JPH11209197A - Production of silicon single crystal - Google Patents

Production of silicon single crystal

Info

Publication number
JPH11209197A
JPH11209197A JP2671598A JP2671598A JPH11209197A JP H11209197 A JPH11209197 A JP H11209197A JP 2671598 A JP2671598 A JP 2671598A JP 2671598 A JP2671598 A JP 2671598A JP H11209197 A JPH11209197 A JP H11209197A
Authority
JP
Japan
Prior art keywords
single crystal
magnetic field
seeding
silicon
necking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2671598A
Other languages
Japanese (ja)
Inventor
Masaki Kimura
雅規 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2671598A priority Critical patent/JPH11209197A/en
Publication of JPH11209197A publication Critical patent/JPH11209197A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a silicon single crystal by which dislocation in a later contraction process easily disappears by reducing introducing density of slip dislocation at the time of dipping a seed crystal in a silicon molten liquid in MCZ method, the slip dislocation is made to disappear in high probability and a single crystal bar is made to grow to improve nondislocation success rate thereof even at a larger contraction diameter than heretofore and productivity of the single crystal bar having large diameter and high weight is improved. SOLUTION: In the manufacturing method of the silicon single crystal by MCZ method (magnetic field applying Czockralsky method) in which top end of the seed crystal is brought into contact with the silicon molten liquid and then is subjected to necking to grow the single crystal bar, seeding is executed while the magnetic field is not applied to a part or whole of a single crystal cone part or magnetic field with intensity lower than that applied thereto during pulling-up a single crystal straight cylindrical part is applied at least from seeding to necking or after starting of pulling-up operation after the lapse of operation at least from the seeding to the necking at least during the seeding.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁場を印加するチ
ョクラルスキー法(Magnetic-field-applied Czochrals
ki Method 、MCZ法)による種結晶を使用してネッキ
ングを行って無転位化した後シリコン単結晶棒を成長さ
せるシリコン単結晶の製造方法に関する。
The present invention relates to a Czochralski method for applying a magnetic field (Magnetic-field-applied Czochrals method).
The present invention relates to a method for manufacturing a silicon single crystal in which necking is performed by using a seed crystal according to a ki method (MCZ method) to eliminate dislocations and then grow a silicon single crystal rod.

【0002】[0002]

【従来の技術】従来、MCZ法によるシリコン単結晶の
製造においては、単結晶シリコンを種結晶として用い、
これを磁場を印加したシリコン融液に接触させた後、回
転させながらゆっくりと引上げることで単結晶棒を成長
させている。この際、シリコン融液に磁場を印加すると
シリコン融液の対流がおさえられ、対流に伴う成長界面
の振動、温度変動が小さくなり、育成されたシリコン単
結晶中の成長縞が著しく減少し、点欠陥等の結晶内への
欠陥導入が抑制される。
2. Description of the Related Art Conventionally, in the production of a silicon single crystal by the MCZ method, single crystal silicon is used as a seed crystal.
This is brought into contact with a silicon melt to which a magnetic field has been applied, and then slowly pulled up while rotating to grow a single crystal rod. At this time, when a magnetic field is applied to the silicon melt, the convection of the silicon melt is suppressed, and the vibration and temperature fluctuation of the growth interface due to the convection are reduced, and the growth stripes in the grown silicon single crystal are significantly reduced. Defect introduction into a crystal such as a defect is suppressed.

【0003】そして最初に種結晶をシリコン融液に接触
させる種付けにおいては、種結晶をシリコン融液に接触
させる際に、熱衝撃により種結晶に高密度で発生するス
リップ転位から伝播するスリップ転位を消滅させるため
に、直径を3mm程度に一旦細くし絞り部を形成するい
わゆる種絞り(ネッキング)を行い、次いで、所望の口
径になるまで結晶を太らせて、無転位のシリコン単結晶
を引上げている。このような、種絞りを作製する方法は
Dash Necking法として広く知られており、
CZ法やMCZ法でシリコン単結晶棒を引上げる場合の
重要な工程である。
[0003] In the seeding in which the seed crystal is first brought into contact with the silicon melt, when the seed crystal is brought into contact with the silicon melt, slip dislocations that propagate from the slip dislocations generated at high density in the seed crystal by thermal shock are generated. In order to extinguish the crystal, a so-called seed drawing (necking), in which the diameter is once reduced to about 3 mm to form a drawn portion, is performed, and then the crystal is thickened to a desired diameter, and a dislocation-free silicon single crystal is pulled up. I have. Such a method of producing a seed aperture is widely known as a Dash Necking method,
This is an important step when pulling a silicon single crystal rod by the CZ method or the MCZ method.

【0004】従来用いられてきた種結晶の形状は、例え
ば直径あるいは一辺約8〜20mmの円柱状や角柱状の
シリコン単結晶に種ホルダーにセットするための切り欠
き部を設けたもので、最初にシリコン融液に接触する種
結晶下方の先端形状は、平坦面となっている。そして、
高重量の単結晶棒の重量に耐えて安全に引上げるために
は、種結晶の太さは、素材の強度からして上記以下に細
くすることは難しい。
[0004] The shape of a seed crystal that has been conventionally used is, for example, a cylindrical or prismatic silicon single crystal having a diameter or a side of about 8 to 20 mm provided with a cutout for setting in a seed holder. The shape of the tip below the seed crystal that comes into contact with the silicon melt is flat. And
In order to withstand the weight of a heavy single crystal rod and safely pull it up, it is difficult to make the thickness of the seed crystal smaller than the above given the strength of the material.

【0005】このような形状の種結晶では、シリコン融
液と接触する先端の熱容量が大きいために、種結晶がシ
リコン融液に接触した瞬間に種結晶内に急激な温度差を
生じ、スリップ転位を高密度に発生させる。従って、こ
のスリップ転位を消去してシリコン単結晶を育成するた
めに前記ネッキングが必要になるのである。
[0005] In the seed crystal having such a shape, since the heat capacity of the tip in contact with the silicon melt is large, a sudden temperature difference occurs in the seed crystal at the moment when the seed crystal comes into contact with the silicon melt, causing slip dislocation. At a high density. Therefore, necking is required to eliminate the slip dislocation and grow a silicon single crystal.

【0006】しかし、このような状態ではネッキング条
件を種々に選択しても、無転位化するためには、最小直
径を3〜5mm程度までは絞り込む必要があり、更に無
転位化成功率を上げるためには、最小直径を4mm以下
にすることが望ましく、近年のシリコン単結晶径の大口
径化に伴い、高重量化した単結晶棒を支持するには強度
が不充分であり、単結晶棒引上げ中に、この細い絞り部
が破断して単結晶棒が落下する等の重大な事故を生じる
恐れがあった。
However, in such a state, even if various necking conditions are selected, in order to eliminate dislocations, it is necessary to narrow down the minimum diameter to about 3 to 5 mm. It is desirable that the minimum diameter be 4 mm or less, and with the recent increase in silicon single crystal diameter, the strength is insufficient to support a heavier single crystal rod. During this time, there was a fear that a serious accident such as a breakage of the narrow drawing portion and a drop of the single crystal rod would occur.

【0007】特に、MCZ法では、磁場を印加すること
により融液の粘度が上がるので、細く絞るネッキングが
やりにくく、そこでシリコン融液温度を通常のCZ法よ
り高めに設定してネッキングをし易いようにしている。
しかしシリコン融液の温度を上げると、種付け時に種結
晶がシリコン融液に接触する時に生じるスリップ転位が
入り易くなり、通常のCZ法と比べてスリップ転位密度
が高いという問題があった。
In particular, in the MCZ method, since the viscosity of the melt is increased by applying a magnetic field, it is difficult to perform necking by narrowing down, and thus the silicon melt temperature is set to be higher than that of the normal CZ method, so that necking is easy. Like that.
However, when the temperature of the silicon melt is increased, slip dislocation generated when the seed crystal comes into contact with the silicon melt at the time of seeding is likely to occur, and there is a problem that the slip dislocation density is higher than that of the normal CZ method.

【0008】しかも、今後の直径12インチ以上という
ような大口径のシリコン単結晶を大口径のルツボから引
上げようとすると、シリコン融液が多量となり対流制御
が困難となるので、磁場を印加してより一層対流を抑制
し、温度の変動を防止する必要があり、今後の磁場を印
加した大口径シリコン単結晶の引上げの場合には、一層
シリコン融液の高温化に伴って絞り工程でスリップ転位
が抜けにくいという問題が生ずる。
Further, if a large-diameter silicon single crystal having a diameter of 12 inches or more is to be pulled up from a large-diameter crucible in the future, a large amount of silicon melt becomes difficult to control convection, so that a magnetic field must be applied. It is necessary to further suppress convection and prevent temperature fluctuation.In the case of pulling a large-diameter silicon single crystal to which a magnetic field is applied in the future, slip dislocation is caused in the drawing process as the temperature of the silicon melt becomes higher. Is difficult to remove.

【0009】[0009]

【発明が解決しようとする課題】このスリップ転位が抜
けにくい原因として、種結晶がシリコン融液に接触した
際に発生するスリップ転位密度の多さが考えられる。す
なわち、発生したスリップ転位の密度が高い程、そのス
リップ転位を全て消滅させるためには、細く絞る必要が
あり、直径約5mmの太さの絞りでは、スリップ転位を
側面に移動させる力が弱いために、最終的に無転位化す
るかどうかは、スリップ転位の密度による確率の問題と
なる。これは、すなわち、種付けで導入されるスリップ
転位の密度が無転位化のし易さを左右していると云え
る。
One of the reasons why the slip dislocation is difficult to be removed is considered to be a large slip dislocation density generated when the seed crystal comes into contact with the silicon melt. In other words, the higher the density of the generated slip dislocations, the more it is necessary to reduce the diameter in order to eliminate all the slip dislocations. In the case of a drawing with a diameter of about 5 mm, the force for moving the slip dislocations to the side is weak. In addition, whether or not the dislocations are finally eliminated is a matter of probability depending on the density of the slip dislocations. This means that the density of slip dislocations introduced by seeding affects the ease of dislocation-free.

【0010】そこで、本発明はこのような従来の問題点
に鑑みてなされたもので、MCZ法において、種結晶を
シリコン融液に浸ける際のスリップ転位の導入密度を減
らすことにより、その後の絞り工程においてスリップ転
位が消滅し易くなり、従来よりも太い絞り直径において
も高い確率でスリップ転位を消滅させ、無転位化させて
単結晶棒を成長させ、無転位化成功率を向上させると共
に、大直径、高重量の単結晶棒の生産性の向上を図るシ
リコン単結晶の製造方法を提供することを主たる目的と
する。
Accordingly, the present invention has been made in view of such a conventional problem. In the MCZ method, the density of slip dislocations introduced when a seed crystal is immersed in a silicon melt is reduced to reduce the subsequent drawing. In the process, slip dislocations are easily eliminated, and even at larger drawing diameters, slip dislocations can be eliminated with a high probability, dislocations can be eliminated and single crystal rods can be grown, and the success rate of dislocation removal can be improved, and large diameters can be improved. Another object of the present invention is to provide a method for producing a silicon single crystal which improves productivity of a single crystal rod having a high weight.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
本発明の請求項1に記載した発明は、磁場を印加するチ
ョクラルスキー法により、種結晶の先端をシリコン融液
に接触させた後、ネッキングを行い単結晶棒を成長させ
るシリコン単結晶の製造方法において、少なくとも種付
けの際は磁場を印加しないか、あるいは単結晶直胴部を
引上げ中の印加磁場強度よりも弱い磁場を印加して種付
けを行うことを特徴とするシリコン単結晶の製造方法で
ある。
According to a first aspect of the present invention, there is provided a method for solving the above-mentioned problems, comprising the steps of contacting the tip of a seed crystal with a silicon melt by a Czochralski method of applying a magnetic field. In a method for producing a silicon single crystal in which necking is performed and a single crystal rod is grown, at least at the time of seeding, no magnetic field is applied, or a magnetic field weaker than the applied magnetic field strength during pulling up the single crystal straight body is applied. A method for producing a silicon single crystal, characterized by performing seeding.

【0012】このように、磁場を印加するMCZ法によ
り、ネッキングを行なって単結晶成長を行うシリコン単
結晶の製造方法において、少なくとも種付けの際は磁場
を印加しないか、あるいは単結晶直胴部を引上げ中の印
加磁場強度よりも弱い磁場を印加して種付けを行えば、
種付けから単結晶直胴部の引上げに至る全工程を磁場環
境下におく通常のMCZ法と比較して種付け時のシリコ
ン融液の低温化が可能となり、スリップ転位の発生密度
を抑制することができる。従って、比較的太い絞り直径
でもスリップ転位の消去が可能となり、無転位化成功率
を向上させることができる。
As described above, in the method for producing a silicon single crystal in which necking is performed and single crystal growth is performed by the MCZ method in which a magnetic field is applied, no magnetic field is applied at least at the time of seeding, or the single crystal straight body is removed. If seeding is performed by applying a magnetic field weaker than the applied magnetic field strength during pulling,
Compared with the normal MCZ method in which the entire process from seeding to pulling of the single crystal straight body part under a magnetic field environment, it is possible to lower the temperature of the silicon melt at the time of seeding and suppress the density of slip dislocations. it can. Therefore, the slip dislocation can be eliminated even with a relatively large aperture diameter, and the success rate of dislocation-free can be improved.

【0013】従って、磁場を印加しなければ成長させる
ことが困難な大口径ルツボからの大直径、高重量単結晶
の引上げに際しても、従来の絞り技術が生かされ、無転
位化成功率はほぼ100%を達成し、その再現性もよ
く、長期安定化させることができる。従って、今後の単
結晶棒の大直径化、長尺化、高重量化にも十分適応させ
ることが可能であり、生産性、歩留りならびにコストを
著しく改善することができる。
Therefore, when pulling a large-diameter, heavy-weight single crystal from a large-diameter crucible that is difficult to grow without applying a magnetic field, the conventional drawing technique is utilized, and the dislocation-free success rate is almost 100%. Is achieved, the reproducibility is good, and long-term stabilization can be achieved. Therefore, it is possible to sufficiently adapt to increase in diameter, length, and weight of the single crystal rod in the future, and it is possible to remarkably improve productivity, yield, and cost.

【0014】そしてこの場合、請求項2に記載したよう
に、前記磁場の印加を、少なくとも種付けからネッキン
グまでは無磁場とするかあるいは単結晶直胴部を引上げ
中の印加磁場強度よりも弱い磁場を印加してネッキング
を行うことが望ましい。このような磁場環境を、少なく
とも種付けから絞り工程まで続ければ、種付け後絞りに
入る時のメニスカス角度の大きさにより絞りの周辺部か
らスリップ転位がより逃げ易い界面形状となり、結晶に
スリップ転位が残る確率は減少し、無転位化成功率のよ
り一層の向上に寄与することになる。
In this case, as described in claim 2, the magnetic field is applied without a magnetic field at least from seeding to necking, or a magnetic field weaker than the applied magnetic field strength during pulling up the single crystal straight body. Is desirably applied to perform necking. If such a magnetic field environment is continued at least from seeding to the drawing process, an interface shape in which slip dislocations are more likely to escape from the periphery of the drawing due to the size of the meniscus angle when entering the drawing after seeding, and slip dislocations remain in the crystal The probability decreases, which contributes to a further improvement in the dislocation-free success rate.

【0015】本発明の請求項3に記載した発明は、磁場
を印加するチョクラルスキー法により、種結晶の先端を
シリコン融液に接触させた後、ネッキングを行い単結晶
棒を成長させるシリコン単結晶の製造方法において、少
なくとも種付けからネッキングを経て引上げ操作に入っ
た後、単結晶コーン部の一部またはコーン部全体までを
無磁場として育成するか、あるいは単結晶直胴部を引上
げ中の印加磁場強度よりも弱い磁場を印加してコーン部
を育成することを特徴とするシリコン単結晶の製造方法
である。
According to a third aspect of the present invention, there is provided a silicon single crystal in which the tip of a seed crystal is brought into contact with a silicon melt by the Czochralski method of applying a magnetic field, and necking is performed to grow a single crystal rod. In the crystal manufacturing method, at least after starting seeding and necking and then starting pulling operation, a part of the single crystal cone part or up to the whole cone part is grown without a magnetic field, or application during pulling the single crystal straight body part A method for producing a silicon single crystal, characterized in that a cone portion is grown by applying a magnetic field weaker than the magnetic field intensity.

【0016】このような磁場環境を種付け、種絞りを経
て単結晶コーン部の途中あるいはコーン部全体まで継続
すると、コーン育成中にもスリップ転位が発生しにくく
なるので、安定したコーン育成が行なえるし、引き続き
単結晶本体を無転位で引上げることができ、高い無転位
化成功率が得られる。
If such a magnetic field environment is seeded and continued through the seed aperture and in the middle of the single crystal cone portion or to the entire cone portion, slip dislocation is less likely to occur even during cone growth, so that stable cone growth can be performed. Then, the single crystal body can be continuously pulled up without dislocation, and a high dislocation-free success rate can be obtained.

【0017】そして、請求項4に記載したように、種結
晶の先端部の形状が、尖った形状であるものとすれば、
上述した本発明の磁場環境は先端の尖った種結晶を使用
して種付けする場合にも有効に作用する。すなわち、種
結晶先端部の断面積が小さいので種付けの際の熱衝撃が
小さく、種付けの際に発生するスリップ転位をより一層
抑制することができ、無転位化成功率を向上させること
ができる。
As described in claim 4, if the shape of the tip of the seed crystal is a sharp shape,
The above-described magnetic field environment of the present invention is also effective when seeding using a seed crystal having a sharp tip. That is, since the cross-sectional area of the seed crystal tip is small, the thermal shock at the time of seeding is small, and the slip dislocation generated at the time of seeding can be further suppressed, and the success rate of dislocation-free can be improved.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態を説明
するが、本発明はこれらに限定されるものではない。本
発明者らは、MCZ法によるシリコン単結晶の成長に際
し、ネッキングを行う種付け法において、その無転位化
成功率が満足し得る水準に達しない場合があり、その原
因を調査、究明した所、このスリップ転位の発生要因と
して、種付けの際の磁場の強度が深く関係していること
を見出し、詳細に条件を詰めて本発明を完成させた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below, but the present invention is not limited to these embodiments. The present inventors have found that in the seeding method in which necking is performed during the growth of a silicon single crystal by the MCZ method, the dislocation-free success rate may not reach a satisfactory level, and the cause has been investigated and investigated. The present inventors have found that the strength of the magnetic field during seeding is closely related to the occurrence of slip dislocation, and have completed the present invention under detailed conditions.

【0019】先ず、種結晶として、図4の(B)に示し
たような角柱状の15mm角のシリコン単結晶(先端は
平坦面)の表面を混酸で約400μmエッチングしたも
のを使用して、種付け工程〜単結晶直胴部引上げ工程ま
での全工程に磁場を印加して直径150mmの単結晶棒
を成長させて無転位化成功率を調査した(試験No. 1〜
4)。
First, as a seed crystal, the surface of a prismatic 15 mm square silicon single crystal (tip at a flat surface) as shown in FIG. A magnetic field was applied to the entire process from the seeding process to the single crystal straight body portion pulling process to grow a single crystal rod having a diameter of 150 mm, and the dislocation-free success rate was investigated (Test No. 1 to No. 1).
4).

【0020】上記種結晶を用いて、原料多結晶シリコン
の溶融後、4000gaussの水平磁場を印加した。
ここで、磁場強度とは融液の中心位置での強度を示す。
そして、磁場強度をこのまま保持しつつ種付け−絞り
(ネッキング)−単結晶コーン−単結晶直径150mm
の直胴部を10cm引上げて丸めを作製し、その後冷却
して炉内から取り出した。取り出した結晶をセコエッチ
ング処理してスリップ転位の消滅状況を調査し、無転位
化成功率とし、その結果を表1に示した。
After the raw polycrystalline silicon was melted using the seed crystal, a horizontal magnetic field of 4000 gauss was applied.
Here, the magnetic field intensity indicates the intensity at the central position of the melt.
Then, while maintaining the magnetic field strength as it is, seeding-drawing (necking) -single crystal cone-single crystal diameter 150 mm
The straight body was pulled up by 10 cm to form a round, then cooled and taken out of the furnace. The removed crystal was subjected to a Secco etching treatment to examine the disappearance of slip dislocations, and the dislocation-free success rate was obtained. The results are shown in Table 1.

【0021】ここで、セコ(Secco)エッチングと
は、先ず、表面の歪み層を弗酸と硝酸の混合液でエッチ
ングして除去した後、K2 Cr27 と弗酸と水との混合
液でエッチングするもので、結晶表面のスリップ転位発
生の有無の確認に使用される。また、無転位化成功率
(%)[DF化率ともいう]とは、シリコン単結晶引上
げ本数に対するスリップ転位発生がなかったシリコン単
結晶引上げ本数の割合を百分率で表した値である。
Here, the Secco etching means that the strained layer on the surface is first removed by etching with a mixed solution of hydrofluoric acid and nitric acid and then mixed with K 2 Cr 2 O 7 , hydrofluoric acid and water. It is etched with a liquid, and is used to check for the occurrence of slip dislocation on the crystal surface. The dislocation-free success rate (%) [also referred to as the DF conversion rate] is a value expressed as a percentage of the number of pulled silicon single crystals in which no slip dislocation occurred to the number of pulled silicon single crystals.

【0022】[0022]

【表1】 [Table 1]

【0023】表1から明らかなように、磁場を印加した
状態で種付けすると溶着部側面のピット密度は7〜8×
104 (/cm2 )と高く、DF化率100%を維持で
きる絞り直径は約4mmが限度で、直径が約5mmまで
太くなると無転位化成功率が落ち始め、それ以上の太絞
りでは結晶にスリップ転位が発生しDF化率は急減する
ことが判る。
As is clear from Table 1, when seeding is performed in a state where a magnetic field is applied, the pit density on the side surface of the welded portion is 7 to 8 ×
10 4 (/ cm 2) and a high aperture diameter capable of maintaining a 100% DF rate is about 4mm is limited, it begins fallen diameter becomes thick to about 5mm and dislocation-free successful ratio, more a diaphragm diameter in the crystal It can be seen that slip dislocations occur and the DF conversion rate sharply decreases.

【0024】次に磁場の影響を調査するため、先ず原料
多結晶の溶融後磁場を印加しないで種付け−絞り−単結
晶コーン−単結晶直胴部の引上げを行った。磁場以外の
条件は上記と同様である(試験No. 5〜8)。その結果
を表2に示した。
Next, in order to investigate the influence of the magnetic field, the seeding-drawing-single-crystal cone-single-crystal straight body portion was pulled without applying a magnetic field after melting the raw material polycrystal. The conditions other than the magnetic field are the same as above (Test Nos. 5 to 8). The results are shown in Table 2.

【0025】[0025]

【表2】 [Table 2]

【0026】表2から明らかなように、全工程無磁場で
種付けすると溶着部側面のピット密度は2〜3×104
(/cm2 )と低くなるが、DF化率100%を維持で
きる絞り直径は約5mmが限度で、それ以上の太絞りで
は結晶にスリップ転位が発生しDF化率は低減すること
が判る。しかし、このDF化率の低減傾向は全工程磁場
印加時よりもかなり緩やかである。
As is clear from Table 2, when seeding without any magnetic field in all processes, the pit density on the side surface of the welded portion is 2-3 × 10 4.
(/ Cm 2 ), but the drawing diameter at which the DF conversion ratio can be maintained at 100% is limited to about 5 mm, and it can be seen that slip dislocation occurs in the crystal and the DF conversion ratio is reduced when the drawing diameter is larger than that. However, the tendency of the DF conversion rate to decrease is much slower than when the entire process magnetic field is applied.

【0027】次いで、磁場強度を変動させた場合の影響
を調査した(試験No. 9〜12)。種結晶として、15
mm角のシリコン単結晶(先端は平坦面)の表面を混酸
で約400μmエッチングしたものを使用して、直径1
50mmの単結晶棒を成長させて無転位化成功率を調査
した。
Next, the effect of varying the magnetic field strength was investigated (Test Nos. 9 to 12). As a seed crystal, 15
The surface of a silicon single crystal of mm square (the tip is a flat surface) is etched about 400 μm with a mixed acid, and has a diameter of 1 mm.
A 50 mm single crystal rod was grown to investigate the dislocation-free success rate.

【0028】上記種結晶を用いて、原料多結晶シリコン
の溶融後、磁場を印加しないで種付けを行い、絞り−単
結晶コーン間で0から4000gaussまで徐々に水
平磁場強度を増加させた。そして、4000gauss
に到達した後、単結晶直径150mm直胴部を10cm
まで成長させた後丸めた。その後冷却して炉内から取り
出し、取り出した結晶をセコエッチング処理してスリッ
プ転位の消滅状況を調査し、無転位化成功率としてその
結果を表3に示した。
After the raw material polycrystalline silicon was melted using the above seed crystal, seeding was performed without applying a magnetic field, and the horizontal magnetic field intensity was gradually increased from 0 to 4000 gauss between the aperture and the single crystal cone. And 4000gauss
After reaching a single crystal diameter 150mm straight body 10cm
After growing until rounded. Thereafter, the crystal was cooled and taken out of the furnace, and the taken-out crystal was subjected to a Secco etching treatment to investigate the disappearance of slip dislocations. The results are shown in Table 3 as dislocation-free success rates.

【0029】[0029]

【表3】 [Table 3]

【0030】表3を見ると、種付け時には無磁場とし、
磁場強度を絞りからコーン部まで徐々に増強した場合に
は、溶着部側面のピット密度は2〜3×104 (/cm
2 )と全工程無磁場の場合と同程度に低くなり、絞り直
径は6mmまでの太絞りが可能と成った。それ以上の太
絞りでは結晶にスリップ転位が発生しDF化率は低減す
ることが判る。このDF化率の低減傾向も全工程無磁場
の場合と同様に、全工程磁場印加時よりも緩やかであ
る。
Referring to Table 3, when seeding, no magnetic field was applied.
When the magnetic field strength is gradually increased from the aperture to the cone, the pit density on the side surface of the welded portion is 2-3 × 10 4 (/ cm 2).
2 ) and the entire process were as low as in the case of no magnetic field, and a large aperture of up to 6 mm in aperture diameter was possible. It can be seen that slip dislocation occurs in the crystal when the drawing is larger than that, and the DF conversion ratio is reduced. The tendency to decrease the DF conversion rate is also gentler than when the magnetic field is applied in all the processes, as in the case where the magnetic field is not applied in all the processes.

【0031】続いて、磁場強度の絶対値を変え、印加す
る工程を変えて調査した(試験No.13〜16)。種結
晶として、15mm角のシリコン単結晶(先端は平坦
面)の表面を混酸で約400μmエッチングしたものを
使用して、直径150mmの単結晶棒を成長させて無転
位化成功率を調査した。上記種結晶を用いて、原料多結
晶シリコンの溶融後、1000gaussの磁場を印加
して種付け−絞り工程を行い、絞り終了後−単結晶コー
ン間で1000から4000gaussまで徐々に水平
磁場強度を増加させた。そして、4000gaussに
到達した後、単結晶直径150mm直胴部を10cmま
で成長させて丸めた。その後冷却して炉内から取り出
し、取り出した結晶をセコエッチング処理してスリップ
転位の消滅状況を調査し、無転位化成功率としてその結
果を表4に示した。
Subsequently, the absolute value of the magnetic field intensity was changed, and the application process was changed to investigate (test Nos. 13 to 16). As a seed crystal, a single crystal rod having a diameter of 150 mm was grown by using a silicon single crystal of 15 mm square (the tip of which is flat at the surface) etched with a mixed acid to about 400 μm, and the dislocation-free success rate was investigated. Using the seed crystal, after melting the raw material polycrystalline silicon, apply a magnetic field of 1000 gauss and perform a seeding-drawing step, and after the drawing is completed, gradually increase the horizontal magnetic field strength from 1000 to 4000 gauss between the single crystal cones. Was. Then, after reaching 4000 gauss, a straight body portion having a single crystal diameter of 150 mm was grown to 10 cm and rounded. Thereafter, the crystal was cooled and taken out of the furnace, and the taken-out crystal was subjected to a Secco etching treatment to investigate the disappearance of slip dislocations. The results are shown in Table 4 as dislocation-free success rates.

【0032】[0032]

【表4】 [Table 4]

【0033】表4から明らかなように、種付け−絞り工
程を弱い磁場強度とし、絞り後から単結晶コーン工程ま
で徐々に増強して所定の磁場強度にした場合は、溶着部
側面のピット密度は3〜3.5×104 (/cm2 )と
全工程無磁場の場合よりやや高くなるが、絞り直径はD
F化率を70%まで許容すると6mmの太絞りが可能と
なった。それ以上の太絞りでは結晶にスリップ転位が発
生しDF化率は低減することが判る。このDF化率の低
減傾向も全工程無磁場の場合と同様に、全工程磁場印加
時よりも緩やかである。
As is clear from Table 4, when the seeding-drawing step is performed with a weak magnetic field strength and is gradually increased from the drawing to the single crystal cone step to a predetermined magnetic field strength, the pit density on the side surface of the welded portion is reduced. 3 to 3.5 × 10 4 (/ cm 2 ), which is slightly higher than in the case of no magnetic field in all steps, but the aperture diameter is D
When the F conversion rate was allowed up to 70%, a 6 mm thick drawing became possible. It can be seen that slip dislocation occurs in the crystal when the drawing is larger than that, and the DF conversion ratio is reduced. The tendency to decrease the DF conversion rate is also gentler than when the magnetic field is applied in all the processes, as in the case where the magnetic field is not applied in all the processes.

【0034】このように、本発明のMCZ法によるネッ
キングを行なう無転位種付け法では、上記表3および表
4で説明したように、無転位化成功率を向上させる因子
として種付け−絞り−単結晶コーン工程における磁場の
印加方法が深く関わっていることが明らかになった。
As described above, in the dislocation-free seeding method for necking by the MCZ method according to the present invention, as described in Tables 3 and 4, seeding-drawing-single-crystal cone is used as a factor for improving the dislocation-free success rate. It became clear that the method of applying the magnetic field in the process was closely related.

【0035】すなわち、本発明の特徴は、(1)少なく
とも種付けの際は磁場を印加しないか、あるいは単結晶
直胴部を引上げ中の印加磁場強度よりも弱い磁場を印加
して種付けを行う、シリコン単結晶の製造方法にある。
そして、(2)少なくとも種付けからネッキングまでは
無磁場とするかあるいは単結晶直胴部を引上げ中の印加
磁場強度よりも弱い磁場を印加してネッキングを行う、
シリコン単結晶の製造方法にある。さらに、(3)少な
くとも種付けからネッキングを経て引上げ操作に入った
後、単結晶コーン部の一部またはコーン部全体までを無
磁場とするか、あるいは単結晶直胴部を引上げ中の印加
磁場強度よりも弱い磁場を印加してネッキングを行う、
シリコン単結晶の製造方法にある。
That is, the feature of the present invention is that (1) seeding is performed by applying no magnetic field at least at the time of seeding or by applying a magnetic field weaker than the applied magnetic field strength during pulling up the single crystal straight body. A method for manufacturing a silicon single crystal.
And (2) applying no magnetic field at least from seeding to necking or applying a magnetic field weaker than the applied magnetic field strength during pulling up the single crystal straight body portion to perform necking;
A method for manufacturing a silicon single crystal. Further, (3) at least after starting seeding and necking and then starting a pulling operation, a magnetic field is not applied to a part of the single crystal cone portion or up to the entire cone portion, or an applied magnetic field intensity during pulling the single crystal straight body portion Necking by applying a weaker magnetic field,
A method for manufacturing a silicon single crystal.

【0036】以上三種類の磁場の印加方法によるシリコ
ン単結晶の製造方法によれば、MCZ法のネッキングに
おいて、ほぼ従来の2倍の直径約5〜6mmの太絞りが
可能となり、しかも無転位化成功率はほぼ100%を達
成することができると共に、さらには直径7mmの太絞
りも不可能ではなくなり、今後の大直径化、高重量化に
対してMCZ法で充分対応することが可能となり、生産
性、歩留りおよびコストダウンの向上を図ることができ
る。
According to the method for producing a silicon single crystal by applying the above three types of magnetic fields, in the necking of the MCZ method, it is possible to achieve a large drawing having a diameter of about 5 to 6 mm, which is almost twice as large as that of the conventional method. Achievement rate of 100% can be achieved, and it is not impossible to make a 7mm-diameter thick drawing. The MCZ method can fully cope with future increase in diameter and weight. This can improve the performance, yield, and cost reduction.

【0037】以上述べた磁場の印加方法が無転位化に有
効な理由を図面に基づいて説明する。図1は無磁場にお
ける(a)種付け、(b)空引き、(c)メニスカス
を、図2は、4000gaussの水平磁場中の(a)
種付け、(b)空引き、(c)メニスカスを、図3は、
4000gaussの水平磁場中の種付け−空引き時に
おけるメニスカスを示している。
The reason why the above-described method of applying a magnetic field is effective in eliminating dislocations will be described with reference to the drawings. 1 shows (a) seeding, (b) emptying, and (c) meniscus in the absence of a magnetic field, and FIG. 2 (a) in a 4000gauss horizontal magnetic field.
Seeding, (b) emptying, (c) meniscus, FIG.
The meniscus during seeding-idling in a horizontal field of 4000gauss is shown.

【0038】一般に、種結晶1をシリコン融液2の表面
に接触させて種付け(図1(a))を行なうと、種結晶
1の周りにフュージョンリング5が発生するが、その
後、種絞り(ネッキング)を開始する直前までにシリコ
ン融液2の温度を適温に調整する必要がある。この時、
例えば種結晶1が角棒の場合、角を取るために少しの長
さ一定の直径で引上げて丸くするが、これを空引きと呼
んでいる(図1(b))。そしてこの時、無磁場のCZ
法においては、種結晶1の先端があまりメルトバック3
(再溶融)しない程度の温度で種付けをすれば、空引き
操作が順調に進むことが経験的に判っている。
Generally, when the seed crystal 1 is brought into contact with the surface of the silicon melt 2 to perform seeding (FIG. 1A), a fusion ring 5 is generated around the seed crystal 1. It is necessary to adjust the temperature of the silicon melt 2 to an appropriate temperature just before starting the necking. At this time,
For example, when the seed crystal 1 is a square rod, the seed crystal 1 is pulled up with a constant length and a small diameter in order to form a corner, and this is called idle drawing (FIG. 1B). And at this time, CZ with no magnetic field
In the method, the tip of the seed crystal 1
It has been empirically known that if seeding is performed at such a temperature that does not cause (remelting), the emptying operation proceeds smoothly.

【0039】一方、磁場を印加した場合には、種結晶1
の先端のメルトバック3を、CZ法の場合よりも大きく
なる位(図2(a))、シリコン融液2の温度をより高
温にしておく必要があることが経験的に判っている。こ
の理由は、磁場印加によりシリコン融液2の粘度が高く
なるのでCZ法の場合と同じ温度から空引きするとメニ
スカス角度4が小さく、いきなり種結晶とシリコン融液
との融接部が拡がってしまうからである(図3)。これ
は換言すれば、磁場による粘性の増加を、シリコン融液
2の高温化によって補正していると云える。しかし、こ
のままだと種付け時の温度が高いために、熱衝撃の度合
いもCZ法に較べて高くなり、発生するスリップ転位密
度が高くなる。従って、本発明では、少なくとも種付け
の際は磁場を印加しないか、あるいは単結晶直胴部を引
上げ中の印加磁場強度よりも弱い磁場を印加して種付け
を行うことにした。
On the other hand, when a magnetic field is applied, the seed crystal 1
It has been empirically found that the temperature of the silicon melt 2 needs to be set higher so that the melt back 3 at the tip of the silicon melt 2 becomes larger than that in the case of the CZ method (FIG. 2A). The reason is that the viscosity of the silicon melt 2 is increased by the application of a magnetic field, so if the silicon melt 2 is evacuated from the same temperature as in the case of the CZ method, the meniscus angle 4 becomes small, and the fused portion between the seed crystal and the silicon melt suddenly expands. (Fig. 3). In other words, it can be said that the increase in viscosity due to the magnetic field is corrected by increasing the temperature of the silicon melt 2. However, since the temperature at the time of seeding is high, the degree of thermal shock is higher than that of the CZ method, and the generated slip dislocation density is higher. Therefore, in the present invention, seeding is performed by not applying a magnetic field at least at the time of seeding, or applying a magnetic field weaker than the applied magnetic field strength during pulling up the single crystal straight body.

【0040】そして、前述したような磁場環境を、少な
くとも絞り工程まで続ければ、メニスカス角度の大きさ
により絞りの周辺部からスリップ転位がより逃げ易い界
面形状となり、さらに好ましい。さらに、この磁場環境
を単結晶コーン部の途中あるいはコーン部全体まで継続
すると、コーン育成中にもスリップ転位が発生しにくく
なるので、安定したコーン育成が行なえる。
If the magnetic field environment as described above is continued at least until the drawing step, an interface shape in which slip dislocations can easily escape from the periphery of the drawing due to the magnitude of the meniscus angle is more preferable. Further, if this magnetic field environment is continued in the middle of the single crystal cone portion or up to the entire cone portion, slip dislocation is less likely to occur even during cone growth, so that stable cone growth can be performed.

【0041】また、この磁場環境は、図4の(C)およ
び(D)に示したような先端の尖った種結晶を使用して
種付けする場合にも有効に作用する。すなわち、スリッ
プ転位が発生し易いといった特性が、粘性によるメニス
カス角度の違いに影響される状況は、先端の尖った種結
晶を使用して無転位で種付けする場合も同じだからであ
る。従って、本発明によってこのような先端の尖った種
結晶を使用する場合にも有効であり、これによってスリ
ップ転位の発生は殆どなくなり、無転位化成功率を一層
向上させることができる。
This magnetic field environment also works effectively when using a seed crystal having a sharp tip as shown in FIGS. 4 (C) and 4 (D). That is, the characteristic that the slip dislocation is easily generated is affected by the difference in meniscus angle due to the viscosity, even when seeding without dislocation using a seed crystal having a sharp tip is the same. Therefore, the present invention is also effective when using such a seed crystal having a sharp tip, whereby the occurrence of slip dislocation is almost eliminated, and the success rate of dislocation-free can be further improved.

【0042】なお、本発明は、上記実施形態に限定され
るものではない。上記実施形態は、例示であり、本発明
の特許請求の範囲に記載された技術的思想と実質的に同
一な構成を有し、同様な作用効果を奏するものは、いか
なるものであっても本発明の技術的範囲に包含される。
The present invention is not limited to the above embodiment. The above embodiment is an exemplification, and has substantially the same configuration as the technical idea described in the scope of the claims of the present invention. It is included in the technical scope of the invention.

【0043】例えば、本発明の実施形態では、直径15
0mm(6インチ)のシリコン単結晶棒を成長させてい
るが、近年の200mm(8インチ)〜400mm(1
6インチ)への大直径化にも十分対応することができ
る。本発明では、結晶保持装置等を用いることなく、原
則としていかなる直径、長さ、重量の単結晶棒の引上げ
であっても当然に適用するることができる。
For example, in the embodiment of the present invention, the diameter 15
Although a 0 mm (6 inch) silicon single crystal rod is grown, recent 200 mm (8 inch) to 400 mm (1 inch)
6 inches) can be sufficiently coped with. In the present invention, a single crystal rod of any diameter, length, and weight can be pulled in principle without using a crystal holding device or the like.

【0044】また、本発明の実施形態では、シリコン単
結晶の引上げ時に磁場を印加するMCZ法の内、水平磁
場を印加するHMCZ法(Horizontal Magnetic field a
pplied Czochralski crystal growth method) について
説明してきたが、カスプ磁場を印加するCusp−MC
Z法、垂直磁場を印加するVMCZ法等にも同様に適用
できることは言うまでもない。
In the embodiment of the present invention, of the MCZ method for applying a magnetic field when pulling a silicon single crystal, the HMCZ method (Horizontal Magnetic field a) for applying a horizontal magnetic field is used.
pplied Czochralski crystal growth method), Cusp-MC applying a cusp magnetic field
Needless to say, the present invention can be similarly applied to the Z method, the VMCZ method applying a vertical magnetic field, and the like.

【0045】[0045]

【発明の効果】以上説明したように、本発明によれば、
MCZ法によってシリコン単結晶棒を引上げる際に、ネ
ッキングを行う種付け法において、種付け時における融
液の低温化が可能となり、接触時のスリップ転位の発生
密度を抑制できるので、比較的太い絞り直径でも高いス
リップ転位の消滅確率が得られる。従って、磁場を印加
しなければ成長させることが困難な大口径ルツボからの
大直径、高重量単結晶の引上げに際しても、従来の絞り
技術が生かされ、無転位化成功率はほぼ100%を達成
し、その再現性もよく、長期安定化させることができ
る。従って、今後の単結晶棒の大直径化、長尺化、高重
量化にも十分適応させることが可能であり、生産性、歩
留りならびにコストを著しく改善することができる。
As described above, according to the present invention,
When pulling a silicon single crystal rod by the MCZ method, in the seeding method of necking, it is possible to lower the temperature of the melt at the time of seeding, and it is possible to suppress the density of slip dislocations generated at the time of contact. However, a high slip dislocation annihilation probability can be obtained. Therefore, even when pulling a large-diameter, heavy-weight single crystal from a large-diameter crucible that is difficult to grow without applying a magnetic field, the conventional drawing technique is utilized, and the dislocation-free success rate has reached almost 100%. , Its reproducibility is good, and it can be stabilized for a long time. Therefore, it is possible to sufficiently adapt to increase in diameter, length, and weight of the single crystal rod in the future, and it is possible to remarkably improve productivity, yield, and cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】無磁場における種付け、空引き、メニスカスを
示した説明図である。 a)種付け時の斜視図、 b)空引き
時の斜視図、 c)メニスカスを示す縦断面図。
FIG. 1 is an explanatory diagram showing seeding, emptying, and meniscus without a magnetic field. a) a perspective view at the time of seeding, b) a perspective view at the time of emptying, c) a longitudinal sectional view showing a meniscus.

【図2】4000ガウス水平磁場中における種付け、空
引き、メニスカスを示した説明図である。 a)種付け時の斜視図、 b)空引き
時の斜視図、 c)メニスカスを示す縦断面図。
FIG. 2 is an explanatory diagram showing seeding, emptying, and meniscus in a 4000 Gauss horizontal magnetic field. a) a perspective view at the time of seeding, b) a perspective view at the time of emptying, c) a longitudinal sectional view showing a meniscus.

【図3】4000ガウス水平磁場中における種付け〜空
引き時におけるメニスカスを示した縦断面図である(シ
リコン融液の温度を無磁場時と同じ値に設定した場
合)。
FIG. 3 is a longitudinal sectional view showing a meniscus during seeding to emptying in a 4000 Gauss horizontal magnetic field (when the temperature of the silicon melt is set to the same value as when no magnetic field is applied).

【図4】本発明において使用する種結晶の形状を示す斜
視図である。 (A)円柱状種結晶(先端は平坦面)、(B)角柱状種
結晶(先端は平坦面)、(C)円錐状種結晶、
(D)角錐状種結晶。
FIG. 4 is a perspective view showing a shape of a seed crystal used in the present invention. (A) cylindrical seed crystal (tip is flat surface), (B) prismatic seed crystal (tip is flat surface), (C) conical seed crystal,
(D) Pyramidal seed crystal.

【符号の説明】[Explanation of symbols]

1…種結晶、 2…シリコン融液、 3…メルトバック、 4…メニスカス角度、 5…フュージョンリング。 1 ... Seed crystal, 2 ... Silicon melt, 3 ... Melt back, 4 ... Meniscus angle, 5 ... Fusion ring.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 磁場を印加するチョクラルスキー法によ
り、種結晶の先端をシリコン融液に接触させた後、ネッ
キングを行い単結晶棒を成長させるシリコン単結晶の製
造方法において、少なくとも種付けの際は磁場を印加し
ないか、あるいは単結晶直胴部を引上げ中の印加磁場強
度よりも弱い磁場を印加して種付けを行うことを特徴と
するシリコン単結晶の製造方法。
In a method of manufacturing a silicon single crystal, a tip of a seed crystal is brought into contact with a silicon melt by a Czochralski method of applying a magnetic field, and then necking is performed to grow a single crystal rod. Is a method for producing a silicon single crystal, wherein seeding is performed by applying no magnetic field or applying a magnetic field weaker than the applied magnetic field strength during pulling up the single crystal straight body.
【請求項2】 前記磁場の印加を、少なくとも種付けか
らネッキングまでは無磁場とするかあるいは単結晶直胴
部を引上げ中の印加磁場強度よりも弱い磁場を印加して
ネッキングを行うことを特徴とする請求項1に記載した
シリコン単結晶の製造方法。
2. The method according to claim 1, wherein the magnetic field is applied without a magnetic field at least from seeding to necking, or necking is performed by applying a magnetic field weaker than the applied magnetic field strength during pulling up the single crystal straight body. The method for producing a silicon single crystal according to claim 1.
【請求項3】 磁場を印加するチョクラルスキー法によ
り、種結晶の先端をシリコン融液に接触させた後、ネッ
キングを行い単結晶棒を成長させるシリコン単結晶の製
造方法において、少なくとも種付けからネッキングを経
て引上げ操作に入った後、単結晶コーン部の一部または
コーン部全体までを無磁場として育成するか、あるいは
単結晶直胴部を引上げ中の印加磁場強度よりも弱い磁場
を印加してコーン部を育成することを特徴とするシリコ
ン単結晶の製造方法。
3. A method for producing a silicon single crystal in which a tip of a seed crystal is brought into contact with a silicon melt by a Czochralski method applying a magnetic field, and then necking is performed to grow a single crystal rod. After starting the pulling operation through, the part of the single crystal cone part or up to the whole cone part is grown without a magnetic field, or by applying a magnetic field weaker than the applied magnetic field strength during pulling the single crystal straight body part A method for producing a silicon single crystal, comprising growing a cone.
【請求項4】 種結晶の先端部の形状が、尖った形状で
あることを特徴とする請求項1ないし請求項3のいずれ
か1項に記載のシリコン単結晶の製造方法。
4. The method for producing a silicon single crystal according to claim 1, wherein the tip of the seed crystal has a pointed shape.
JP2671598A 1998-01-23 1998-01-23 Production of silicon single crystal Pending JPH11209197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2671598A JPH11209197A (en) 1998-01-23 1998-01-23 Production of silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2671598A JPH11209197A (en) 1998-01-23 1998-01-23 Production of silicon single crystal

Publications (1)

Publication Number Publication Date
JPH11209197A true JPH11209197A (en) 1999-08-03

Family

ID=12201060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2671598A Pending JPH11209197A (en) 1998-01-23 1998-01-23 Production of silicon single crystal

Country Status (1)

Country Link
JP (1) JPH11209197A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003095717A1 (en) * 2002-05-10 2003-11-20 Komatsu Denshi Kinzoku Kabushiki Kaisha Production method and production device for single crystal
JP2011157221A (en) * 2010-01-29 2011-08-18 Shin Etsu Handotai Co Ltd Method for producing silicon single crystal and apparatus for producing silicon single crystal
WO2022020684A1 (en) * 2020-07-24 2022-01-27 Globalwafers Co., Ltd. Methods for producing a monocrystalline ingot by horizontal magnetic field czochralski

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003095717A1 (en) * 2002-05-10 2003-11-20 Komatsu Denshi Kinzoku Kabushiki Kaisha Production method and production device for single crystal
JP2011157221A (en) * 2010-01-29 2011-08-18 Shin Etsu Handotai Co Ltd Method for producing silicon single crystal and apparatus for producing silicon single crystal
WO2022020684A1 (en) * 2020-07-24 2022-01-27 Globalwafers Co., Ltd. Methods for producing a monocrystalline ingot by horizontal magnetic field czochralski
US11767611B2 (en) 2020-07-24 2023-09-26 Globalwafers Co., Ltd. Methods for producing a monocrystalline ingot by horizontal magnetic field Czochralski

Similar Documents

Publication Publication Date Title
US5911822A (en) Method of manufacturing silicon monocrystal, and seed crystal used in the method
JP4151580B2 (en) Method for producing silicon single crystal and silicon single crystal and silicon wafer
JP4165068B2 (en) Method for producing silicon single crystal
US6197108B1 (en) Silicon seed crystal, method of manufacturing the same, and method of manufacturing silicon monocrystal through use of the seed crystal
JP2937115B2 (en) Single crystal pulling method
JP3050120B2 (en) Single crystal pulling seed crystal and single crystal pulling method using the seed crystal
KR100582237B1 (en) Method of producing a silicon monocrystal
US6056818A (en) Method of manufacturing a silicon monocrystal, and method of holding the same
WO2013088646A1 (en) Method for producing silicon single crystal
JPH11209197A (en) Production of silicon single crystal
EP0949359B1 (en) Process for producing a silicon single crystal by Czochralski method
JP3402210B2 (en) Method for producing silicon single crystal
JP2000154091A (en) Production of silicon single crystal and seed holder therefor
JP2000128691A (en) Silicon seed crystal and production of silicon single crystal
JPH10324594A (en) Silicon seed crystals, their production and process for producing silicon single crystal by using these seed crystals
JPH07300388A (en) Production of silicon single crystal
KR100581045B1 (en) Method for porducing silicon single crystal
JP3473477B2 (en) Method for producing silicon single crystal
JP3395626B2 (en) Method for producing silicon single crystal and seed crystal
JP3927314B2 (en) Method for producing silicon seed crystal and silicon single crystal
JPH11292689A (en) Production of silicon single crystal, seed crystal and seed crystal holding tool
JPH09249495A (en) Seed crystal for pulling-up single crystal and pulling-up of single crystal using the same
WO2002016678A1 (en) Method for producing silicon single crystal
JP2005281018A (en) Silicon single crystal pulling method
JPH11217297A (en) Treatment of silicon seed crystal, silicon seed crystal and production of silicon single crystal

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040715

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20040907

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050111