeding is performed in a region where the heat insulating material 6 provided around the diameter-increased portion b is present. The same effect as described above can be obtained. Further, it is not necessary to process a new seed crystal for seeding, and a single crystal having a high yield at a low cost can be obtained.

【0031】[0031]

【実施例】【Example】

(実施例1)GaAs単結晶の成長を例にとり、図2を
参考にしながら説明する。
(Example 1) An example of growing a GaAs single crystal will be described with reference to FIG.

【0032】通常の種結晶収容部のないパイロリティッ
ク ボロンナイトライド(PBN)製のルツボ14中
に、ルツボ底部と同一形状をした種結晶1とGaAs原
料を3000gを入れ、VGF炉内にセットした後、真
空引き、ガス置換を行い、ヒータを昇温する。昇温は種
付け部10に設置された熱電対8の温度をモニタリング
しながら行い、種結晶1部に融解熱反応を検出した時点
でヒータ5の昇温を停止し、種付けを10時間以上行
う。
In a crucible 14 made of pyrolytic boron nitride (PBN) having no ordinary seed crystal accommodating portion, 3000 g of the seed crystal 1 and the GaAs raw material having the same shape as the crucible bottom were put and set in a VGF furnace. Thereafter, vacuuming and gas replacement are performed, and the heater is heated. The temperature is raised while monitoring the temperature of the thermocouple 8 installed in the seeding unit 10. When the melting heat reaction is detected in one part of the seed crystal, the temperature of the heater 5 is stopped, and the seeding is performed for 10 hours or more.

【0033】10時間以上保持した後、種付け部固液界
面9付近の温度勾配を約7℃/cmに調整する。
After holding for 10 hours or more, the temperature gradient near the solid-liquid interface 9 at the seeding portion is adjusted to about 7 ° C./cm.

【0034】その後、ルツボ14を5rpmで回転させ
ながら、3mm/hrの速度で降下させて結晶固化を行う。
全体を固化させた後、約50℃/hrで室温まで冷却し、
炉から取り出す。
Thereafter, the crystal is solidified by lowering the crucible 14 at a speed of 3 mm / hr while rotating the crucible 14 at 5 rpm.
After solidifying the whole, it is cooled to room temperature at about 50 ° C./hr,
Remove from furnace.

【0035】この方法で高歩留りで直径約φ80mm、直
胴部長さ約100mmのGaAs単結晶を得ることができ
た。得られた結晶の特性の評価を行ったところ、切り出
したウェハの90%が面内平均値で600/cm2 以下の
転位密度を持ち、極めて低結晶欠陥であり、インゴット
内での均質性の高い高品質のものであった。
By this method, a GaAs single crystal having a diameter of about φ80 mm and a straight body length of about 100 mm was obtained at a high yield. When the characteristics of the obtained crystal were evaluated, 90% of the cut wafers had a dislocation density of 600 / cm 2 or less as an in-plane average value, were extremely low in crystal defects, and had uniformity in the ingot. It was of high quality.

【0036】(実施例2)通常の種結晶収容部のないP
BNルツボ14の代用として、図3に示すような種結晶
収容部cを装備した通常のPBN製ルツボ34を使用
し、同形状のルツボで成長させた単結晶の種結晶から増
径部までを一体物として切り出す。この結晶ブロックを
希王水でエッチングした物を種結晶1として使用し、実
施例1と同じ手順で増径部bで種付けを行った後、結晶
成長を行った。
(Example 2) P having no ordinary seed crystal accommodating portion
As a substitute for the BN crucible 14, a normal PBN crucible 34 equipped with a seed crystal accommodating portion c as shown in FIG. 3 is used, and from a single crystal seed crystal grown with a crucible of the same shape to a diameter-increased portion. Cut out as one piece. This crystal block was etched with dilute aqua regia and used as a seed crystal 1. Seeding was performed at the diameter-increased portion b in the same procedure as in Example 1, and then crystal growth was performed.

【0037】この場合も種付け部から多結晶化せず、高
歩留り、高品質の結晶を得ることができた。
Also in this case, high yield and high quality crystals could be obtained without polycrystallization from the seeding portion.

【0038】なお、上記実施例1及び実施例2では、G
aAsの単結晶成長について述べたが、GaAsの他
に、例えばInP、GaP等の単結晶成長にも応用する
ことも可能である。また、成長方法はVGF法ではな
く、VB法であってもよい。
In the first and second embodiments, G
Although a single crystal growth of aAs has been described, the present invention can be applied to single crystal growth of, for example, InP, GaP, etc., in addition to GaAs. Further, the growth method may be the VB method instead of the VGF method.

【0039】(実施例3)引き上げ法を例にとり、図4
を参考にしながら説明する。
(Embodiment 3) FIG.
This will be described with reference to FIG.

【0040】原料及び液体封止剤(B2 3 )を入れた
PBNルツボ容器24を下軸26の付いた容器支持体2
7で支持して炉内にセットし、昇温を行う。原料及びB
2 3 が融液化し、原料融液22上を液体封止剤23で
覆った後、上軸25に設置されたテーパ状の種結晶21
を回転させながら下降させる。種結晶21が融液22に
接した時点から数ミリ溶かし込むことで種付けを行う。
種付け後、−0.1deg /hrでヒータを降温し、初期成
長を行う。初期成長終了後、上軸25を2.0rpm で回
転させながら5.0/hrの速度で上昇させ、成長を行
う。上述した種結晶21を使用することにより高確率で
シード付けをを行うことが可能となり、再シード付けに
よる種付け時間の延長がなくなり、引き上げ炉内のグラ
ファイト部材から発生する炭素が増加せず、結晶の電気
特性が良い単結晶を得ることができた。
Raw material and liquid sealant (BTwoOThree)
Container support 2 with PBN crucible container 24 with lower shaft 26
7 and set in a furnace to raise the temperature. Raw material and B
TwoO ThreeIs melted, and the raw material melt 22 is covered with a liquid sealant 23.
After covering, the tapered seed crystal 21 set on the upper shaft 25
Lower while rotating. Seed crystal 21 becomes melt 22
Seeding is performed by melting several millimeters from the point of contact.
After seeding, lower the temperature of the heater at -0.1deg / hr,
Do the long. After the initial growth, rotate the upper shaft 25 at 2.0 rpm.
While growing, increase at a rate of 5.0 / hr to grow.
U. By using the seed crystal 21 described above,
It is possible to perform seeding and reseed
The extension of the seeding time by
The carbon generated from the fight member does not increase,
A single crystal with good characteristics was obtained.

【0041】[0041]

【発明の効果】以上説明したように本発明によれば、次
のような優れた効果が得られる。
As described above, according to the present invention, the following excellent effects can be obtained.

【0042】(1)請求項1、2及び4、5に記載の発
明によれば、種付け部の位置を、成長容器の下部増径部
の周囲に設置した低熱伝導率部材の存在する領域中に設
定しているため、種付け部から成長する際に発生する潜
熱が、径方向外側へ流れ出すのが抑制される。また、種
結晶底部中心に高熱伝導率部材を設置しているので、成
長部で発生した潜熱を種結晶の下部から効率良く放出さ
せることができる。このため、種付け時の熱の流れが、
種結晶中心から下方向に流れるように制御されて、固液
界面が上方向に凸面となり、種付けを安定に行うことが
できるようになる。また種結晶中心部が冷却されている
ため、種付け部のみならず、直胴部も凸面に成長を行う
ことができるため、高歩留りの単結晶収率を得ることが
できる。
(1) According to the first, second, fourth, and fifth aspects of the present invention, the seeding portion is located in the area where the low thermal conductivity member is provided around the lower diameter increasing portion of the growth vessel. , The latent heat generated when growing from the seeding portion is suppressed from flowing outward in the radial direction. Further, since the high thermal conductivity member is provided at the center of the seed crystal bottom, the latent heat generated in the growth part can be efficiently released from the lower part of the seed crystal. Because of this, the heat flow during seeding
The liquid-solid interface is controlled so as to flow downward from the center of the seed crystal, and the solid-liquid interface becomes a convex surface upward, so that the seeding can be stably performed. In addition, since the seed crystal center is cooled, not only the seeding portion but also the straight body can be grown on a convex surface, so that a high yield of single crystal can be obtained.

【0043】(2)請求項3に記載の発明によれば、引
き上げ法において上方向に縮径するテーパ部を有した種
結晶を使用し、当該種結晶のテーパ部で種結晶付けを行
うものであるので、高確率でシード付けを行うことが可
能となる。このため、再種付けによるシード付け時間の
延長がなくなり、引上炉内のグラファイト部材から発生
する炭素が増加せず、結晶の電気特性の良い単結晶を得
ることができる。
(2) According to the third aspect of the present invention, in the pulling method, a seed crystal having a tapered portion whose diameter is reduced in an upward direction is used, and the seed crystal is attached at the tapered portion of the seed crystal. Therefore, seeding can be performed with high probability. For this reason, the seeding time is not prolonged due to the reseeding, and the carbon generated from the graphite member in the pulling furnace does not increase, so that a single crystal with good electrical characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法の一実施形態における種付け
部の熱の流れの説明に供する図で、(a)はVGF炉の
部分、(b)はその炉内の結晶中心部、結晶ルツボ壁
部、ヒータ部の温度分布を示した図である。
FIGS. 1A and 1B are views for explaining the heat flow of a seeding unit in an embodiment of the manufacturing method of the present invention, wherein FIG. 1A is a VGF furnace part, FIG. 1B is a crystal center part in the furnace, and a crystal crucible. It is the figure which showed the temperature distribution of a wall part and a heater part.

【図2】本発明の図1の実施形態における製造方法を実
施するための装置の構成を示した図である。
FIG. 2 is a diagram showing a configuration of an apparatus for performing a manufacturing method in the embodiment of FIG. 1 of the present invention.

【図3】本発明の製造方法の他の実施形態における種付
け部の熱の流れの説明に供する図で、(a)はVGF炉
の部分、(b)はその炉内の結晶中心部、結晶ルツボ壁
部、ヒータ部の温度分布を示した図である。
3A and 3B are diagrams for explaining the heat flow of a seeding unit in another embodiment of the manufacturing method of the present invention. FIG. 3A shows a VGF furnace part, FIG. 3B shows a crystal center part in the furnace, and FIG. It is the figure which showed the temperature distribution of a crucible wall part and a heater part.

【図4】本発明を引き上げ法に適した場合を示す原理図
である。
FIG. 4 is a principle view showing a case where the present invention is suitable for a pulling method.

【図5】従来のVGF法による製造方法における種付け
部の熱の流れの説明に供する図で、(a)はVGF炉の
部分、(b)はその炉内の結晶中心部、結晶ルツボ壁
部、ヒータ部の温度分布を示した図である。
5A and 5B are diagrams for explaining the heat flow of a seeding part in a conventional manufacturing method by the VGF method, wherein FIG. 5A is a VGF furnace part, FIG. 5B is a crystal center part in the furnace, and a crystal crucible wall part. FIG. 4 is a diagram showing a temperature distribution of a heater unit.

【図6】従来のVGF法の製造装置を示した概略図であ
る。
FIG. 6 is a schematic view showing a conventional VGF manufacturing apparatus.

【符号の説明】[Explanation of symbols]

1 種結晶 2 原料融液 3 液体封止剤 4 成長容器(ルツボ) 5 ヒータ 6 低熱伝導率部材 7 容器支持体(高熱伝導率部材) 8 熱電対 9 固液界面 10 種付け部 11 矢印(熱の流れ) 14 ルツボ 17 容器支持体 21 種結晶 22 原料融液 23 液体封止剤 24 ルツボ容器 25 上軸 26 下軸 27 容器支持体 34 ルツボ a 種結晶収容部(種保持細管部) b 増径部 c 直胴部 A 結晶中心部 B 結晶ルツボ壁部 C ヒータ部 Reference Signs List 1 seed crystal 2 raw material melt 3 liquid sealant 4 growth container (crucible) 5 heater 6 low thermal conductivity member 7 container support (high thermal conductivity member) 8 thermocouple 9 solid-liquid interface 10 seeding portion 11 arrow (heat) Flow) 14 Crucible 17 Container support 21 Seed crystal 22 Raw material melt 23 Liquid sealant 24 Crucible container 25 Upper shaft 26 Lower shaft 27 Container support 34 Crucible a Seed crystal accommodating part (seed holding thin tube part) b Large diameter part c Straight body part A Crystal center part B Crystal crucible wall part C Heater part

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】成長容器内における下部に種結晶、及びそ
の上部に化合物半導体単結晶の原料融液を配置し、前記
種結晶から上方に向かって結晶を成長させる化合物半導
体単結晶の製造方法において、成長容器の下部に形成さ
れた上方向に増径する増径部内に該増径部と同一形状の
種結晶を配置し、その成長容器の増径部の周囲に低熱伝
導率部材を設置すると共に、該低熱伝導率部材より下方
の成長容器部分を囲繞するように成長容器の下部に高熱
伝導率部材を設置し、種付けを前記低熱伝導率部材の存
在する増径部の領域中で行うことを特徴とする化合物半
導体単結晶の製造方法。
1. A method for producing a compound semiconductor single crystal, comprising: disposing a seed crystal at a lower portion in a growth vessel and a raw material melt of the compound semiconductor single crystal at an upper portion thereof, and growing the crystal upward from the seed crystal. A seed crystal having the same shape as the diameter-increased portion is arranged in the diameter-increased portion formed upward in the lower portion of the growth vessel, and a low thermal conductivity member is provided around the diameter-increased portion of the growth vessel. At the same time, a high thermal conductivity member is provided at a lower portion of the growth vessel so as to surround a growth vessel portion below the low thermal conductivity member, and seeding is performed in an area of a diameter increasing portion where the low thermal conductivity member exists. A method for producing a compound semiconductor single crystal, comprising:
【請求項2】種結晶収容部と結晶成長用直胴部との間に
上方向に増径する増径部を有する成長容器における下部
に種結晶、及びその上部に化合物半導体単結晶の原料融
液を配置し、前記種結晶から上方に向かって結晶を成長
させる化合物半導体単結晶の製造方法において、成長容
器の下部に形成された前記種結晶収容部から前記増径部
内にかけての体積部内にこれと同一形状の種結晶を配置
し、その成長容器の増径部の周囲に低熱伝導率部材を設
置すると共に、該低熱伝導率部材より下方の成長容器部
分を囲繞するように成長容器の下部に高熱伝導率部材を
設置し、種付けを前記低熱伝導率部材の存在する増径部
の領域中で行うことを特徴とする化合物半導体単結晶の
製造方法。
2. A seed vessel in a lower portion of a growth vessel having a diameter-increasing section which increases in diameter between a seed crystal accommodating section and a crystal growth straight body portion, and a material melt of a compound semiconductor single crystal in an upper portion thereof. In the method for producing a compound semiconductor single crystal in which a liquid is arranged and a crystal is grown upward from the seed crystal, the liquid is placed in a volume part from the seed crystal accommodating part formed in the lower part of the growth vessel to the inside of the diameter increasing part. A seed crystal having the same shape as the above is arranged, and a low thermal conductivity member is installed around the diameter-increased portion of the growth vessel, and a lower portion of the growth vessel is surrounded by the growth vessel portion below the low thermal conductivity member. A method for producing a compound semiconductor single crystal, wherein a high thermal conductivity member is provided, and seeding is performed in a region of an increased diameter portion where the low thermal conductivity member exists.
【請求項3】引き上げ法を用いて成長させる化合物半導
体単結晶の製造方法において、使用する種結晶として上
方向に縮径するテーパ部を有した種結晶を使用し、当該
種結晶のテーパ部で種結晶付けを行うことを特徴とする
化合物半導体単結晶の製造方法。
3. A method of manufacturing a compound semiconductor single crystal grown by a pulling method, wherein a seed crystal having a tapered portion whose diameter is reduced in an upward direction is used as a seed crystal to be used. A method for producing a compound semiconductor single crystal, comprising performing seeding.
【請求項4】成長容器内における下部に種結晶、及びそ
の上部に化合物半導体単結晶の原料融液を配置し、前記
種結晶から上方に向かって結晶を成長させる化合物半導
体単結晶の製造装置において、前記成長容器の増径部の
周囲に低熱伝導率部材を設置すると共に、該低熱伝導率
部材より下方の成長容器部分を囲繞するように成長容器
の下部に高熱伝導率部材を設置し、種付け位置を前記低
熱伝導率部材の存在する増径部の領域中に設定したこと
を特徴とする化合物半導体単結晶の製造装置。
4. A compound semiconductor single crystal manufacturing apparatus in which a seed crystal is disposed at a lower part in a growth vessel and a raw material melt of a compound semiconductor single crystal is disposed at an upper part thereof, and the crystal is grown upward from the seed crystal. Placing a low thermal conductivity member around the diameter-increased portion of the growth vessel, and installing a high thermal conductivity member at a lower portion of the growth vessel so as to surround a growth vessel portion below the low thermal conductivity member; An apparatus for manufacturing a compound semiconductor single crystal, wherein a position is set in a region of an increased diameter portion where the low thermal conductivity member exists.
【請求項5】種結晶収容部と結晶成長用直胴部との間に
上方向に増径する増径部を有する成長容器における下部
に種結晶、及びその上部に化合物半導体単結晶の原料融
液を配置し、前記種結晶から上方に向かって結晶を成長
させる化合物半導体単結晶の製造装置において、前記成
長容器の増径部の周囲に低熱伝導率部材を設置すると共
に、該低熱伝導率部材より下方の成長容器部分を囲繞す
るように成長容器の下部に高熱伝導率部材を設置し、種
付け位置を前記低熱伝導率部材の存在する増径部の領域
中に設定したことを特徴とする化合物半導体単結晶の製
造装置。
5. A seed vessel in a lower portion of a growth vessel having a diameter-increasing section which increases in diameter between a seed crystal accommodating section and a straight body portion for growing a crystal, and a material melt of a compound semiconductor single crystal in an upper portion thereof. In a compound semiconductor single crystal manufacturing apparatus for disposing a liquid and growing a crystal upward from the seed crystal, a low thermal conductivity member is provided around a diameter-increasing portion of the growth vessel, and the low thermal conductivity member is provided. A compound characterized in that a high thermal conductivity member is provided at a lower portion of a growth vessel so as to surround a lower growth vessel portion, and a seeding position is set in a region of a diameter increasing portion where the low thermal conductivity member exists. Semiconductor single crystal manufacturing equipment.
JP30010197A 1997-10-31 1997-10-31 Production of compound semiconductor single crystal and apparatus for producing the same Pending JPH11130579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30010197A JPH11130579A (en) 1997-10-31 1997-10-31 Production of compound semiconductor single crystal and apparatus for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30010197A JPH11130579A (en) 1997-10-31 1997-10-31 Production of compound semiconductor single crystal and apparatus for producing the same

Publications (1)

Publication Number Publication Date
JPH11130579A true JPH11130579A (en) 1999-05-18

Family

ID=17880733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30010197A Pending JPH11130579A (en) 1997-10-31 1997-10-31 Production of compound semiconductor single crystal and apparatus for producing the same

Country Status (1)

Country Link
JP (1) JPH11130579A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005037393A1 (en) * 2005-08-08 2007-02-15 Schott Ag Growth of large volume crystals from melt calcium fluoride crystal material, comprises heating a material in crucible by heating elements, and forming single crystal at the crucible base by reducing crystallization
WO2010079826A1 (en) * 2009-01-09 2010-07-15 住友電気工業株式会社 Apparatus for manufacturing single crystal, method for manufacturing single crystal, and single crystal
JP2012236733A (en) * 2011-05-11 2012-12-06 Shinshu Univ Crucible for growing crystal, and method for growing crystal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005037393A1 (en) * 2005-08-08 2007-02-15 Schott Ag Growth of large volume crystals from melt calcium fluoride crystal material, comprises heating a material in crucible by heating elements, and forming single crystal at the crucible base by reducing crystallization
DE102005037393B4 (en) * 2005-08-08 2010-10-28 Schott Ag Method and device for growing large-volume single crystals to form a convex phase interface during the crystallization process
WO2010079826A1 (en) * 2009-01-09 2010-07-15 住友電気工業株式会社 Apparatus for manufacturing single crystal, method for manufacturing single crystal, and single crystal
CN102272359A (en) * 2009-01-09 2011-12-07 住友电气工业株式会社 Apparatus for manufacturing single crystal, method for manufacturing single crystal, and single crystal
JP2012236733A (en) * 2011-05-11 2012-12-06 Shinshu Univ Crucible for growing crystal, and method for growing crystal

Similar Documents

Publication Publication Date Title
JP2008105896A (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
US20180347071A1 (en) Systems and methods for low-oxygen crystal growth using a double-layer continuous czochralski process
JP3343615B2 (en) Bulk crystal growth method
JP2009149452A (en) Method for growing semiconductor crystal
JP2010260747A (en) Method for producing semiconductor crystal
JP2003286024A (en) Unidirectional solidified silicon ingot and manufacturing method thereof, silicon plate, substrate for solar cell and target base material for sputtering
JP2010064936A (en) Method for producing semiconductor crystal
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
JP2690419B2 (en) Single crystal growing method and apparatus
JP3885245B2 (en) Single crystal pulling method
JP2004099390A (en) Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal
JPH11302094A (en) Production of compound semiconductor single crystal
JP2010030868A (en) Production method of semiconductor single crystal
JP2010030847A (en) Production method of semiconductor single crystal
JP2009190914A (en) Method for producing semiconductor crystal
JP2001080987A (en) Device for producing compound semiconductor crystal and production process using the same
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JPH03193689A (en) Production of compound semiconductor crystal
JPH0867593A (en) Method for growing single crystal
JP2013193942A (en) Single crystal manufacturing apparatus and method for manufacturing single crystal using the same
JP2004026577A (en) Apparatus for growing compound semiconductor single crystal and method of growing compound semiconductor single crystal
JPS60122791A (en) Pulling up method of crystal under liquid sealing
JP5698171B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
JPH09142982A (en) Apparatus for growing single crystal and method for growing single crystal
JPH09175892A (en) Production of single crystal