JPH04321590A - Growing method of single crystal - Google Patents
Growing method of single crystalInfo
- Publication number
- JPH04321590A JPH04321590A JP9237191A JP9237191A JPH04321590A JP H04321590 A JPH04321590 A JP H04321590A JP 9237191 A JP9237191 A JP 9237191A JP 9237191 A JP9237191 A JP 9237191A JP H04321590 A JPH04321590 A JP H04321590A
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- single crystal
- seed crystal
- raw material
- material melt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 80
- 238000000034 method Methods 0.000 title claims abstract description 24
- 239000002994 raw material Substances 0.000 claims abstract description 21
- 230000005499 meniscus Effects 0.000 abstract description 14
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 239000000155 melt Substances 0.000 description 7
- 230000007547 defect Effects 0.000 description 5
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000000565 sealant Substances 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 238000007630 basic procedure Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000000384 rearing effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】この発明は、引上げ法(チョクラ
ルスキー法)により、半導体等の単結晶を育成する単結
晶育成方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a single crystal such as a semiconductor by a pulling method (Czochralski method).
【0002】0002
【従来の技術】引上げ法では、たとえば図4に示すよう
な装置を用いて単結晶を育成していく。図4を参照して
、この装置において、原料融液37を収容するためのる
つぼ34が、回転昇降可能な下軸38の上端に取付けら
れたサセプタ35によって支持され、設けられている。
また、サセプタ35の周囲にはヒータ39が設けられて
いる。るつぼ34の中心上方には、回転昇降可能な上軸
31が設けられ、上軸31の下端には種結晶32が取付
けられている。このような装置において原料融液から単
結晶を引上げていくには、るつぼ34内に原料を収容し
てヒータ39で加熱溶融した後、上軸31を下降して種
結晶32を融液37に十分馴染ませる。一方、原料融液
37の表面が単結晶の融点となるように、ヒータ39に
よって図5に示すような温度勾配を設定する。そして、
ゆっくりと上軸31を回転させながら上昇させると、図
6に示すように種結晶32に結晶方位が揃った単結晶3
0が引上げられていく。2. Description of the Related Art In the pulling method, a single crystal is grown using, for example, an apparatus as shown in FIG. Referring to FIG. 4, in this apparatus, a crucible 34 for accommodating a raw material melt 37 is supported by a susceptor 35 attached to the upper end of a lower shaft 38 that can be rotated and lowered. Further, a heater 39 is provided around the susceptor 35. Above the center of the crucible 34 is provided an upper shaft 31 that can rotate and move up and down, and a seed crystal 32 is attached to the lower end of the upper shaft 31. In order to pull a single crystal from a raw material melt in such an apparatus, the raw material is placed in a crucible 34 and heated and melted by a heater 39, and then the upper shaft 31 is lowered and a seed crystal 32 is added to the melt 37. Let it become familiar enough. On the other hand, a temperature gradient as shown in FIG. 5 is set by the heater 39 so that the surface of the raw material melt 37 has the melting point of a single crystal. and,
When the upper shaft 31 is slowly rotated and raised, the single crystal 3 with the crystal orientation aligned with the seed crystal 32 as shown in FIG.
0 is raised.
【0003】このような引上げ法において、従来、種結
晶は図7に示すように角柱の形状で、その断面が正方形
であるものが多かった。Conventionally, in such a pulling method, the seed crystal has often had a prismatic shape with a square cross section as shown in FIG.
【0004】0004
【発明が解決しようとする課題】上述したように単結晶
を育成していくに当り、種結晶を原料融液に馴染ませる
とき、融液の表面張力のために図8に示すようなメニス
カス70が融液37と種結晶32の間に形成される。[Problems to be Solved by the Invention] When growing a single crystal as described above, when a seed crystal is blended into a raw material melt, a meniscus 70 as shown in FIG. 8 is formed due to the surface tension of the melt. is formed between the melt 37 and the seed crystal 32.
【0005】このメニスカス70の形状は、単結晶の育
成に影響すると考えられる。たとえば、図8に示す傾斜
角αが大きすぎても(αが60度以上)、小さすぎても
(αが30度以下)、結晶に欠陥が発生しやすくなる。
さて、従来用いられてきた種結晶は角柱形であるため、
図9に示すように、傾斜角は種結晶における外周の位置
によって異なっている。たとえば、種結晶の側面の中心
部は、傾斜角が大きく、中心部から端部へいくにしたが
って傾斜角は小さくなっていく。この中心部(図9の矢
印Aで示す)と端部(図9の矢印Bで示す)とでは、傾
斜角の差が約60度にもなる。このため、形成されるメ
ニスカスの傾斜角を外周の全体に渡って30度〜60度
の範囲内に収めることは不可能であった。このため、単
結晶育成に際して、種結晶の直下から結晶欠陥が発生し
やすかった。[0005] The shape of the meniscus 70 is thought to affect the growth of the single crystal. For example, if the tilt angle α shown in FIG. 8 is too large (α is 60 degrees or more) or too small (α is 30 degrees or less), defects are likely to occur in the crystal. Now, since the seed crystals conventionally used are prismatic,
As shown in FIG. 9, the inclination angle differs depending on the position of the outer periphery of the seed crystal. For example, the inclination angle is large at the center of the side surface of the seed crystal, and becomes smaller as it goes from the center to the end. The difference in inclination angle between the center portion (indicated by arrow A in FIG. 9) and the end portion (indicated by arrow B in FIG. 9) is about 60 degrees. For this reason, it has been impossible to keep the inclination angle of the formed meniscus within the range of 30 degrees to 60 degrees over the entire outer periphery. Therefore, during single crystal growth, crystal defects were likely to occur directly beneath the seed crystal.
【0006】この発明の目的は、このようなメニスカス
の形状を好ましいものとすることによって、結晶育成時
の結晶欠陥が低減されるような単結晶育成方法を提供す
ることにある。An object of the present invention is to provide a method for growing a single crystal in which crystal defects during crystal growth are reduced by making the shape of the meniscus preferable.
【0007】[0007]
【課題を解決するための手段】この発明に従う単結晶育
成方法は、原料融液に種結晶を接触させた後、種結晶を
引上げて単結晶を育成する方法において、種結晶の少な
くとも原料融液に接触させられる部分が略円筒形である
ことを特徴としている。[Means for Solving the Problems] A method for growing a single crystal according to the present invention is a method of bringing a seed crystal into contact with a raw material melt and then pulling the seed crystal to grow a single crystal. It is characterized in that the portion that comes into contact with is approximately cylindrical.
【0008】[0008]
【作用】この発明に従って、種結晶で少なくとも原料融
液に接触させられる部分を略円筒形とすれば、その断面
は略円形であるので、図1に示すように融液と種結晶の
接触状態は、その外周全体に渡ってほぼ等しくなる。し
たがって、種結晶と融液との間に形成されるメニスカス
の傾斜角についても、種結晶の外周においてばらつきは
ほとんどなくなる。このため、傾斜角を30度〜60度
の間に収めることが可能になる。このようにメニスカス
の傾斜角のばらつきをなくすことによって、単結晶の引
上げに際し、種結晶直下での結晶欠陥の発生を抑制する
ことができる。[Operation] According to the present invention, if at least the part of the seed crystal that is brought into contact with the raw material melt is approximately cylindrical, its cross section is approximately circular, so that the state of contact between the melt and the seed crystal is as shown in FIG. are approximately equal over its entire circumference. Therefore, there is almost no variation in the inclination angle of the meniscus formed between the seed crystal and the melt around the outer periphery of the seed crystal. For this reason, it becomes possible to keep the inclination angle between 30 degrees and 60 degrees. By eliminating variations in the inclination angle of the meniscus in this way, it is possible to suppress the occurrence of crystal defects directly under the seed crystal when pulling a single crystal.
【0009】[0009]
【実施例】図2に示す装置を用いて、この発明に従いG
aAsの単結晶を育成した。[Example] Using the apparatus shown in FIG. 2, G
A single crystal of aAs was grown.
【0010】まず、図2に示す装置について以下に説明
する。この装置は、高圧LEC法により単結晶を製造す
る装置である。この装置において、チャンバ1の内部に
は、下軸3により回転可能に支持されたるつぼ5が設け
られる。るつぼ5内には、原料融液7が収容され、原料
融液7の表面は液体封止剤8で覆われる。液体封止剤8
は原料融液7中の高解離圧元素の揮発を防止する。また
、るつぼ5の周囲には、ヒータ16が設けられ、ヒータ
16の周囲には、放熱を防止するための断熱剤17が設
けられる。るつぼ5の中心上方には、結晶を引上げるた
め回転昇降可能な上軸2が設けられ、上軸2の下端には
種結晶10が取付けられる。種結晶10は、図3に示す
ように円筒形状である。また、チャンバ1内は、高圧(
10〜20atm)のN2 ガス20で充満されている
。この装置における単結晶製造のための基本的な手順は
従来の技術で示した通りである。First, the apparatus shown in FIG. 2 will be explained below. This apparatus is an apparatus for producing single crystals using a high-pressure LEC method. In this apparatus, a crucible 5 rotatably supported by a lower shaft 3 is provided inside a chamber 1 . A raw material melt 7 is contained in the crucible 5, and the surface of the raw material melt 7 is covered with a liquid sealant 8. Liquid sealant 8
prevents the high dissociation pressure elements in the raw material melt 7 from volatilizing. Further, a heater 16 is provided around the crucible 5, and a heat insulating agent 17 is provided around the heater 16 to prevent heat radiation. Above the center of the crucible 5 is provided an upper shaft 2 which can be rotated up and down in order to pull up the crystal, and a seed crystal 10 is attached to the lower end of the upper shaft 2. The seed crystal 10 has a cylindrical shape as shown in FIG. In addition, the inside of chamber 1 is under high pressure (
It is filled with N2 gas 20 at a concentration of 10 to 20 atm. The basic procedure for single crystal production in this apparatus is as shown in the prior art.
【0011】以上のように構成された装置において、以
下のとおり単結晶の製造を行なった。Using the apparatus constructed as described above, a single crystal was produced as follows.
【0012】投入原料としては、GaAs多結晶4.0
kgを用いた。るつぼ5は、PBN製で、その内径は6
インチであった。また、円筒形の種結晶10は、その直
径が0.5cmのものを用いた。ヒータでるつぼ内に投
入した原料を加熱溶融した後、上軸2を下降させて種結
晶を融液に十分馴染ませるとともに、融液の温度をヒー
タによって結晶成長温度に調整した。その後、上軸を3
rpm、下軸を5rpmで回転させながら、上軸を速度
6mm/hrで引上げて単結晶を育成していった。As input raw material, GaAs polycrystal 4.0
kg was used. The crucible 5 is made of PBN and has an inner diameter of 6
It was inches. Further, the cylindrical seed crystal 10 having a diameter of 0.5 cm was used. After heating and melting the raw material charged into the crucible using a heater, the upper shaft 2 was lowered to fully adapt the seed crystal to the melt, and the temperature of the melt was adjusted to the crystal growth temperature using the heater. After that, move the upper axis to 3
rpm, and while rotating the lower shaft at 5 rpm, the upper shaft was pulled up at a speed of 6 mm/hr to grow a single crystal.
【0013】上記条件で、単結晶の育成を10回繰返し
て行なった結果、得られた結晶の寸法は、すべて85m
mφ×170mm程度であった。また、結晶育成中のメ
ニスカスの状態についても観察を行なった。その結果、
10回の育成のすべてについて、メニスカスの傾斜角は
45±10度の範囲にあった。したがって、従来の45
±30度と比較して、明らかに改善が見られた。また、
得られた結晶の単結晶化率は、上記実施例では80%で
あった。一方、上記装置において、円筒形状の種結晶の
代わりに、断面が正方形である角柱形状の種結晶を用い
ると、単結晶化率は40%であった。このように、この
発明に従えば、結晶の育成に際し、従来よりも高い単結
晶化率を得られることが明らかとなった。[0013] As a result of repeating single crystal growth 10 times under the above conditions, the dimensions of all the obtained crystals were 85 m.
It was approximately mφ×170 mm. We also observed the state of the meniscus during crystal growth. the result,
For all 10 rearings, the meniscus tilt angle was in the range of 45±10 degrees. Therefore, the conventional 45
A clear improvement was seen compared to ±30 degrees. Also,
The single crystallization rate of the obtained crystal was 80% in the above example. On the other hand, in the above apparatus, when a prismatic seed crystal with a square cross section was used instead of a cylindrical seed crystal, the single crystallization rate was 40%. As described above, it has been revealed that according to the present invention, a higher single crystallization rate than before can be obtained during crystal growth.
【0014】なお、この発明は上記実施例で示した液体
封止チョクラルスキー法に限定されるものではなく、例
えば、蒸気圧制御チョクラルスキー法またはその他の種
結晶を用いるどのような引上げ法にも適用することがで
きる。It should be noted that the present invention is not limited to the liquid-sealed Czochralski method shown in the above embodiments, but can be applied to, for example, the vapor pressure controlled Czochralski method or any other pulling method using seed crystals. It can also be applied to
【0015】[0015]
【発明の効果】以上説明したように、この発明に従えば
、原料融液と種結晶の間に形成されるメニスカスの状態
を改善することによって、結晶育成開始時における結晶
欠陥の発生を抑制することができる。したがって、種結
晶を用いる引上げ法にこの発明を適用すれば、単結晶製
造において単結晶化率を向上させることができる。[Effects of the Invention] As explained above, according to the present invention, the occurrence of crystal defects at the start of crystal growth can be suppressed by improving the state of the meniscus formed between the raw material melt and the seed crystal. be able to. Therefore, if the present invention is applied to a pulling method using a seed crystal, the single crystallization rate can be improved in single crystal production.
【図1】この発明に従って、単結晶を引上げるに際し、
原料融液と種結晶との間に形成されるメニスカスの状態
を模式的に示す斜視図である。FIG. 1: When pulling a single crystal according to the present invention,
FIG. 2 is a perspective view schematically showing the state of a meniscus formed between a raw material melt and a seed crystal.
【図2】この発明を実施するための装置の一例を示す断
面図である。FIG. 2 is a sectional view showing an example of an apparatus for carrying out the invention.
【図3】図2の装置において、種結晶の形状を示す斜視
図である。FIG. 3 is a perspective view showing the shape of a seed crystal in the apparatus of FIG. 2;
【図4】引上げ法に用いられる装置の一例を示す断面図
である。FIG. 4 is a sectional view showing an example of a device used in the pulling method.
【図5】引上げ法において、単結晶製造時に設定される
温度勾配の一例を示す図である。FIG. 5 is a diagram showing an example of a temperature gradient set during single crystal production in a pulling method.
【図6】引上げ法において、結晶が引上げられていく状
態を示す断面図である。FIG. 6 is a cross-sectional view showing a state in which a crystal is pulled up in a pulling method.
【図7】従来の引上げ法において用いられていた種結晶
の形状を示す図である。FIG. 7 is a diagram showing the shape of a seed crystal used in a conventional pulling method.
【図8】引上げ法において、原料融液と種結晶の間に形
成されるメニスカスの状態を説明する断面図である。FIG. 8 is a cross-sectional view illustrating the state of a meniscus formed between a raw material melt and a seed crystal in a pulling method.
【図9】従来の引上げ法において形成されるメニスカス
の状態を説明する斜視図である。FIG. 9 is a perspective view illustrating the state of a meniscus formed in a conventional pulling method.
【符号の説明】 2 上軸 7 原料融液 10 種結晶[Explanation of symbols] 2 Upper axis 7 Raw material melt 10 Seed crystal
Claims (1)
記種結晶を引上げて単結晶を育成する単結晶育成方法に
おいて、前記種結晶の少なくとも前記原料融液に接触さ
せられる部分が略円筒形であることを特徴とする単結晶
育成方法。1. A method for growing a single crystal in which a single crystal is grown by bringing a seed crystal into contact with a raw material melt and then pulling the seed crystal, wherein at least a portion of the seed crystal that is brought into contact with the raw material melt is approximately A method for growing a single crystal characterized by its cylindrical shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9237191A JPH04321590A (en) | 1991-04-23 | 1991-04-23 | Growing method of single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9237191A JPH04321590A (en) | 1991-04-23 | 1991-04-23 | Growing method of single crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04321590A true JPH04321590A (en) | 1992-11-11 |
Family
ID=14052566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9237191A Withdrawn JPH04321590A (en) | 1991-04-23 | 1991-04-23 | Growing method of single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04321590A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0891984A (en) * | 1994-09-29 | 1996-04-09 | Natl Res Inst For Metals | Production of single crystal |
WO2012127703A1 (en) | 2011-03-23 | 2012-09-27 | トヨタ自動車株式会社 | Method for producing sic single crystals and production device |
US10450671B2 (en) * | 2013-09-27 | 2019-10-22 | Toyota Jidosha Kabushiki Kaisha | SiC single crystal and method for producing same |
-
1991
- 1991-04-23 JP JP9237191A patent/JPH04321590A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0891984A (en) * | 1994-09-29 | 1996-04-09 | Natl Res Inst For Metals | Production of single crystal |
WO2012127703A1 (en) | 2011-03-23 | 2012-09-27 | トヨタ自動車株式会社 | Method for producing sic single crystals and production device |
US9631295B2 (en) | 2011-03-23 | 2017-04-25 | Toyota Jidosha Kabushiki Kaisha | Method for producing SiC single crystals by control of an angle formed by the meniscus and the side face of the seed crystal and production device for the method |
US10450671B2 (en) * | 2013-09-27 | 2019-10-22 | Toyota Jidosha Kabushiki Kaisha | SiC single crystal and method for producing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4040895A (en) | Control of oxygen in silicon crystals | |
JP2686460B2 (en) | Single crystal manufacturing method | |
JP3841863B2 (en) | Method of pulling silicon single crystal | |
JP2017222551A (en) | Production method of silicon single crystal | |
JPH10167892A (en) | Method for pulling silicon single crystal | |
JP4013324B2 (en) | Single crystal growth method | |
JPH04321590A (en) | Growing method of single crystal | |
JP4801869B2 (en) | Single crystal growth method | |
JP2531875B2 (en) | Method for producing compound semiconductor single crystal | |
JP3885245B2 (en) | Single crystal pulling method | |
JP2733898B2 (en) | Method for manufacturing compound semiconductor single crystal | |
US5840115A (en) | Single crystal growth method | |
JP2690419B2 (en) | Single crystal growing method and apparatus | |
JPH04305091A (en) | Method and device for pulling up single crystal | |
JP3900827B2 (en) | Quartz crucible for single crystal pulling, single crystal pulling apparatus and single crystal pulling method | |
JPH0446099A (en) | Pulling up device for silicon single crystal body | |
JP3085072B2 (en) | Single crystal pulling device | |
JP2781856B2 (en) | Method for manufacturing compound semiconductor single crystal | |
JP2681114B2 (en) | Single crystal manufacturing method | |
KR100581045B1 (en) | Method for porducing silicon single crystal | |
JPH04198086A (en) | Process for growing single crystal | |
JP4007193B2 (en) | Method for producing silicon single crystal | |
JPH11349398A (en) | Production of silicon single crystal | |
JP2700145B2 (en) | Method for manufacturing compound semiconductor single crystal | |
JPS62207799A (en) | Method and device for producing iii-v compound semiconductor single crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19980711 |