JPH11349398A - Production of silicon single crystal - Google Patents

Production of silicon single crystal

Info

Publication number
JPH11349398A
JPH11349398A JP5742599A JP5742599A JPH11349398A JP H11349398 A JPH11349398 A JP H11349398A JP 5742599 A JP5742599 A JP 5742599A JP 5742599 A JP5742599 A JP 5742599A JP H11349398 A JPH11349398 A JP H11349398A
Authority
JP
Japan
Prior art keywords
necking
single crystal
oxygen concentration
dislocation
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5742599A
Other languages
Japanese (ja)
Other versions
JP3473477B2 (en
Inventor
Eiichi Iino
栄一 飯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP05742599A priority Critical patent/JP3473477B2/en
Publication of JPH11349398A publication Critical patent/JPH11349398A/en
Application granted granted Critical
Publication of JP3473477B2 publication Critical patent/JP3473477B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the proliferation of dislocation and improve the success ratio of the production of dislocation free crystal and to improve the productivity and yield of a single crystal rod having large diameter and heavy weight by adjusting the interstitial oxygen concentration taken into the crystal during necking operation at or above a specific level. SOLUTION: The proliferation of dislocation can be controlled and a success ratio of the production of dislocation free crystal can be maintained to >=95% by keeping the oxygen concentration to >=1 ppma (JEIDA) during the necking procedure. The effect is especially remarkable at the construction diameter of >=5 mm. The oxygen concentration is higher the better and a dislocation free crystal can be produced even in the case of forming a thick constricted part having a diameter of >=5 mm when the oxygen concentration is >=5 ppma. The increase in the interstitial oxygen concentration in the constricting part and a constricted part during the necking operation can be achieved e.g. by inserting a rod, plate, block, etc., of an oxygen-source substance (e.g. quartz) in molten silicon near the center of the crucible during the seed constriction process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、チョクラルスキー
法(Czochralski Method、CZ法)により種結晶を使用
してネッキングを行いシリコン単結晶棒を成長させるシ
リコン単結晶の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon single crystal in which necking is performed using a seed crystal by a Czochralski method (CZ method) to grow a silicon single crystal rod.

【0002】[0002]

【従来の技術】従来、CZ法によるシリコン単結晶の製
造においては、単結晶シリコンを種結晶として用い、こ
れをシリコン融液に接触させた後、回転させながらゆっ
くりと引上げることで単結晶棒を成長させている。この
際、種結晶をシリコン融液に接触させた後に、熱衝撃に
より種結晶に高密度で発生するスリップ転位から伝播に
より生ずる転位を消滅させるために、種結晶を絞り込む
テーパ状の絞り込み部とそれに続く直径を3mm程度に
一旦細くした絞り部(ネック)を形成するいわゆる種絞
り(ネッキング)を行い、次いで、所望の口径になるま
で結晶を太らせて、無転位のシリコン単結晶を引上げて
いる。このような、種絞りはDash Necking
法として広く知られており、CZ法でシリコン単結晶棒
を引上げる場合の常識とされている。
2. Description of the Related Art Conventionally, in the production of a silicon single crystal by the CZ method, a single crystal silicon is used as a seed crystal, which is brought into contact with a silicon melt and then slowly pulled up while being rotated to thereby obtain a single crystal rod. Growing. At this time, after contacting the seed crystal with the silicon melt, in order to eliminate dislocations caused by propagation from slip dislocations generated at high density in the seed crystal due to thermal shock, a tapered narrowing portion for narrowing the seed crystal and Next, a so-called seed drawing (necking) for forming a drawn portion (neck) whose diameter is once reduced to about 3 mm is performed, and then the crystal is thickened to a desired diameter to pull up a dislocation-free silicon single crystal. . Such seed squeezing is performed by Dash Necking.
It is widely known as a method, and is a common sense when pulling a silicon single crystal rod by the CZ method.

【0003】すなわち、従来用いられてきた種結晶の形
状は、例えば直径あるいは一辺約8〜20mmの円柱状
や角柱状の単結晶に種ホルダーにセットするための切り
欠き部を設けたもので、最初にシリコン融液に接触する
下方の先端形状は、平坦面となっている。そして、高重
量の単結晶棒の重量に耐えて安全に引上げるためには、
種結晶の太さは、素材の強度からして上記以下に細くす
ることは難しい。
That is, the shape of a seed crystal that has been conventionally used is, for example, a cylindrical or prismatic single crystal having a diameter or a side of about 8 to 20 mm provided with a cutout for setting the seed crystal in a seed holder. The shape of the lower end that first contacts the silicon melt is a flat surface. And in order to withstand the weight of a heavy single crystal rod and safely raise it,
It is difficult to make the thickness of the seed crystal smaller than the above due to the strength of the material.

【0004】このような形状の種結晶では、融液と接触
する先端の熱容量が大きいために、種結晶が融液に接触
した瞬間に結晶内に急激な温度差を生じ、スリップ転位
を高密度に発生させる。従って、この転位を消去して単
結晶を育成するために前記ネッキングが必要になるので
ある。
[0004] In the seed crystal having such a shape, since the heat capacity of the tip in contact with the melt is large, a sudden temperature difference occurs in the crystal at the moment when the seed crystal comes into contact with the melt, and slip dislocations are generated at a high density. To be generated. Therefore, necking is required to eliminate the dislocation and grow a single crystal.

【0005】しかし、このような状態ではネッキング条
件を種々に選択しても、無転位化するためには、少なく
とも最小直径を3〜5mm程度までは絞り込む必要があ
り、近年のシリコン単結晶径の大口径化に伴い、高重量
化した単結晶棒を支持するには強度が不充分であり、単
結晶棒引上げ中に、この細い絞り部が破断して単結晶棒
が落下する等の重大な事故を生じる恐れがあった。
However, in such a state, even if various necking conditions are selected, in order to eliminate dislocations, it is necessary to narrow down at least the minimum diameter to about 3 to 5 mm. With the increase in diameter, the strength is not enough to support the heavier single-crystal rod, and during pulling of the single-crystal rod, this narrow narrowed part breaks and the single-crystal rod falls. An accident could occur.

【0006】このような問題を解決するために、本出願
人は先に特開平5−139880号、特願平8−871
87号のような発明を提案した。これらの発明は、種結
晶の先端部の形状を楔形あるいは中空部を有する形状と
し、種結晶がシリコン融液に接触する時に入るスリップ
転位をできるだけ低減することによって、絞り部の直径
を比較的太くしても無転位化を可能とし、もって絞り部
の強度を向上させるものである。
In order to solve such a problem, the present applicant has previously disclosed Japanese Patent Application Laid-Open No. 5-139880 and Japanese Patent Application No. 8-871.
No. 87 was proposed. In these inventions, the tip of the seed crystal has a wedge shape or a shape having a hollow portion, and the slip dislocation entering when the seed crystal comes into contact with the silicon melt is reduced as much as possible, so that the diameter of the drawn portion is relatively large. Even so, dislocations can be eliminated, thereby improving the strength of the constricted portion.

【0007】この方法では、絞り部の太さを太くするこ
とができるので、ある程度絞り部の強度の向上ができる
けれども、ネッキングを行い、転位のある絞り部を形成
することには変わりがなく、近年ますます大直径、長尺
化し、例えば150Kg以上にもなる単結晶棒の引上げ
には、強度が不充分となる場合があり、根本的な解決に
まで至っていない。
According to this method, the thickness of the constricted portion can be increased, so that the strength of the constricted portion can be improved to some extent. However, there is no change in forming a constricted portion with necking. In recent years, the strength of pulling a single crystal rod having a larger diameter and a longer length, for example, 150 kg or more may be insufficient, and a fundamental solution has not been reached.

【0008】しかも、この先端部が特殊形状の種を用い
たネッキング種付け法で問題となるのは、その無転位化
成功率である。すなわち、これらの方法では、一度結晶
の無転位化に失敗すると、種結晶を交換しなければ、や
り直しができないので、成功率を向上させることが特に
重要である。ネッキングの太さを単に太くしても無転位
化はできず、従来のネッキングでは直径が6〜7mm以
上となると、無転位化の確率は極度に低くなる。ここ
で、無転位化成功率とは、シリコン単結晶引上げ本数に
対する、転位が発生しなかったシリコン単結晶の本数の
割合を百分率で表した値である。
What is problematic in the necking seeding method using a seed having a special shape at the tip is the success rate of dislocation-free. That is, in these methods, once the dislocation-free crystal has failed, the process cannot be performed again without exchanging the seed crystal. Therefore, it is particularly important to improve the success rate. It is not possible to eliminate dislocation even if the thickness of necking is simply increased. In the conventional necking, when the diameter is 6 to 7 mm or more, the probability of dislocation removal becomes extremely low. Here, the dislocation-free success rate is a value expressed as a percentage of the number of silicon single crystals in which no dislocation has occurred with respect to the number of pulled silicon single crystals.

【0009】そしてこの場合、無転位化成功率が低下す
る原因を調査、究明した所、種結晶の形状、湯面近傍で
の保温時間、溶かし込む速度等従来から制御対象とされ
てきた要因だけでは必ずしも十分ではなく、成功率が必
ずしも高くなく、十分な再現性は得られていなかった。
In this case, the cause of the decrease in the dislocation-free success rate has been investigated and investigated. Only the factors which have conventionally been controlled, such as the shape of the seed crystal, the heat retention time in the vicinity of the molten metal surface, and the melting speed, have been investigated. It was not always sufficient, the success rate was not always high, and sufficient reproducibility was not obtained.

【0010】[0010]

【発明が解決しようとする課題】そこで、本発明はこの
ような従来の問題点に鑑みてなされたもので、ネッキン
グを行う種付け法の場合に、転位の増殖を抑制し、無転
位化成功率を向上させるとともに、大直径、高重量の単
結晶棒の生産性、歩留りを向上させることができるシリ
コン単結晶の製造方法を提供することを主たる目的とす
る。
Accordingly, the present invention has been made in view of such a conventional problem, and in the case of a seeding method for necking, the growth of dislocations is suppressed, and the success rate of dislocation-free is reduced. It is a main object of the present invention to provide a method for producing a silicon single crystal capable of improving the productivity and yield of a single crystal rod having a large diameter and a high weight while improving the productivity.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
本発明の請求項1に記載した発明は、チョクラルスキー
法により、種結晶を融液に接触させた後、ネッキングを
行なう種付け法により単結晶棒を成長させるシリコン単
結晶の製造方法において、ネッキング中に取り込まれる
格子間酸素濃度を1ppma(JEIDA)以上とする
ことを特徴とするシリコン単結晶の製造方法である。
In order to solve the above-mentioned problems, the invention described in claim 1 of the present invention is based on a seeding method in which a seed crystal is brought into contact with a melt by a Czochralski method and then necking is performed. A method for producing a silicon single crystal for growing a single crystal rod, wherein the concentration of interstitial oxygen taken in during necking is 1 ppma (JEIDA) or more.

【0012】このようにネッキング中に取り込まれる酸
素濃度を上げると、酸素原子によって種結晶の絞り込み
部と絞り部中の転位の移動速度が小さくなり、転位の増
殖を確実に抑制することができる。その結果、無転位化
成功率が向上し、生産性、歩留りを著しく改善すること
ができる。
When the concentration of oxygen taken in during necking is increased in this manner, the movement speed of dislocations in the narrowed portion of the seed crystal and the narrowed portion is reduced by oxygen atoms, and the growth of dislocations can be reliably suppressed. As a result, the dislocation-free success rate is improved, and productivity and yield can be significantly improved.

【0013】そして、この場合、請求項2に記載したよ
うに、前記ネッキング中の格子間酸素濃度を高めるため
に、ネッキング中のシリコン融液に石英を挿入すること
が望ましい。このように、例えば石英製の棒や板をネッ
キング中のシリコン融液の中心近傍に挿入すると、石英
は酸素の供給源となるので、種結晶の絞り込み部や絞り
部回りの酸素濃度が上昇し、酸素が絞り込み部や絞り部
に取り込まれ易くすることができる。
In this case, it is desirable to insert quartz into the silicon melt during necking in order to increase the interstitial oxygen concentration during necking. Thus, for example, when a quartz rod or plate is inserted near the center of the silicon melt during necking, quartz becomes a supply source of oxygen, so the oxygen concentration around the narrowed portion of the seed crystal and the narrowed portion increases. In addition, oxygen can be easily taken into the narrowing portion or the narrowing portion.

【0014】また、本発明の請求項3に記載した発明
は、前記ネッキング中の格子間酸素濃度を高めるため
に、ネッキング中はルツボの回転を高速にすることが望
ましい。このようにルツボの回転を高速にすると、石英
ルツボ内壁からシリコン融液中に溶け込む酸素量が増加
し、融液中の酸素濃度が上昇する結果、結晶の絞り込み
部や絞り部回りの酸素濃度が上昇し、酸素が絞り込み部
や絞り部に取り込まれ易くなる。
In the invention according to claim 3 of the present invention, in order to increase the interstitial oxygen concentration during the necking, it is desirable that the crucible rotate at a high speed during the necking. When the rotation of the crucible is increased in this manner, the amount of oxygen dissolved into the silicon melt from the inner wall of the quartz crucible increases, and the oxygen concentration in the melt increases. As a result, oxygen is easily taken in the narrowed portion or the narrowed portion.

【0015】さらに、請求項4に記載したように、磁場
を印加したチョクラルスキー法においては、前記ネッキ
ング中の格子間酸素濃度を高めるために、ネッキング中
はシリコン融液に磁場を印加しない方法が好ましい。こ
のようにすると、磁場を印加することによって強制的に
抑制されていたシリコン融液の対流が解放されるので、
対流により種結晶の絞り込み部や絞り部回りの酸素濃度
が上昇し、酸素が絞り込み部や絞り部に取り込まれ易く
なると共に、取り込まれた酸素によって転位の移動速度
が減速され、転位の増殖が著しく抑制されて成長単結晶
の無転位化成功率が向上し、生産性や歩留りを著しく改
善することができる。
Further, in the Czochralski method in which a magnetic field is applied, a method in which a magnetic field is not applied to the silicon melt during necking in order to increase the interstitial oxygen concentration during necking. Is preferred. By doing so, the convection of the silicon melt that was forcibly suppressed by applying a magnetic field is released,
Due to convection, the oxygen concentration around the narrowed part and the narrowed part of the seed crystal rises, and oxygen is easily taken in the narrowed part and the narrowed part. Suppressed, the dislocation-free success rate of the grown single crystal is improved, and productivity and yield can be significantly improved.

【0016】本発明の請求項5に記載した発明は、前記
ネッキング中の絞り部直径が5mm以上であることが望
ましい。本発明によれば、ネッキング中の酸素濃度を高
めることにより、転位の増殖を確実に抑制することがで
きるので、無転位の単結晶を容易に製造することができ
る。従って、その適用範囲は特に絞り部直径が5mm以
上の太絞りにおいて有効であり、無転位化の再現性は極
めて高く、大直径化、高重量化に対応してシリコン単結
晶の生産性と歩留りの向上に大きく寄与するものであ
る。
In the invention described in claim 5 of the present invention, it is preferable that the diameter of the drawn portion during the necking is 5 mm or more. According to the present invention, dislocation multiplication can be reliably suppressed by increasing the oxygen concentration during necking, and thus a dislocation-free single crystal can be easily produced. Therefore, its application range is particularly effective in the case of a large drawing having a drawing portion diameter of 5 mm or more, and the reproducibility of dislocation-free is extremely high, and the productivity and yield of silicon single crystal can be increased in response to the increase in diameter and weight. It greatly contributes to the improvement of

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照しながら詳細に説明する。まず、本発明
に使用される単結晶引上げ装置の構成例を図1により説
明する。図1に示すように、この単結晶引上げ装置20
は、ルツボ7と、ルツボ7の周囲に配置されたヒータ9
と、ルツボ7を回転させるルツボ回転軸8及びその回転
機構(図示せず)と、シリコンの種結晶1を保持するシ
ードチャック4と、シードチャック4を引上げるワイヤ
5と、ワイヤ5を回転又は巻き取る巻取機構(図示せ
ず)を備えて構成されている。ルツボ7は、その内側の
シリコン融液(湯)6を収容する側には石英ルツボが設
けられ、その外側には黒鉛ルツボが設けられている。
Embodiments of the present invention will be described below in detail with reference to the drawings. First, a configuration example of a single crystal pulling apparatus used in the present invention will be described with reference to FIG. As shown in FIG.
Is a crucible 7 and a heater 9 arranged around the crucible 7.
A crucible rotating shaft 8 for rotating the crucible 7 and a rotating mechanism thereof (not shown); a seed chuck 4 for holding the silicon seed crystal 1; a wire 5 for pulling up the seed chuck 4; It is provided with a winding mechanism (not shown) for winding. The crucible 7 is provided with a quartz crucible on the side where the silicon melt (hot water) 6 is accommodated, and a graphite crucible on the outside thereof.

【0018】次に、上記の単結晶引上げ装置20による
本発明のネッキングと単結晶育成方法について説明す
る。先ず、ルツボ7内でシリコンの高純度多結晶原料を
融点(約1420°C)以上に加熱して融解する。次に
石英棒10をシリコン融液6の中で単結晶引上げ位置の
近傍に浸漬する。次いでワイヤ5を巻き出すことにより
融液6の表面略中心部に種結晶1の先端を接触又は浸漬
させる。その後、ルツボ回転軸8を適宜の方向に回転さ
せるとともに、ワイヤ5を回転させながら巻き取り、種
結晶1を引上げてネッキング操作に入り、所定の直径に
なるまで絞り込み部2を形成し、所定の直径を保持しつ
つ所望の長さに絞り部3を成長させた後、コーン部を形
成し、所望の口径を有する単結晶の育成が開始される。
以後、引上げ速度と温度を適切に調節することにより略
円柱形状の単結晶棒(図示せず)を得ることができる。
ネッキング操作を終了した段階で、石英棒10はシリコ
ン融液6から引き上げて通常の単結晶育成条件に復する
のが望ましい。
Next, the method of necking and growing a single crystal of the present invention using the single crystal pulling apparatus 20 will be described. First, a high-purity polycrystalline silicon raw material is heated in a crucible 7 to a melting point (about 1420 ° C.) or higher to be melted. Next, the quartz rod 10 is immersed in the silicon melt 6 in the vicinity of the single crystal pulling position. Next, by unwinding the wire 5, the tip of the seed crystal 1 is brought into contact with or immersed substantially in the center of the surface of the melt 6. Thereafter, the crucible rotating shaft 8 is rotated in an appropriate direction, the wire 5 is wound while being rotated, the seed crystal 1 is pulled up, the necking operation is started, and the narrowed portion 2 is formed until a predetermined diameter is obtained. After growing the drawing portion 3 to a desired length while maintaining the diameter, a cone portion is formed, and the growth of a single crystal having a desired diameter is started.
Thereafter, by appropriately adjusting the pulling speed and the temperature, a substantially cylindrical single crystal rod (not shown) can be obtained.
When the necking operation is completed, it is desirable that the quartz rod 10 be pulled up from the silicon melt 6 and returned to the normal single crystal growth condition.

【0019】ネッキングを行う種付け中に石英をシリコ
ン融液に浸漬する別法として石英円板を融液表面に浮か
べる方法がある。この方法は図2に示した種ホルダ30
を使用する。この種ホルダ30は、シリコン種結晶1を
保持し、鍔(つば)状スライド板32を持つシードチャ
ック4と、支持棒33を外周に立てた円環状の石英円板
31から構成されており、シードチャック4は、支持棒
33に沿ってスライド板32により上下移動自在とな
り、上限は支持棒33の上部先端の止め具34で止めら
れる。そしてシードチャック4と石英円板31を引上げ
るワイヤ5とワイヤ5を回転または巻き取る巻き取り機
構(図示せず)につながっている。
Another method of dipping quartz in a silicon melt during seeding for necking is to float a quartz disk on the surface of the melt. This method uses the seed holder 30 shown in FIG.
Use The seed holder 30 is composed of a seed chuck 4 that holds the silicon seed crystal 1 and has a flange-shaped slide plate 32, and an annular quartz disk 31 having a support rod 33 set up on the outer periphery. The seed chuck 4 is vertically movable by a slide plate 32 along the support rod 33, and the upper limit is stopped by a stopper 34 at the upper end of the support rod 33. The seed chuck 4 and the wire 5 for pulling up the quartz disk 31 are connected to a winding mechanism (not shown) for rotating or winding the wire 5.

【0020】この種ホルダ30による本発明のネッキン
グと単結晶育成方法を図2の(a)、(b)、(c)の
順に説明する。先ず、ルツボ(不図示)内でシリコンの
高純度多結晶原料を融点(約1420°C)以上に加熱
して融解する。次にワイヤ5を繰り出してシードチャッ
ク4のスライド板32が上部止め具34で止まっている
状態で種ホルダ30を降下させ、石英円板31を融液6
の表面に接触させて浮かせる。さらにワイヤ5を繰り出
し、スライド板32をスライドさせて、シードチャック
4を降下させて融液6の表面略中心部に種結晶1の先端
を接触又は浸漬させる[図2(a)参照]。その後、ル
ツボを適宜の方向に回転させるとともに、ワイヤ5を回
転させながら巻き取り、種結晶1を引上げてネッキング
操作に入り、所定の直径になるまで絞り込み部2を形成
し、所定の直径を保持しつつ所望の長さに絞り部3を成
長させる[図2(b)参照]。この間、石英円板31は
常にシリコン融液6に接触していることになる。その
後、シードチャック4のスライド板32は上部止め具3
4で止められるので、それ以後、石英円板31はシード
チャック4と共に引上げられ、融液6の表面から自動的
に切り離され、ネッキング中の融液6に対する酸素供給
源としての役割りを終える。その後コーン部を形成し、
所望の口径を有するシリコン単結晶35の育成が開始さ
れる[図2(c)参照]。以後、引上げ速度と温度を適
切に調節することにより略円柱形状の単結晶棒を得るこ
とができる。
The necking and single crystal growing method of the present invention using the seed holder 30 will be described in the order of FIGS. 2 (a), 2 (b) and 2 (c). First, a high-purity polycrystalline silicon material is heated and melted in a crucible (not shown) above the melting point (about 1420 ° C.). Next, the seed holder 30 is lowered in a state where the slide plate 32 of the seed chuck 4 is stopped by the upper stopper 34, and the quartz disk 31 is melted.
Contact and float on the surface. Further, the wire 5 is drawn out, the slide plate 32 is slid, the seed chuck 4 is lowered, and the tip of the seed crystal 1 is brought into contact with or immersed substantially in the center of the surface of the melt 6 (see FIG. 2A). Thereafter, the crucible is rotated in an appropriate direction, and the wire 5 is wound while being rotated, the seed crystal 1 is pulled up, the necking operation is started, the narrowed portion 2 is formed to a predetermined diameter, and the predetermined diameter is maintained. Then, the narrowed portion 3 is grown to a desired length [see FIG. 2B]. During this time, the quartz disk 31 is always in contact with the silicon melt 6. After that, the slide plate 32 of the seed chuck 4 is
At this time, the quartz disk 31 is pulled up together with the seed chuck 4 and automatically cut off from the surface of the melt 6, thus ending its role as an oxygen supply for the melt 6 during necking. Then a cone is formed,
The growth of the silicon single crystal 35 having a desired diameter starts (see FIG. 2C). Thereafter, by appropriately adjusting the pulling speed and the temperature, a substantially columnar single crystal rod can be obtained.

【0021】このように、本発明者らは、シリコン単結
晶棒の成長に際し、ネッキングを行なう種付け法におい
て、特に直径5mm以上の太絞りを形成すると無転位化
成功率が満足し得る水準に達しない場合があり、その原
因を調査、究明した所、この転位の発生要因として、ネ
ッキング中の酸素濃度が深く関与していることを見出
し、諸条件を精査して本発明を完成させた。
As described above, the present inventors have found that, in the seeding method for necking in the growth of a silicon single crystal rod, particularly when a large drawing having a diameter of 5 mm or more is formed, the dislocation-free success rate does not reach a satisfactory level. In some cases, the cause was investigated and investigated. As a result, it was found that the oxygen concentration during necking was deeply involved as a cause of this dislocation, and various conditions were closely examined to complete the present invention.

【0022】従来、ネッキング中の酸素濃度については
何等の考慮も検討もされていなかった。通常のネッキン
グでは、ネック中に取り込まれる酸素濃度は非常に少な
く、1ppma未満であると言われている。単結晶棒の
直胴部を成長させるのと同じような条件でネッキングを
行っても、ネック中の酸素は非常に低濃度である。これ
は、ネックの成長時の体積が小さいため、シリコン融液
表面の酸素の蒸発の影響の大きいところで成長している
ためと考えられる。
Conventionally, no consideration has been given to the oxygen concentration during necking. In ordinary necking, the concentration of oxygen incorporated in the neck is very low and is said to be less than 1 ppma. Even if necking is performed under the same conditions as growing a straight body of a single crystal rod, the oxygen in the neck is very low. This is presumably because the neck was small in volume at the time of growth, and was grown at a position where the influence of oxygen evaporation on the surface of the silicon melt was large.

【0023】一方、シリコン結晶中の転位の運動速度に
ついては、高温下、低い応力の下では酸素原子は転位の
運動特性に対して重要な影響を与える。CZシリコン中
では低応力の下での転位の運動は観察されない(酸素に
よる転位の固着)という知見がある(K.Sumin
o,Japan.J.Appl.Phys.,19,
p.L49.(1980))。
On the other hand, with respect to the motion speed of dislocations in a silicon crystal, at high temperatures and under low stress, oxygen atoms have an important effect on the motion characteristics of dislocations. There is a finding that dislocation motion under low stress is not observed in CZ silicon (dislocation fixation by oxygen) (K. Sumin).
o, Japan. J. Appl. Phys. , 19,
p. L49. (1980)).

【0024】そこで、ネック中にある程度の酸素を取り
込むことで、ネック中の転位の移動速度を小さくして、
転位の増殖を抑制することができるのではないかと考
え、ネッキング中の酸素濃度を高めるような条件下でネ
ッキングを行ったところ、無転位化成功率が向上するこ
とがわかった。
Therefore, by introducing a certain amount of oxygen into the neck, the dislocation movement speed in the neck is reduced,
We thought that the growth of dislocations could be suppressed, and when necking was performed under conditions that increased the oxygen concentration during necking, it was found that the dislocation-free success rate was improved.

【0025】すなわち、ネッキングを行なう種付け法に
おける、ネッキング中の絞り込み部および絞り部の酸素
濃度について調査、実験を繰り返した結果、ネッキング
中の酸素濃度は、1ppma(JEIDA)以上あれば
転位の増殖を抑制することができ、無転位化成功率95
%以上を維持することが可能であることが解った。酸素
濃度が1ppma未満では低過ぎて転位の増殖を抑制す
る効果が不充分となる。
That is, in the seeding method in which necking is performed, the oxygen concentration in the narrowed portion and the narrowed portion during necking was repeatedly examined and experiments. As a result, if the oxygen concentration during necking was 1 ppma (JEIDA) or more, the growth of dislocations was increased. The dislocation-free success rate is 95
% Has been found to be possible. If the oxygen concentration is less than 1 ppma, the effect is too low to suppress the growth of dislocations.

【0026】そして、ネッキング中の酸素原子の転位の
増殖を抑制する効果は、絞り部直径5mm以上において
特に有効で、いわゆる太絞りが可能となり、大直径化、
高重量化に対応した単結晶成長によって、無転位化成功
率を上げ、生産性や歩留りの向上、製造コストの著しい
改善を図ることができる。
The effect of suppressing the growth of dislocations of oxygen atoms during necking is particularly effective when the diameter of the constricted portion is 5 mm or more.
By growing the single crystal corresponding to the increase in weight, the success rate of dislocation-free operation can be increased, and the productivity, yield, and manufacturing cost can be significantly improved.

【0027】酸素濃度は高ければ高い程好ましく、4p
pma以上、より好ましくは5ppma以上とすれば、
直径5mm以上の太い絞り部を形成させる場合であって
も、より確実に無転位化できる。この傾向は、特に、磁
場を印加しないで絞り部を形成した場合に見られた。
The oxygen concentration is preferably as high as possible,
pma or more, more preferably 5 ppma or more,
Even when a thick drawn portion having a diameter of 5 mm or more is formed, dislocation-free can be more reliably achieved. This tendency was particularly observed when the aperture portion was formed without applying a magnetic field.

【0028】ネッキング中の絞り込み部および絞り部中
の格子間酸素濃度を高めるための手段については、特に
限定されないが、具体例としては、(1)種絞りを行っ
ているルツボ中心近傍のシリコン融液中に酸素の供給源
となるような物質、例えば石英(SiO2 )の棒、板、
ブロック等を挿入する方法がある。図1は、ネッキング
操作に際し、絞り部引上げ中にL字形の石英棒を絞り部
近傍の融液中に浸漬している状態を表している。また、
図2は、石英円板をネッキング中のシリコン融液の中心
近傍に浮かべている状態を表している。この場合、石英
製の円筒を融液中に浸漬させてもよい。なお、石英円板
の下面には、シリコン融液の表面張力による影響を抑え
るため、円板の一端から径方向の他端にかけて、或は円
周から中心にかけて傾斜を付けるのが望ましい。このよ
うな傾斜を付ければ、シリコン融液から石英円板を離す
時に生じる表面張力の影響を小さくできるので、円板を
融液から切り離した時に生じる融液の波立ちの影響や、
石英円板に付着する融液の量を抑えることができる。こ
のように、例えば石英棒をネッキング中のシリコン融液
の中心近傍に挿入すると、この領域の酸素濃度が上昇
し、酸素が絞り込み部や絞り部に取り込まれ易くするこ
とができる。
The means for increasing the concentration of interstitial oxygen in the constricted portion and the constricted portion during necking are not particularly limited, but specific examples thereof include (1) silicon melting near the center of the crucible where the constriction is performed. A substance which becomes a supply source of oxygen in the liquid, for example, a rod or plate of quartz (SiO 2 );
There is a method of inserting a block or the like. FIG. 1 shows a state in which an L-shaped quartz rod is immersed in a melt near the narrowed portion during pulling of the narrowed portion during the necking operation. Also,
FIG. 2 shows a state in which the quartz disk is floating near the center of the silicon melt during necking. In this case, a quartz cylinder may be immersed in the melt. The lower surface of the quartz disk is preferably inclined from one end of the disk to the other end in the radial direction or from the circumference to the center in order to suppress the influence of the surface tension of the silicon melt. With such an inclination, the influence of the surface tension that occurs when the quartz disk is separated from the silicon melt can be reduced, so that the influence of the wave of the melt that occurs when the disk is separated from the melt,
The amount of the melt adhering to the quartz disk can be suppressed. Thus, for example, when a quartz rod is inserted in the vicinity of the center of the silicon melt during necking, the oxygen concentration in this region increases, and oxygen can be easily taken into the narrowed portion or the narrowed portion.

【0029】石英円板を浮かべる方法では、石英円板を
融液中で回転しておけば、石英の溶解量が大きくなり、
より多くの酸素が供給可能となる。また、石英円板によ
り湯面が覆われるので酸素の蒸発を抑制でき、融液中の
酸素濃度上昇効果が高くなる。さらに、種結晶の回転数
や石英円板の面積を適切に選択することにより、石英円
板から供給される酸素量を調節することができる。
In the method of floating a quartz disk, if the quartz disk is rotated in the melt, the amount of quartz dissolved increases,
More oxygen can be supplied. Further, since the surface of the molten metal is covered with the quartz disk, the evaporation of oxygen can be suppressed, and the effect of increasing the oxygen concentration in the melt increases. Further, by appropriately selecting the number of rotations of the seed crystal and the area of the quartz disk, the amount of oxygen supplied from the quartz disk can be adjusted.

【0030】あるいは、(2)ネッキング中はルツボの
回転を高速にしてシリコン融液に強制対流を与え、ルツ
ボ材である石英から生ずる酸素をルツボ中心近傍の表面
に送り込む。このようにルツボの回転を高速にすると、
石英ルツボ内壁からシリコン融液中に溶け込む酸素量が
増加し、融液中の酸素濃度が上昇する結果、種結晶の絞
り込み部や絞り部回りの酸素濃度が上昇し、酸素が絞り
込み部や絞り部に取り込まれ易くなる。具体的には、ネ
ッキング中のルツボの回転を、単結晶棒の直胴部引上げ
中のルツボの回転より高速にすればよく、例えば、直径
18インチのルツボを用いた場合には、15rpm以上
の速度とするような場合が挙げられる。但し、このよう
な場合に限定されるものではない。
Alternatively, (2) during the necking, the rotation of the crucible is accelerated to give forced convection to the silicon melt, and oxygen generated from quartz as the crucible material is sent to the surface near the center of the crucible. When the crucible rotates at a high speed like this,
The amount of oxygen that dissolves into the silicon melt from the inner wall of the quartz crucible increases, and the oxygen concentration in the melt rises. As a result, the oxygen concentration around the narrowed portion of the seed crystal and around the narrowed portion increases, and the oxygen is narrowed and narrowed down. It becomes easy to be taken into. Specifically, the rotation of the crucible during necking may be made faster than the rotation of the crucible during pulling up the straight body of the single crystal rod. For example, when a crucible having a diameter of 18 inches is used, the rotation of the crucible is 15 rpm or more. For example, the speed may be set. However, it is not limited to such a case.

【0031】(3)磁場を印加したチョクラルスキー法
においては、ネッキング中はシリコン融液に磁場を印加
しない方法を使用する。このようにすると、磁場を印加
することによって強制的に抑制されていたシリコン融液
の対流が解放されるので、対流により種結晶の絞り込み
部や絞り部回りの酸素濃度が上昇し、酸素が絞り込み部
や絞り部に取り込まれ易くなると共に、取り込まれた酸
素によって転位の移動速度が減速され、転位の増殖が著
しく抑制されるので、成長単結晶の無転位化成功率が向
上し、生産性や歩留りを著しく改善することができる。
(4)その他、ネッキング中の酸素濃度を高めるための
手段としては、シリコン融液中の温度分布を変更した
り、ガス雰囲気圧力を上昇して酸素が蒸発し難くする、
等の方法を挙げることができる。
(3) In the Czochralski method in which a magnetic field is applied, a method in which no magnetic field is applied to the silicon melt during necking is used. In this way, the convection of the silicon melt, which was forcibly suppressed by applying a magnetic field, is released, and the convection increases the oxygen concentration around the narrowed portion of the seed crystal and around the narrowed portion, thereby narrowing the oxygen. In addition to the increased oxygen content, the movement speed of dislocations is reduced and the growth of dislocations is significantly suppressed, so the success rate of dislocation-free growth of the grown single crystal is improved, and productivity and yield are improved. Can be significantly improved.
(4) Other means for increasing the oxygen concentration during necking include changing the temperature distribution in the silicon melt and increasing the gas atmosphere pressure to make it difficult for oxygen to evaporate.
And the like.

【0032】[0032]

【実施例】以下、本発明の実施例と比較例を挙げて具体
的に説明するが、本発明はこれらに限定されるものでは
ない。 (実施例)ネッキング中の酸素濃度を上げるために、ネ
ッキング中の融液に石英棒を挿入して、太絞りを行って
MCZ法により単結晶を成長させた。使用した石英ルツ
ボは、直径450mmで、50kgの原料多結晶シリコ
ンをチャージして、加熱昇温して融解し、直径14mm
の円柱状種結晶を下降させて融液に接触させ、ルツボ中
心の磁場強度が3000Gaussとなるように、水平
磁場を印加の上、ルツボを僅かに回転させ、ネッキング
を行って絞り部直径を6mmとして引上げ、直径150
mmの単結晶を成長させた。ネッキング操作に入る直前
に融液中にL字形で直径20mmの石英棒を挿入して絞
り込み部および絞り部近傍の酸素濃度を高めるようにし
た。ネッキング終了後、石英棒は融液から引き上げた。
無転位化成功率を評価したところ95%であり、絞り部
の酸素濃度をフーリエ変換型赤外分光器で測定した結
果、1.5ppma(JEIDA)の酸素が検出され
た。
EXAMPLES The present invention will be described in detail below with reference to examples of the present invention and comparative examples, but the present invention is not limited to these examples. (Example) In order to increase the oxygen concentration during necking, a quartz rod was inserted into the melt during necking, a thick drawing was performed, and a single crystal was grown by the MCZ method. The quartz crucible used was 450 mm in diameter, charged with 50 kg of raw material polycrystalline silicon, heated and melted by heating to 14 mm in diameter.
The crucible is lowered by applying a horizontal magnetic field so that the magnetic field strength at the center of the crucible becomes 3000 Gauss, and the crucible is necked to reduce the diameter of the drawn portion to 6 mm. Pulled up as diameter 150
mm single crystal was grown. Immediately before the necking operation, an L-shaped quartz rod having a diameter of 20 mm was inserted into the melt to increase the oxygen concentration in the narrowed portion and the vicinity of the narrowed portion. After necking, the quartz rod was pulled out of the melt.
When the dislocation-free success rate was evaluated, it was 95%. As a result of measuring the oxygen concentration in the narrowed portion with a Fourier transform infrared spectrometer, 1.5 ppma (JEIDA) of oxygen was detected.

【0033】(比較例)ネッキング中に石英棒を挿入し
なかった以外は、前記実施例と同一条件で引上げ試験を
行ったところ無転位化成功率は25%であった。また、
このとき絞り部に検出された酸素濃度は0.5ppma
(JEIDA)であった。
(Comparative Example) A pull-up test was performed under the same conditions as in the above example except that the quartz rod was not inserted during necking, and the dislocation-free success rate was 25%. Also,
At this time, the oxygen concentration detected in the throttle portion is 0.5 ppma
(JEIDA).

【0034】なお、本発明は、上記実施形態に限定され
るものではない。上記実施形態は、例示であり、本発明
の特許請求の範囲に記載された技術的思想と実質的に同
一な構成を有し、同様な作用効果を奏するものは、いか
なるものであっても本発明の技術的範囲に包含される。
The present invention is not limited to the above embodiment. The above embodiment is an exemplification, and has substantially the same configuration as the technical idea described in the scope of the claims of the present invention. It is included in the technical scope of the invention.

【0035】例えば、本発明の実施形態では、直径15
0mm(6インチ)のシリコン単結晶棒を成長させてい
るが、近年の200mm(8インチ)〜400mm(1
6インチ)あるいはそれ以上の大直径化にも十分対応す
ることができる。
For example, in the embodiment of the present invention, the diameter 15
Although a 0 mm (6 inch) silicon single crystal rod is grown, recent 200 mm (8 inch) to 400 mm (1 inch)
(6 inches) or more.

【0036】また、本発明は、通常のチョクラルスキー
法のみならず、シリコン単結晶の引上げ時に磁場を印加
するMCZ法(Magnetic field applied Czochralski cr
ystal growth method)であればいかなる形態のMCZ法
であっても同様に適用できることは言うまでもなく、本
明細書中で使用したチョクラルスキー法という用語に
は、通常のチョクラルスキー法だけでなく、MCZ法も
含まれる。
The present invention is not limited to the ordinary Czochralski method, but also to the MCZ method (Magnetic field applied Czochralski crm) in which a magnetic field is applied when pulling a silicon single crystal.
It is needless to say that any form of MCZ method can be similarly applied as long as the method is the same as the conventional Czochralski method. The MCZ method is also included.

【0037】[0037]

【発明の効果】以上説明したように、本発明によれば、
チョクラルスキー法によってシリコン単結晶棒を引上げ
る際に、ネッキングを行う種付け法において、無転位化
成功率はほぼ95%以上を達成し、その再現性もよく、
長期安定化させることができる。従って、今後の単結晶
棒の大直径化、長尺化、高重量化にも十分適応させるこ
とが可能であり、生産性、歩留りならびにコストを著し
く改善することができる。
As described above, according to the present invention,
When pulling a silicon single crystal rod by the Czochralski method, the seeding method of necking achieves a dislocation-free success rate of approximately 95% or more, and its reproducibility is good.
Long-term stabilization is possible. Therefore, it is possible to sufficiently adapt to increase in diameter, length, and weight of the single crystal rod in the future, and it is possible to remarkably improve productivity, yield, and cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の単結晶成長におけるネッキング中の状
態を表す単結晶引上げ装置の概略説明図である。
FIG. 1 is a schematic explanatory view of a single crystal pulling apparatus showing a state during necking in single crystal growth of the present invention.

【図2】本発明の単結晶成長における別のネッキング中
の状態を表す概略説明図である。 (a)種結晶先端と石英円板が融液表面に接触した状態
を示す図、(b)ネッキングを終え、石英円板が融液表
面から離脱した状態を示す図、(c)シリコン単結晶の
成長が始まった状態を示す図である。
FIG. 2 is a schematic explanatory view showing a state during another necking in single crystal growth of the present invention. (A) A diagram showing a state in which the tip of a seed crystal and a quartz disk are in contact with the melt surface, (b) a diagram showing a state in which necking has been completed and the quartz disk has detached from the melt surface, and (c) a silicon single crystal. FIG. 4 is a diagram showing a state where growth of the GaN layer has started.

【符号の説明】[Explanation of symbols]

1…種結晶、2…絞り込み部、3…絞り部、4…シード
チャック、5…ワイヤ、6…シリコン融液、7…ルツ
ボ、8…ルツボ回転軸、9…ヒータ、10…石英棒、2
0…単結晶引上げ装置、30…種ホルダ、31…石英円
板、32…スライド板、33…支持棒、34…止め具、
35…シリコン単結晶。
DESCRIPTION OF SYMBOLS 1 ... seed crystal, 2 ... narrowing down part, 3 ... narrowing down part, 4 ... seed chuck, 5 ... wire, 6 ... silicon melt, 7 ... crucible, 8 ... crucible rotating shaft, 9 ... heater, 10 ... quartz rod, 2
0: Single crystal pulling apparatus, 30: Seed holder, 31: Quartz disk, 32: Slide plate, 33: Support rod, 34: Stopper,
35 ... Silicon single crystal.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 チョクラルスキー法により、種結晶を融
液に接触させた後、ネッキングを行なう種付け法により
単結晶棒を成長させるシリコン単結晶の製造方法におい
て、ネッキング中に取り込まれる格子間酸素濃度を1p
pma(JEIDA)以上とすることを特徴とするシリ
コン単結晶の製造方法。
In a method for producing a silicon single crystal in which a seed crystal is brought into contact with a melt by a Czochralski method and then a single crystal rod is grown by a seeding method for necking, interstitial oxygen taken in during necking is provided. 1p concentration
pma (JEIDA) or more.
【請求項2】 前記ネッキング中の格子間酸素濃度を高
めるために、ネッキング中のシリコン融液に石英を挿入
することを特徴とする請求項1に記載したシリコン単結
晶の製造方法。
2. The method for producing a silicon single crystal according to claim 1, wherein quartz is inserted into the silicon melt during necking in order to increase the interstitial oxygen concentration during necking.
【請求項3】 前記ネッキング中の格子間酸素濃度を高
めるために、ネッキング中はルツボの回転を高速にする
ことを特徴とする請求項1または請求項2に記載したシ
リコン単結晶の製造方法。
3. The method for producing a silicon single crystal according to claim 1, wherein the rotation of the crucible is increased during necking in order to increase the interstitial oxygen concentration during necking.
【請求項4】 磁場を印加したチョクラルスキー法にお
いては、前記ネッキング中の格子間酸素濃度を高めるた
めに、ネッキング中はシリコン融液に磁場を印加しない
ことを特徴とする請求項1ないし請求項3のいずれか1
項に記載したシリコン単結晶の製造方法。
4. In the Czochralski method applying a magnetic field, no magnetic field is applied to the silicon melt during necking in order to increase the interstitial oxygen concentration during necking. Any one of item 3
The method for producing a silicon single crystal described in the paragraph.
【請求項5】 前記ネッキング中の絞り部直径が5mm
以上であることを特徴とする請求項1ないし請求項4の
いずれか1項に記載したシリコン単結晶の製造方法。
5. The drawing part diameter during necking is 5 mm.
The method for producing a silicon single crystal according to claim 1, wherein:
JP05742599A 1998-04-07 1999-03-04 Method for producing silicon single crystal Expired - Fee Related JP3473477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05742599A JP3473477B2 (en) 1998-04-07 1999-03-04 Method for producing silicon single crystal

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11141298 1998-04-07
JP10-111412 1998-04-07
JP05742599A JP3473477B2 (en) 1998-04-07 1999-03-04 Method for producing silicon single crystal

Publications (2)

Publication Number Publication Date
JPH11349398A true JPH11349398A (en) 1999-12-21
JP3473477B2 JP3473477B2 (en) 2003-12-02

Family

ID=26398469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05742599A Expired - Fee Related JP3473477B2 (en) 1998-04-07 1999-03-04 Method for producing silicon single crystal

Country Status (1)

Country Link
JP (1) JP3473477B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126371A1 (en) * 2005-05-25 2006-11-30 Kyocera Corporation Polycrystalline silicon substrate, polycrystalline silicon ingot, photoelectric transduction element and photoelectric transduction module
JP2010275137A (en) * 2009-05-27 2010-12-09 Shin Etsu Handotai Co Ltd Method for producing silicon single crystal
KR20170009853A (en) 2014-05-12 2017-01-25 신에쯔 한도타이 가부시키가이샤 Method for growing silicon single crystal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126371A1 (en) * 2005-05-25 2006-11-30 Kyocera Corporation Polycrystalline silicon substrate, polycrystalline silicon ingot, photoelectric transduction element and photoelectric transduction module
JP2010275137A (en) * 2009-05-27 2010-12-09 Shin Etsu Handotai Co Ltd Method for producing silicon single crystal
KR20170009853A (en) 2014-05-12 2017-01-25 신에쯔 한도타이 가부시키가이샤 Method for growing silicon single crystal
US9988736B2 (en) 2014-05-12 2018-06-05 Shin-Etsu Handotai Co., Ltd. Method for growing a silicon single crystal while suppressing a generation of slip dislocations in a tail portion
DE112015001883B4 (en) 2014-05-12 2022-03-17 Shin-Etsu Handotai Co., Ltd. Process for growing a silicon single crystal

Also Published As

Publication number Publication date
JP3473477B2 (en) 2003-12-02

Similar Documents

Publication Publication Date Title
US4040895A (en) Control of oxygen in silicon crystals
US20070101926A1 (en) Method of manufacturing silicon single crystal, silicon single crystal and silicon wafer
JP4165068B2 (en) Method for producing silicon single crystal
US4436577A (en) Method of regulating concentration and distribution of oxygen in Czochralski grown silicon
WO2003089697A1 (en) Single crystal silicon producing method, single crystal silicon wafer producing method, seed crystal for producing single crystal silicon, single crystal silicon ingot, and single crystal silicon wafer
JPH0321515B2 (en)
JP2937115B2 (en) Single crystal pulling method
JP2973917B2 (en) Single crystal pulling method
WO2013088646A1 (en) Method for producing silicon single crystal
JP4013324B2 (en) Single crystal growth method
US6153009A (en) Method for producing a silicon single crystal and the silicon single crystal produced thereby
JP3473477B2 (en) Method for producing silicon single crystal
JPH04104988A (en) Growth of single crystal
JP4640796B2 (en) Method for producing silicon single crystal
JP2003246695A (en) Method for producing highly doped silicon single crystal
JP2000128691A (en) Silicon seed crystal and production of silicon single crystal
US6171392B1 (en) Method for producing silicon single crystal
JP3402210B2 (en) Method for producing silicon single crystal
JP4951186B2 (en) Single crystal growth method
JP2000154091A (en) Production of silicon single crystal and seed holder therefor
JP4341379B2 (en) Single crystal manufacturing method
KR102514915B1 (en) Dopant Concentration Control in Silicon Melts to Improve Ingot Quality
JPH11209197A (en) Production of silicon single crystal
JP2001139398A (en) Method of growing single crystal
JP2004189557A (en) Method for growing single crystal

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees