JP2531875B2 - Method for producing compound semiconductor single crystal - Google Patents

Method for producing compound semiconductor single crystal

Info

Publication number
JP2531875B2
JP2531875B2 JP3254558A JP25455891A JP2531875B2 JP 2531875 B2 JP2531875 B2 JP 2531875B2 JP 3254558 A JP3254558 A JP 3254558A JP 25455891 A JP25455891 A JP 25455891A JP 2531875 B2 JP2531875 B2 JP 2531875B2
Authority
JP
Japan
Prior art keywords
raw material
crystal
material melt
single crystal
melt zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3254558A
Other languages
Japanese (ja)
Other versions
JPH0558772A (en
Inventor
敬司 甲斐荘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP3254558A priority Critical patent/JP2531875B2/en
Publication of JPH0558772A publication Critical patent/JPH0558772A/en
Application granted granted Critical
Publication of JP2531875B2 publication Critical patent/JP2531875B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液体封止カイロポーラ
ス法(以下、LEK法と称する)による化合物半導体単
結晶の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a compound semiconductor single crystal by a liquid-sealed cairoporous method (hereinafter referred to as LEK method).

【0002】[0002]

【従来の技術】一般に、GaP,GaAs,InP,C
dTe等のIII−V族およびII−VI族化合物半導体は、
融点付近で高い蒸気圧を有するために、原料融液上をB
23等からなる液体封止剤層で覆う液体封止法により単
結晶の成長が行なわれている。現在、この液体封止法と
しては、液体封止チョクラルスキー法(LEC法)やL
EK法等が知られている。LEC法は、結晶の成長とと
もに種結晶を引き上げていく方法であり、種付けにより
結晶方位が制御可能で、また高純度結晶を得やすいた
め、工業化されているが、直径制御が困難であって均一
の直胴が得難く、また結晶成長時の融液中の温度勾配が
大きいため熱応力が大きくなり転位密度が多いという欠
点を有している。
2. Description of the Related Art Generally, GaP, GaAs, InP, C
III-V and II-VI group compound semiconductors such as dTe are
Because of the high vapor pressure near the melting point, B
A single crystal is grown by a liquid sealing method in which it is covered with a liquid sealing agent layer made of 2 O 3 or the like. Currently, this liquid sealing method includes liquid sealing Czochralski method (LEC method) and L method.
The EK method and the like are known. The LEC method is a method in which the seed crystal is pulled up as the crystal grows. Since the crystal orientation can be controlled by seeding and a high-purity crystal can be easily obtained, it is industrialized, but the diameter control is difficult and uniform. It is difficult to obtain a straight body, and since the temperature gradient in the melt during crystal growth is large, the thermal stress is large and the dislocation density is large.

【0003】これに対し、LEK法は、種結晶を封止剤
で覆われた原料融液に接触させて回転させながら結晶の
引上げを行わず耐火性るつぼ中で結晶成長を行なう方法
であり、成長結晶の直径はるつぼ内径に依存する。その
ため、直径制御が容易であるとともに、結晶成長時の融
液中温度勾配が数℃/cmであってLEC法に比して1桁
小さいため、熱応力が小さく、転位密度が少ないという
利点を有している。
On the other hand, the LEK method is a method in which a seed crystal is brought into contact with a raw material melt covered with a sealant and rotated while the crystal is not pulled up, and crystal growth is performed in a refractory crucible. The diameter of the grown crystal depends on the inner diameter of the crucible. Therefore, it is easy to control the diameter, and the temperature gradient in the melt during crystal growth is several degrees centigrade / cm, which is an order of magnitude smaller than that of the LEC method. Therefore, thermal stress is low and dislocation density is low. Have

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
一般的なLEK法は、LEC法と同様にるつぼ内の原料
を全て溶融させてから結晶成長を行なうようにしてい
た。そのため、原料融液内に対流が生じ、温度のゆらぎ
が大きくなって多結晶や双晶が発生し易いという問題点
を有していることが分かった。本発明は、上記のような
問題点に鑑みてなされたもので、LEK法による化合物
半導体単結晶の製造において、多結晶や双晶の発生を防
止し、単結晶化率を向上させることができるような化合
物半導体単結晶の製造方法を提供することを目的とする
ものである。
However, in the conventional general LEK method, like the LEC method, all the raw materials in the crucible are melted before crystal growth. Therefore, it has been found that there is a problem that convection occurs in the raw material melt, temperature fluctuations increase, and polycrystals and twins are likely to occur. The present invention has been made in view of the above problems, and in the production of a compound semiconductor single crystal by the LEK method, it is possible to prevent the generation of polycrystals or twins and improve the single crystallization rate. It is an object of the present invention to provide a method for producing such a compound semiconductor single crystal.

【0005】なお、本発明方法に類似する技術として、
LEK法において原料融液の一部を溶融させた状態で結
晶成長を開始し、結晶の成長に伴って原料の融液帯域を
下方へ移動させるようにした発明が提案されている(特
開平2−243585号)。しかしながら、この先願発
明は、不純物の偏析による結晶内不純物濃度の均一化を
目的としたものであり、融液内の温度ゆらぎによる多結
晶や双晶の発生防止を目的とする本発明とは本質的に異
なっている。
As a technique similar to the method of the present invention,
In the LEK method, an invention has been proposed in which crystal growth is started in a state in which a part of the raw material melt is melted, and the melt zone of the raw material is moved downward as the crystal grows (Japanese Patent Application Laid-Open No. HEI 2). -243585). However, the invention of this prior application is aimed at homogenizing the impurity concentration in the crystal due to segregation of impurities, and is not essential to the present invention aimed at preventing the generation of polycrystals or twins due to temperature fluctuations in the melt. Are different.

【0006】[0006]

【課題を解決するための手段】本発明は上記目的を達成
するため、高圧容器内に配置した耐火性るつぼ中の原料
融液上を液体封止剤層で覆い、原料融液に種結晶を浸漬
して単結晶の成長を行なう化合物半導体単結晶の製造方
法において、原料の一部のみ溶融させてなる原料融液帯
を形成し、この原料融液帯の厚みが40mm以下となるよ
うに温度を制御しながら、原料融液帯を液体封止剤層と
の界面側から下方へ向かって徐々に移動させて単結晶の
成長を行なうようにしたものである。
In order to achieve the above object, the present invention covers a raw material melt in a refractory crucible placed in a high-pressure vessel with a liquid sealant layer to form a seed crystal in the raw material melt. In a method for producing a compound semiconductor single crystal in which a single crystal is grown by immersion, a raw material melt zone is formed by melting only a part of the raw material, and the temperature is adjusted so that the thickness of the raw material melt zone is 40 mm or less. While controlling the above, the raw material melt zone is gradually moved downward from the interface side with the liquid sealant layer to grow a single crystal.

【0007】[0007]

【作用】上記した手段によれば、原料融液帯の厚みが4
0mm以下となるように温度を制御しているため、原料融
液内の対流を小さくして、温度ゆらぎを±1.0℃以下
に抑えることができ、これによって単結晶化率を向上さ
せるという上記目的を達成することができる。また、原
料融液帯の移動速度を制御することにより結晶の成長速
度を制御することができる。さらに、結晶成長中、上記
原料融液帯の厚みが20mm以下となるように温度を制御
することにより、温度ゆらぎを±0.5℃以下に抑える
ことができ、これによって単結晶化率をさらに向上させ
ることができる。
According to the above means, the thickness of the raw material melt zone is 4
Since the temperature is controlled to be 0 mm or less, the convection in the raw material melt can be reduced and the temperature fluctuation can be suppressed to ± 1.0 ° C. or less, which improves the single crystallization rate. The above object can be achieved. Also, the crystal growth rate can be controlled by controlling the moving speed of the raw material melt zone. Furthermore, by controlling the temperature during the crystal growth so that the thickness of the raw material melt zone is 20 mm or less, the temperature fluctuation can be suppressed to ± 0.5 ° C. or less, which further increases the single crystallization rate. Can be improved.

【0008】[0008]

【実施例】図1には、本発明方法の実施に使用される結
晶成長装置の一例が示されている。すなわち、この結晶
成長装置は、密閉型の高圧容器1内に円筒状のヒータ2
a,2bが配設されており、このヒータ2a,2bの中
央には、耐火性のるつぼ3が配置されている。また、る
つぼ3は、その下端に固着された支持軸4により回転可
能に支持されている。そして、このるつぼ3中には、G
aAs等の原料5が入れられており、原料5の上にはB
23等の封止剤6が載せられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of a crystal growth apparatus used for carrying out the method of the present invention. That is, this crystal growth apparatus is configured such that a cylindrical heater 2 is provided in a closed type high pressure vessel 1.
a and 2b are provided, and a refractory crucible 3 is provided at the center of the heaters 2a and 2b. The crucible 3 is rotatably supported by a support shaft 4 fixed to the lower end of the crucible 3. And in this crucible 3, G
A raw material 5 such as aAs is contained, and B is placed on the raw material 5.
A sealant 6 such as 2 O 3 is placed.

【0009】一方、るつぼ3の上方からは、高圧容器1
内に結晶引上げ軸7が上下動かつ回転自在に垂下されて
おり、この結晶引上げ軸7によって種結晶を保持し、る
つぼ3中の原料融液の表面に接触させることができるよ
うになっている。また、高圧容器1の側壁上部には、高
圧の不活性ガスを導入するためのガス導入管8が接続さ
れており、高圧容器1内部の圧力を所定圧力とすること
ができるようになっている。さらに、この実施例の結晶
成長装置は、ヒータ2bが上下移動可能に構成されてい
る。
On the other hand, from the upper side of the crucible 3, the high-pressure container 1
A crystal pulling shaft 7 is vertically rotatably and rotatably hung inside the crystal pulling shaft 7, and the crystal pulling shaft 7 can hold a seed crystal and bring it into contact with the surface of the raw material melt in the crucible 3. . Further, a gas introduction pipe 8 for introducing a high-pressure inert gas is connected to the upper side wall of the high-pressure container 1 so that the pressure inside the high-pressure container 1 can be set to a predetermined pressure. . Furthermore, in the crystal growth apparatus of this embodiment, the heater 2b is vertically movable.

【0010】まず、InP多結晶1.1kgと、融解した
ときに厚み10mmとなる量のB23を、内径60mmの石
英製のるつぼ3に入れ、図1に示すようにヒータ2bが
ヒータ2aから離れた下方に位置させた状態でヒータ2
aを加熱してB23を融解させた。それから、ヒータ2
bを加熱してInP多結晶を融解させて原料融液5とし
た後、図2に示すようにヒータ2bを上方へ移動させて
融液とるつぼとのすきまがなくなるようにするととも
に、原料InPの下部を固化させた。このときガス導入
管8から例えばアルゴンガスのような不活性ガスを導入
し、高圧容器1内を50気圧のアルゴンガス雰囲気とし
た。
First, 1.1 kg of InP polycrystal and B 2 O 3 having a thickness of 10 mm when melted are put into a crucible 3 made of quartz having an inner diameter of 60 mm, and a heater 2 b is used as a heater as shown in FIG. Heater 2 in a state in which it is positioned below and away from 2a.
a was heated to melt B 2 O 3 . Then heater 2
After heating b to melt the InP polycrystal to form the raw material melt 5, the heater 2b is moved upward as shown in FIG. 2 to eliminate the gap between the melt and the crucible and the raw material InP. Solidified the bottom of. At this time, an inert gas such as argon gas was introduced from the gas introduction pipe 8 to make the inside of the high-pressure vessel 1 an argon gas atmosphere of 50 atm.

【0011】次に、図3に示すように、結晶引上げ軸7
を下げて種結晶を原料融液5’の表面に種付けし、充分
になじませてからるつぼ3と結晶引上げ軸7を回転させ
ながらヒータ2bを5mm/hrの速度で下方へ移動させ
て、図4に示すように原料融液帯5’をその厚みをほぼ
一定に保ったまま徐々に下方へ移動させながら結晶の成
長を行なった。この際、結晶引上げ軸7は6rpmで回転
させ、るつぼ3は3rpmで回転させた。上記結晶成長
中、原料融液帯5’の厚みは40mmでほぼ一定であり、
融液内温度ゆらぎは約±1℃であった。原料融液がるつ
ぼの底まで固化してから結晶の成長を終了し、結晶9を
るつぼ3より引上げ、高圧容器1内で5℃/hrの割合で
約1000℃まで徐冷を行なった後、さらに500℃/
hrの割合で室温まで冷却した。このようにして得られた
結晶を取り出して調べたところ、結晶はすべて単結晶で
あった。
Next, as shown in FIG. 3, the crystal pulling shaft 7
The seed crystal on the surface of the raw material melt 5 ′ by lowering the temperature of the raw material melt 5 ′, and after sufficiently blending it, the heater 2b is moved downward at a speed of 5 mm / hr while rotating the crucible 3 and the crystal pulling shaft 7. As shown in FIG. 4, crystals were grown while gradually moving the raw material melt zone 5 ′ downward while keeping its thickness substantially constant. At this time, the crystal pulling shaft 7 was rotated at 6 rpm, and the crucible 3 was rotated at 3 rpm. During the above crystal growth, the thickness of the raw material melt zone 5'is almost constant at 40 mm,
The temperature fluctuation in the melt was about ± 1 ° C. After the raw material melt has solidified to the bottom of the crucible, the growth of crystals is completed, the crystals 9 are pulled up from the crucible 3, and slowly cooled to about 1000 ° C. in the high-pressure vessel 1 at a rate of 5 ° C./hr. 500 ° C /
It was cooled to room temperature at a rate of hr. When the crystals thus obtained were taken out and examined, all the crystals were single crystals.

【0012】上記と同様の方法により、結晶成長中、原
料融液帯5’の厚みがそれぞれ70mm,60mm,50m
m,35mm,30mm,20mm,15mm,10mm一定とな
るように制御しながら原料融液帯5’を下方へ移動させ
て結晶の成長を行なう実験を繰り返した。それぞれの結
晶成長中における温度ゆらぎを測定したところ、図5に
示すような結果が得られた。
By the same method as above, during the crystal growth, the thickness of the raw material melt zone 5'is 70 mm, 60 mm and 50 m, respectively.
The experiment of repeating the crystal growth by moving the raw material melt zone 5 ′ downward while controlling the m, 35 mm, 30 mm, 20 mm, 15 mm and 10 mm to be constant was repeated. When the temperature fluctuation during the crystal growth was measured, the results shown in FIG. 5 were obtained.

【0013】図5より、温度ゆらぎを±1.0℃以下に
抑えるには、結晶成長中、上記原料融液帯の厚みが40
mm以下となるように温度を制御すればよいことが分か
る。また、温度ゆらぎを±0.5℃以下に抑えるには、
結晶成長中、上記原料融液帯の厚みが20mm以下となる
ように温度を制御すればよいことが分かる。ちなみに、
温度ゆらぎをを±1.0℃以下に抑えると単結晶化率は
60%以上、温度ゆらぎをを±0.5℃以下に抑えると
単結晶化率は90%以上になる。
From FIG. 5, in order to suppress the temperature fluctuation to ± 1.0 ° C. or less, the thickness of the raw material melt zone is 40 during the crystal growth.
It can be seen that the temperature should be controlled so that it is less than mm. In addition, in order to suppress the temperature fluctuation within ± 0.5 ° C,
It is understood that the temperature may be controlled so that the thickness of the raw material melt zone becomes 20 mm or less during the crystal growth. By the way,
When the temperature fluctuation is suppressed to ± 1.0 ° C. or less, the single crystallization rate becomes 60% or more, and when the temperature fluctuation is suppressed to ± 0.5 ° C. or less, the single crystallization rate becomes 90% or more.

【0014】なお、上記実施例では、結晶成長中、原料
融液帯の厚みを一定に保つようにヒータを制御したが、
原料融液帯の厚みが40mm以下であれば、厚みは変化し
ても構わない。また、結晶成長に伴う体積増加に合わせ
て結晶引上げ軸を少し引き上げるようにすると結晶内応
力を緩和させることができる。さらに、上記実施例で
は、ヒータ2bを移動させて原料融液帯を移動させるよ
うにしているが、ヒータを多分割型として給電対象を替
えることによってヒータを移動させずに原料融液帯のみ
を移動させることも可能である。上記実施例では、In
P単結晶の成長を例にとって説明したが、本発明はそれ
に限定されず、GaAs単結晶その他LEK法による単
結晶の成長一般に適用することができる。
In the above embodiment, the heater was controlled so as to keep the thickness of the raw material melt zone constant during crystal growth.
The thickness may vary as long as the thickness of the raw material melt zone is 40 mm or less. Further, if the crystal pulling axis is slightly pulled up in accordance with the increase in volume accompanying the crystal growth, the stress inside the crystal can be relaxed. Further, in the above-mentioned embodiment, the heater 2b is moved to move the raw material melt zone, but the heater is multi-divided and the power supply target is changed so that the heater is not moved and only the raw material melt zone is moved. It can also be moved. In the above embodiment, In
Although the growth of P single crystal has been described as an example, the present invention is not limited to this, and can be applied to general growth of GaAs single crystal and other single crystals by the LEK method.

【0015】[0015]

【発明の効果】以上のように、本発明の化合物半導体単
結晶の製造方法によれば、高圧容器内に配置した耐火性
るつぼ中の原料融液上を液体封止剤層で覆い、原料融液
に種結晶を浸漬して単結晶の成長を行なう化合物半導体
単結晶の製造方法において、原料の一部のみ溶融させて
なる原料融液帯を形成し、この原料融液帯の厚みが40
mm以下となるように温度を制御しながら、原料融液帯を
液体封止剤層との界面側から下方へ向かって徐々に移動
させて単結晶の成長を行なうようにしたので、原料融液
内の対流を小さくして、温度ゆらぎを±1.0℃以下に
抑えることができ、これによって単結晶化率を向上させ
ることができるという効果がある。また、原料融液帯の
移動速度を制御することにより結晶の成長速度を制御す
ることができ、これによって転位密度等を減少させ結晶
の高品質化を図ることができる。さらに、結晶成長中、
上記原料融液帯の厚みが20mm以下となるように温度を
制御することにより、温度ゆらぎを±0.5℃以下に抑
えることができ、これによって単結晶化率をさらに向上
させることができる。
As described above, according to the method for producing a compound semiconductor single crystal of the present invention, the raw material melt in the refractory crucible placed in the high-pressure vessel is covered with the liquid sealant layer to melt the raw material. In a method for producing a compound semiconductor single crystal in which a seed crystal is immersed in a liquid to grow a single crystal, a raw material melt zone is formed by melting only a part of the raw material, and the raw material melt zone has a thickness of 40.
While the temperature was controlled so that the temperature became less than or equal to mm, the raw material melt zone was gradually moved downward from the interface side with the liquid sealant layer to grow the single crystal. The internal convection can be reduced, and the temperature fluctuation can be suppressed to ± 1.0 ° C. or less, which has the effect of improving the single crystallization rate. In addition, the growth rate of the crystal can be controlled by controlling the moving speed of the raw material melt zone, whereby the dislocation density and the like can be reduced and the quality of the crystal can be improved. Furthermore, during crystal growth,
By controlling the temperature so that the thickness of the raw material melt zone is 20 mm or less, the temperature fluctuation can be suppressed to ± 0.5 ° C. or less, which can further improve the single crystallization rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の実施に使用される結晶成長装置の
一例を示す正面断面図である。
FIG. 1 is a front sectional view showing an example of a crystal growth apparatus used for carrying out the method of the present invention.

【図2】本発明方法による結晶成長開始(種付け)直前
の結晶成長装置の状態を示す正面断面図である。
FIG. 2 is a front sectional view showing the state of the crystal growth apparatus immediately before the start of crystal growth (seeding) according to the method of the present invention.

【図3】本発明方法による結晶成長開始時の結晶成長装
置の状態を示す正面断面図である。
FIG. 3 is a front sectional view showing the state of the crystal growth apparatus at the start of crystal growth according to the method of the present invention.

【図4】本発明方法による結晶成長の結晶成長装置の
状態を示す正面断面図である。
FIG. 4 is a front sectional view showing a state of a crystal growth apparatus during crystal growth according to the method of the present invention.

【図5】本発明方法によりInP単結晶の成長を行なっ
た際の原料融液帯の厚みと温度ゆらぎとの関係を示すグ
ラフである。
FIG. 5 is a graph showing the relationship between the thickness of the raw material melt zone and the temperature fluctuation when growing an InP single crystal by the method of the present invention.

【符号の説明】[Explanation of symbols]

1 高圧容器 3 るつぼ 5’ 原料融液帯 6 液体封止剤 7 結晶引上げ軸 9 結晶 1 High-pressure container 3 Crucible 5'Raw material melt zone 6 Liquid sealant 7 Crystal pulling shaft 9 Crystal

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高圧容器内に配置した耐火性るつぼ中の
原料融液上を液体封止剤層で覆い、原料融液に種結晶を
浸漬して単結晶の成長を行なう化合物半導体単結晶の製
造方法において、原料の一部のみ溶融してなる原料融液
帯を形成し、この原料融液帯の厚みが40mm以下となる
ように温度を制御しながら、原料融液帯を液体封止剤層
との界面側から下方へ向かって徐々に移動させて単結晶
の成長を行なうようにしたことを特徴とする化合物半導
体単結晶の製造方法。
1. A compound semiconductor single crystal in which a raw material melt in a refractory crucible placed in a high-pressure vessel is covered with a liquid sealant layer and a seed crystal is immersed in the raw material melt to grow a single crystal. In the manufacturing method, a raw material melt zone formed by melting only a part of the raw material is formed, and the raw material melt zone is controlled by controlling the temperature so that the thickness of the raw material melt zone is 40 mm or less. A method for producing a compound semiconductor single crystal, characterized in that the single crystal is grown by gradually moving downward from the interface side with the layer.
JP3254558A 1991-09-06 1991-09-06 Method for producing compound semiconductor single crystal Expired - Lifetime JP2531875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3254558A JP2531875B2 (en) 1991-09-06 1991-09-06 Method for producing compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3254558A JP2531875B2 (en) 1991-09-06 1991-09-06 Method for producing compound semiconductor single crystal

Publications (2)

Publication Number Publication Date
JPH0558772A JPH0558772A (en) 1993-03-09
JP2531875B2 true JP2531875B2 (en) 1996-09-04

Family

ID=17266718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3254558A Expired - Lifetime JP2531875B2 (en) 1991-09-06 1991-09-06 Method for producing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JP2531875B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3648703B2 (en) * 2000-01-07 2005-05-18 株式会社日鉱マテリアルズ Method for producing compound semiconductor single crystal
CN103757590B (en) * 2013-12-31 2016-04-20 深圳市华星光电技术有限公司 A kind of coating equipment Crucible equipment

Also Published As

Publication number Publication date
JPH0558772A (en) 1993-03-09

Similar Documents

Publication Publication Date Title
JP2009149452A (en) Method for growing semiconductor crystal
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JP3750440B2 (en) Single crystal pulling method
EP0476389A2 (en) Method of growing single crystal of compound semiconductors
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JP3885245B2 (en) Single crystal pulling method
JP2690419B2 (en) Single crystal growing method and apparatus
JPH04305091A (en) Method and device for pulling up single crystal
JP2002234792A (en) Method of producing single crystal
JP2690420B2 (en) Single crystal manufacturing equipment
JP2010030847A (en) Production method of semiconductor single crystal
JPH04321590A (en) Growing method of single crystal
JP3938674B2 (en) Method for producing compound semiconductor single crystal
JP2781856B2 (en) Method for manufacturing compound semiconductor single crystal
JPS63295498A (en) Production of single-crystal of group iii-v compound semiconductor
JPH0341432B2 (en)
JPH08333189A (en) Apparatus for pulling up crystal
JPH05319973A (en) Single crystal production unit
JPH07206589A (en) Method for producing compound semiconductor single crystal
JPH09175892A (en) Production of single crystal
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
JPH09278582A (en) Production of single crystal and apparatus therefor
JPH06219885A (en) Method for growing compound semiconductor crystal
JPH0867593A (en) Method for growing single crystal
JPH0952789A (en) Production of single crystal