WO2003095717A1 - Production method and production device for single crystal - Google Patents

Production method and production device for single crystal Download PDF

Info

Publication number
WO2003095717A1
WO2003095717A1 PCT/JP2003/005730 JP0305730W WO03095717A1 WO 2003095717 A1 WO2003095717 A1 WO 2003095717A1 JP 0305730 W JP0305730 W JP 0305730W WO 03095717 A1 WO03095717 A1 WO 03095717A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
single crystal
silicon melt
melt
temperature
Prior art date
Application number
PCT/JP2003/005730
Other languages
French (fr)
Japanese (ja)
Inventor
Shoei Kurosaka
Hiroshi Inagaki
Shigeki Kawashima
Nobuyuki Fukuda
Masahiro Shibata
Original Assignee
Komatsu Denshi Kinzoku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Denshi Kinzoku Kabushiki Kaisha filed Critical Komatsu Denshi Kinzoku Kabushiki Kaisha
Publication of WO2003095717A1 publication Critical patent/WO2003095717A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt

Definitions

  • the present invention relates to a method for manufacturing a semiconductor single crystal by applying a magnetic field and a manufacturing apparatus for realizing the method, and in particular, to keep the diameter of the constricted portion large enough to withstand pulling of a heavy semiconductor single crystal.
  • the present invention also relates to a method and an apparatus for manufacturing a semiconductor single crystal capable of achieving dislocation-free. Background art
  • CZ method Chiyoklarski method
  • FIG. 6 is a longitudinal sectional view of a single crystal manufacturing apparatus for manufacturing a silicon single crystal by the CZ method.
  • the crucible 2 used for producing a silicon single crystal has a double structure, and is composed of an inner quartz crucible 2a and an outer black crucible 2b.
  • a heater 3 made of graphite is provided around the crucible 2, and a molten silicon solution 4 melted by the heater 3 is stored in the crucible 2.
  • a pulling wire 5 is used as a means for pulling a silicon single crystal, and a seed crystal 6 is attached to the tip thereof. Then, by bringing the lower end of the seed crystal 6 into contact with the surface of the silicon melt 4 and pulling it up, a single crystal 7 is grown at the lower end.
  • the surface of the inner quartz crucible 2a is melted by contact with the silicon melt 4 to release oxygen into the silicon melt 4. Since the single crystal 7 produced by the CZ method is pulled up from the silicon melt 4 in the quartz crucible 2a and grown, the grown single crystal 7 elutes from the quartz (Sio2) of the crucible. Contains oxygen. For this reason, even if it is repeatedly subjected to heat treatment in the manufacturing process of ICs and LSIs, it is characterized in that it is unlikely to cause slip and warp. Furthermore, the oxygen precipitates inside form a high-density defect layer by heat treatment near 100 ° C, and impurities present in the surface region of the wafer It also has the effect of reducing objects (so-called intrinsic gettering). As described above, since the amount of oxygen dissolved in the single crystal 7 has various effects on the quality of the wafer, it is necessary to control the amount of oxygen taken into the single crystal 7 in the CZ method.
  • a magnetic field is applied in combination with the CZ method.
  • This method is called the MCZ method (Magnetic-fiel d_a PP 1 ied CZ method), in which a magnetic field is applied to the silicon melt by a magnet provided around the semiconductor single crystal manufacturing equipment, and the kinematic viscosity of the silicon melt is
  • MCZ method Magnetic-fiel d_a PP 1 ied CZ method
  • a silicon single crystal is pulled by the CZ method with the temperature raised. Since the convection of the silicon melt is suppressed by the action of the magnetic field, vibration and temperature fluctuation at the solid-liquid interface due to the convection are reduced, and a stable growth of a silicon single crystal can be promoted.
  • the reaction between the silicon melt and the quartz crucible (S i 02) is suppressed or promoted, it is an effective method for controlling the oxygen concentration in the silicon single crystal.
  • the MCZ method is widely used as an industrial mass production method for single crystals for semiconductors.
  • seeding in which the seed crystal is first brought into contact with the silicon melt by the CZ method or the MCZ method, when the seed crystal is brought into contact with the silicon melt, the slip dislocation generated at high density in the seed crystal by thermal shock is applied.
  • so-called seed drawing (necking) is performed, in which the diameter is once reduced to about 2 to 5 mm to form a drawing part.
  • the dislocation-free silicon single crystal is pulled up by a shoulder expanding process by increasing the thickness of the crystal until a desired diameter is obtained.
  • the necking method is widely known as the Dash NecKing method, and is an important step in pulling a silicon single crystal by the CZ method or the MCZ method.
  • the weight of the silicon single crystal to be pulled is limited by the diameter of the constricted portion. If the weight exceeds the limit, there is a risk that the constricted portion breaks and the silicon single crystal falls.
  • the weight of silicon single crystals has increased due to the increase in diameter, and it has become more difficult to pull heavy silicon single crystals by the MCZ method. For example, when growing a heavy silicon single crystal to produce a large diameter wafer having a diameter of 30 O mm or more, there is a safety problem such as a thin narrow portion inducing a drop of the silicon single crystal.
  • the necking step is performed at a low magnetic field strength, so that the neck portion can be relatively thinned without being extremely thin. Achieve dislocation-free operation in a large diameter state. Then, by performing the shoulder expanding process while gradually increasing the magnetic field strength, safe pulling of heavy silicon single crystals is secured.
  • the convection of the silicon melt in the crucible is suppressed when the magnetic field is applied. Therefore, the heat given by the heater heats the silicon melt near the inner wall of the crucible, and then slowly relaxes toward the center of the silicon melt by heat conduction instead of convection of the silicon melt. Heat is transferred. Since the amount of heat transferred by heat conduction is smaller than the amount of heat transferred by convection, the temperature of the melt near the inner wall of the crucible rises in order to keep the temperature of the melt near the melting point in the center of the crucible.
  • the temperature of the silicon melt will fluctuate up and down .
  • rapid crystal growth occurred from the narrowed portion, and the single crystal became thicker, and the grown crystal rapidly re-dissolved and the single crystal became thinner. This indicates that it is difficult to control the shape of the single crystal when gradually increasing the magnetic field strength while pulling the single crystal.
  • the invention according to the present application has been made in order to solve the above-described problems, and an object of the invention is to provide a large-diameter, heavy-weight semiconductor single crystal without breaking the drawn portion.
  • An object of the present invention is to provide a method and an apparatus for manufacturing a semiconductor single crystal that can be safely pulled up.
  • Another object of the invention according to the present application is to provide a method and an apparatus for manufacturing a semiconductor single crystal capable of removing dislocations in a narrowed portion during a necking step.
  • a first invention according to the present application is directed to a method in which a tip of a seed crystal is brought into contact with a silicon melt in a no magnetic field, the seed crystal is pulled up, a drawing step is performed, and the seed crystal is pulled up. Stopping the application of a magnetic field, increasing the magnetic field intensity to a desired intensity, and then restarting the pulling of the seed crystal in a state where a magnetic field is applied. is there.
  • the second invention according to the present application provides the above-mentioned silicon molten liquid before applying the magnetic field, while increasing the magnetic field strength, or after increasing the magnetic field strength to a desired strength.
  • the method for producing a single crystal according to the first aspect, wherein the temperature is controlled as follows.
  • a third invention according to the present application is characterized in that before applying the magnetic field, the temperature of the silicon melt is controlled in a state where the pulling of the seed crystal is stopped.
  • 1 is a method for producing a single crystal according to the invention of 1).
  • the fourth invention according to the present application is characterized in that, in a absence of a magnetic field, the tip of the seed crystal is brought into contact with a silicon melt, the seed crystal is pulled up, a drawing process is performed, and the pulling of the seed crystal is stopped.
  • a method for producing a single crystal comprising applying a magnetic field after controlling the temperature of a silicon melt.
  • the temperature control of the silicon melt is performed, and the magnetic field is applied after a lapse of time sufficient for the temperature of the silicon melt to stabilize.
  • the seventh and eighth inventions according to the present application are characterized in that the temperature control of the silicon melt is performed in accordance with a change in the diameter of the narrowed portion where the lifting is stopped.
  • a ninth invention according to the present application is characterized in that, after the resumption of the pulling, the temperature of the silicon melt is controlled before the shoulder expanding step, wherein the single crystal according to the first invention is characterized in that: It is a manufacturing method.
  • the temperature of the silicon melt is set so as to cancel a temperature change of the silicon melt due to an increase in the magnetic field strength in the shoulder expanding step after the lifting is restarted.
  • the eleventh invention provides a crucible containing a single crystal raw material melt to be grown, a heater for heating the melt, and a seed crystal contacting the surface of the melt in the crucible.
  • a single crystal manufacturing apparatus comprising: a pulling means for growing a single crystal by growing the magnetic field; a magnetic field applying means for applying a magnetic field; and a chamber accommodating the above members. In the field, the tip of the seed crystal is brought into contact with the melt, the seed crystal is pulled up, a drawing step is performed, the pulling up of the seed crystal is stopped, the application of a magnetic field is started, and the magnetic field strength is increased to a desired strength.
  • a twelfth invention provides a crucible containing a single crystal raw material melt to be grown, a heater for heating the melt, and a seed crystal contacting the surface of the melt in the crucible.
  • a single crystal manufacturing apparatus comprising: a pulling unit that grows a single crystal by applying a magnetic field; a magnetic field applying unit that applies a magnetic field; and a chamber that accommodates each of the members. After the time required for stabilization has elapsed, the heater and the control means for controlling the magnetic field applying means so as to excite the magnetic field applying means to a desired magnetic field intensity. Use the device.
  • FIG. 1 is a longitudinal sectional view showing a state where a single crystal manufacturing apparatus of the present invention pulls a single crystal.
  • FIG. 2 is a longitudinal sectional view showing a state where the single crystal manufacturing apparatus of the present invention has stopped pulling a seed crystal.
  • FIG. 3 is a longitudinal sectional view showing a state where the single crystal manufacturing apparatus of the present invention is performing a shoulder expanding step.
  • FIG. 4 is a timing chart showing a relationship between ⁇ N, OFF of the pulling up and the application of the magnetic field in the first embodiment. '
  • Fig. 5 (a) is a timing chart showing ON / OFF of the lifting
  • Fig. 5 (b) is the heater temperature
  • Fig. 5 (c) is the temperature of the silicon melt
  • Fig. 5 (d) is a timing chart showing the magnetic field strength. is there.
  • FIG. 6 is a longitudinal sectional view of a single crystal manufacturing apparatus for manufacturing a silicon single crystal by the CZ method.
  • FIG. 1 An embodiment of a single crystal manufacturing method and a manufacturing apparatus according to the present application, FIG. This will be described in detail based on the plane.
  • FIG. 1 is a longitudinal sectional view showing a single crystal manufacturing apparatus.
  • Reference numeral 2 in the figure denotes a crucible, which has a double structure of a quartz crucible 2a on the inside and a graphite crucible 2b on the outside, and is set on a crucible support shaft 2c.
  • the chamber 9 constituting the appearance of the single crystal manufacturing apparatus 1 is made of stainless steel with little contamination to silicon, and is a cylindrical container arranged around a single crystal pulling shaft.
  • a crucible 2 is disposed at the center thereof, and a heater 3 for heating the silicon melt 4 in the crucible 2 is provided around the crucible 2 around the crucible 2.
  • the heater 3 is made of isotropic graphite, and the temperature of the heater 3 is controlled by adjusting the set power by the temperature controller 14 arranged outside the chamber 9.
  • a cylindrical heat insulating cylinder 11 is arranged so as to surround the outer periphery of the heater 3.
  • the heat retaining cylinder 11 serves to prevent the chamber 9 from being damaged by heat from the heater 3 and to maintain the temperature in the heat retaining cylinder 11 at a high temperature.
  • a material of the heat retaining cylinder 11 a carbon fiber material is mainly used.
  • a pair of magnets 15 as magnetic field applying means are arranged to face each other in a vertically standing state.
  • the magnet 15 use is made of an electromagnet, a superconducting magnet, or the like having a variable magnetic field strength.
  • a permanent magnet having a variable distance from the silicon melt 4 can be used instead.
  • a cusp magnetic field may be applied by the upper magnet and the lower magnet. The output of the magnet 15 is controlled by the magnetic field controller 16.
  • a wire 5 is suspended from the center of the upper part of the chamber 9 as a single crystal pulling means so as to be rotatable and vertically movable, and a seed chuck 8 is provided at the lower end thereof.
  • the seed crystal 6 is held by the seed chuck 8 and raised while the seed crystal 6 is rotated by the wire 5, whereby a single crystal 7 grows on the solid-liquid interface that is the contact surface with the silicon melt 4. .
  • the single crystal manufacturing apparatus 1 also includes a television camera 19 and a camera controller unit 20 for observing a change in the diameter of the single crystal 7 at the solid-liquid interface.
  • the display 21 is connected to the camera control unit 20, and images taken by the TV camera 19 are displayed on the display 21 for visualization. ing.
  • the operator can observe the change in the diameter of the single crystal 7 from the display 21 and adjust the set temperature of the temperature controller 14 in accordance with the change in the diameter of the single crystal 7 to change the heater 3. Control the temperature.
  • the temperature change of the solid-liquid interface is measured by a temperature measuring means such as an infrared thermometer, and the temperature controller 14 is controlled based on the temperature change.
  • the temperature of the heater 3 may be controlled by adjusting the set temperature.
  • a radiation screen is provided above the crucible 2 so as to surround the periphery of the single crystal 7 to be pulled, so as to increase the pulling speed of the single crystal 7 and promote efficient growth. May be provided.
  • a receiving tray 18 for receiving the silicon melt 4 from the crucible 2 in case of accident.
  • a supply port 12 is provided at an upper portion of the chamber 9, and a high-purity argon gas is constantly supplied from the supply port 12 to adjust the atmosphere of the chamber 9 and discharge evaporated substances.
  • the argon gas may be supplied by a commonly used method, and liquid argon is used as a raw material, and is supplied into the chamber 9 after gasification.
  • a discharge port 10 is provided at the lower part of the chamber 9 and a vacuum pump 13 is connected thereto. The argon gas is supplied from the supply port 12, flows downward over the crucible 2, and is discharged from the discharge port 10 by the vacuum pump 13 (see the arrow in FIG. 6).
  • high-purity polycrystalline silicon is roughly crushed and washed, then put into crucible 2 and heated by heater 3. At this time, a small amount of a conductive impurity (additive or doping agent) is simultaneously added in a required amount. Boron (B) is added to obtain a P-type crystal, and phosphorus (P) or antimony (Sb) is added to form an N-type crystal. The resistivity of the crystal is controlled by the amount of impurities added.
  • the magnetic field controller 16 controls the magnet 15 Is controlled to a non-excited state, and no magnetic field is applied to the silicon melt 4.
  • the seed crystal 6 is held by the seed chuck 8 provided at the lower end of the pulling wire 5, and the seed crystal 6 is brought into contact with the silicon melt 4. Then, as shown in FIG. 2, the wire 5 is wound up while the crucible 2 and the seed crystal 6 are rotated, and the seed crystal 6 is pulled upward.
  • a seed crystal having a diameter of 12.7 mm is reduced to about 5 mm in order to eliminate dislocations propagating from slip dislocations generated at high density in the seed crystal 6.
  • a necking is performed to form a narrowed portion 17 by narrowing.
  • the conventional MCZ method a magnetic field is applied to the silicon melt 4 at the time of seeding, the convection of the silicon melt 4 is suppressed, and the solid-liquid interface is in a stable state. Dislocations existing in 6 do not escape in the left-right direction and remain inside the constricted portion, making it difficult to eliminate dislocations. Therefore, in the conventional M CZ method, the diameter of the constricted portion had to be reduced to 2 mm. On the other hand, in the single crystal manufacturing method of the present invention, necking is performed in the absence of a magnetic field, so that the diameter of the narrowed portion 17 may be about 5 mm.
  • Figure 4 shows a timing chart showing the relationship between pulling up and applying a magnetic field.
  • the horizontal axis is the time axis [min]
  • the vertical axis is the upward ON, OFF, and magnetic field strength [T] (tesla).
  • T magnetic field strength
  • the magnet 15 is excited by the magnetic field controller 16 and the application of a magnetic field to the silicon melt 4 is started.
  • the magnetic field strength of the magnet 15 is gradually increased with time.
  • the value is raised to 0.3 to 0.4 Tesla [T] over about one hour.
  • the rate of increase of the magnetic field strength of the magnet 15 may be constant over time, or may be changed over time. Rate of increase in the magnetic field strength can be programmed controlled by the magnetic field controller 1 6 shown in FIG. For example, changing the output of the magnet 15 by adjusting the magnetic field controller 16 based on the image captured by the TV camera 19 so that the diameter of the aperture 17 at the solid-liquid interface becomes constant. Can also You.
  • the magnetic field controller 16 After increasing the magnetic field strength of the magnet 15 to a desired value, the magnetic field controller 16 sets the magnetic field strength to a constant value. Then, the magnetic field intensity is set to a constant value, and after 5 minutes or more, the winding of the pulling wire 5 is restarted. More preferably, after the elapse of 15 minutes or more, the winding of the lifting wire 5 is restarted.
  • the temperature state of the silicon melt 4 is appropriate based on how the diameter of the narrowed portion 17 is increased or decreased with respect to the lifting speed, and if necessary, a temperature correction operation of the heater 3 is performed. After that, the growth phase may be shifted to the shoulder expanding step.
  • a shoulder expanding step is performed in a state where a magnetic field is applied, and the single crystal 7 is thickened until a desired diameter is obtained.
  • a straight body is formed as shown in FIG. For example, when manufacturing a semiconductor wafer having a diameter of 30 O mm, the diameter of the single crystal 7 is enlarged until the diameter becomes slightly larger than 30 O mm, and then the straight body is formed.
  • the magnetic field may be maintained at a constant value, or may be changed according to a change in the diameter of the single crystal 7.
  • the temperature of the silicon melt 4 during the increase of the magnetic field strength is not stabilized, and fluctuates rapidly. Therefore, it is not preferable to perform the shoulder expanding step in that state.
  • Experiments have shown that when 5 minutes or more have passed since the magnetic field strength was kept constant, the temperature of the silicon melt 4 was stabilized and the state of the solid-liquid interface was also stabilized.
  • the magnetic field strength is gradually increased from the non-magnetic field, and when the magnetic field strength increases to a predetermined value, a constant value is maintained. Then, after a sufficient time has passed for the temperature change of the silicon melt 4 to stabilize, the pulling of the seed crystal 6 is restarted, and the process proceeds to the shoulder expanding step.
  • the variation of the convection structure of the silicon melt 4 is suppressed, and the shoulder spreading process can be performed after the melt temperature is stabilized, so that the shape of the pulled silicon single crystal 7 can be easily controlled. Further, since necking is performed in the absence of a magnetic field, dislocation-free silicon single crystal 7 can be effectively achieved even when the diameter of aperture portion 17 is relatively large.
  • Example 1 it was found that a magnetic field was applied to the silicon melt 4 and the temperature of the silicon melt 4 during the increase in the magnetic field strength was on average decreased while fluctuating up and down. Therefore, in the second embodiment, the temperature of the heater 3 is also controlled.
  • the seed crystal 6 is held by the seed chuck 8 provided at the lower end of the pulling wire 5, and the seed crystal 6 is brought into contact with the silicon melt 4. Then, as shown in FIG. 2, the wire 5 is wound up while the crucible 2 and the seed crystal 6 are rotated, and the seed crystal 6 is pulled up. In the seeding in which the seed crystal 6 is brought into contact with the silicon melt 4, a seed crystal having a diameter of 12.7 mm is removed from the seed crystal 6 in order to eliminate dislocations propagating from slip dislocations generated at high density in the seed crystal 6. The necking for forming the squeezed portion 17 by once thinning to about mm is performed.
  • Figure 5 shows a timing chart showing the relationship between the heater temperature, the silicon melt temperature, and the application of a magnetic field.
  • the horizontal axis is the time axis, and the vertical axis is ( a ) Pull ON, OFF,
  • the pulling of the seed crystal 6 is stopped (FIG. 5 (a)), and after about 1 to 5 minutes have elapsed, the set temperature of the heater 3 is increased by the temperature controller 14 (FIG. 5 (b)).
  • the temperature is set to about 10 to 20 ° C. higher than the normal heater temperature. As the temperature of the heater 3 rises, the temperature of the silicon melt 4 also rises (Fig. 5 (c)).
  • the magnetic field controller 16 starts excitation of the magnet 15 and applies a magnetic field to the silicon melt 4 (FIG. 5 (d) ).
  • the magnetic field strength of the magnet 15 is gradually increased over time.
  • the pressure is increased to 0.3 to 0.4 Tesla [T] over about one hour.
  • the rate of increase of the magnetic field strength of magnet 15 is constant over time Or may change over time. The rate of increase of the magnetic field strength is
  • the program can be controlled by the magnetic field controller 16 shown in FIG.
  • the output of the magnet 15 can be changed by adjusting the magnetic field controller 16 based on the image captured by the TV camera 19 so that the diameter of the aperture 17 at the solid-liquid interface is constant. .
  • FIG. 5 shows an example in which the temperature of the heater 3 is kept constant while the magnetic field strength is gradually increased, but the temperature of the heater 3 may be varied.
  • the convective structure of the silicon melt 4 undergoes a sudden change, so that the temperature of the silicon melt 4 fluctuates greatly.
  • the expansion and contraction of the diameter of the diaphragm section 17 whose lifting is stopped during application of the magnetic field is photographed with a television camera 19, and the temperature controller 14 is adjusted while observing the display 21.
  • the temperature of the silicon melt 4 can be stabilized by positively performing fine adjustment of the temperature of the heater 3.
  • the temperature controller 14 may be program-controlled to offset the temperature fluctuation of the silicon melt 4 caused by the magnetic field fluctuation.
  • the magnetic field controller 16 When the magnetic field strength of the magnet 15 is increased to a desired value, the magnetic field controller 16 The magnetic field strength to a constant value. Then, after the magnetic field intensity is set to a constant value and 5 minutes or more have elapsed, winding of the pulling wire 5 is resumed. More preferably, after the elapse of 15 minutes or more, the winding of the lifting wire 5 is restarted.
  • the temperature state of the silicon melt 4 is appropriate based on how the diameter of the narrowed portion 17 is increased or decreased with respect to the lifting speed, and if necessary, a temperature correction operation of the heater 3 is performed. After that, the growth phase may be shifted to the shoulder expanding step.
  • a shoulder expanding step is performed in a state where a magnetic field is applied, and the single crystal 7 is thickened until a desired diameter is obtained.
  • a straight body is formed as shown in FIG. For example, when manufacturing a semiconductor wafer having a diameter of 30 O mm, the diameter of the single crystal 7 is enlarged until the diameter becomes slightly larger than 30 O mm, and then the straight body is formed.
  • the magnetic field strength may be maintained at a constant value, or may be changed according to a change in the diameter of the single crystal 7.
  • the temperature of the heater 3 may be controlled to decrease.
  • the pulling of the seed crystal 6 and the stopping of the pulling, the control of the temperature controller 14 and the control of the magnetic field controller 16 are well known. Automatic control is also possible by linking them with each other by control means.
  • dislocations in the narrowed portion can be effectively removed during the necking step.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

A production method and a production device for a semiconductor single crystal. The production device (1) for a single crystal comprises a crucible (2) for storing the material melt (4) of a single crystal (7) to be grown, a heater (3) for heating this melt (4), a wire (5) for bringing a seed crystal (6) into contact with the surface of the melt (4) in the crucible (2) to pull up the single crystal (7), a chamber (9) for housing the above members, and a magnet (15) for applying magnetic field. Necking is carried out in the absence of magnetic field, before pulling is stopped, and the heater (3) is temperature-controlled. Then, magnetic field is gradually applied by the magnet (15) until a magnetic field intensity reaches a desired value, and thereafter pulling is resumed. A large-diameter, heavy-weight semiconductor single crystal can be safely pulled up with dislocation at a restriction part removed and without causing breakage at the restriction part.

Description

明細書 単結晶の製造方法及び製造装置 技術分野 Description Single crystal manufacturing method and manufacturing apparatus
本発明は、 磁場印加による半導体単結晶の製造方法およびその製造方法を実現 するための製造装置に係り、 特に、 絞り部の直径を大重量の半導体単結晶の引き 上げに耐え得る太さを保ちつつ、 無転位化を達成することが可能な半導体単結晶 の製造方法および製造装置に関する。 背景技術  The present invention relates to a method for manufacturing a semiconductor single crystal by applying a magnetic field and a manufacturing apparatus for realizing the method, and in particular, to keep the diameter of the constricted portion large enough to withstand pulling of a heavy semiconductor single crystal. The present invention also relates to a method and an apparatus for manufacturing a semiconductor single crystal capable of achieving dislocation-free. Background art
単結晶の製造方法は種々あるが、 なかでも、 シリコン単結晶の引き上げに関し 、 工業的に量産が可能な方式で広く応用されているものとしてチヨクラルスキー 法 (C Z法) がある。  There are various methods for producing single crystals, and among them, the Chiyoklarski method (CZ method) is widely used as a method that can be industrially mass-produced for pulling silicon single crystals.
図 6は、 シリコン単結晶を C Z法によつて製造する単結晶製造装置の縦断面図 である。 通常、 シリコン単結晶の製造に使用される坩堝 2は二重構造であって、 内側の石英坩堝 2 aと、 外側の黒 坩堝 2 bとで構成される。 坩堝 2の周囲には 黒鉛製のヒータ 3が配設され、 坩堝 2内にはこのヒータ 3によって溶融されたシ リコンの溶融液 4が収容される。 シリコン単結晶の引き上げ手段として引き上げ ワイヤ 5が用いられ、 その先端に種結晶 6が取り付けられる。 そして、 シリコン 溶融液 4の表面に種結晶 6の下端を接触させて上方へ引き上げることにより、 そ の下端に単結晶 7を成長させる。  FIG. 6 is a longitudinal sectional view of a single crystal manufacturing apparatus for manufacturing a silicon single crystal by the CZ method. Usually, the crucible 2 used for producing a silicon single crystal has a double structure, and is composed of an inner quartz crucible 2a and an outer black crucible 2b. A heater 3 made of graphite is provided around the crucible 2, and a molten silicon solution 4 melted by the heater 3 is stored in the crucible 2. A pulling wire 5 is used as a means for pulling a silicon single crystal, and a seed crystal 6 is attached to the tip thereof. Then, by bringing the lower end of the seed crystal 6 into contact with the surface of the silicon melt 4 and pulling it up, a single crystal 7 is grown at the lower end.
内側の石英坩堝 2 aは、 シリコン溶融液 4と接触することにより表面が溶けて 、 シリコン溶融液 4中に酸素を放出する。 C Z法によつて製造された単結晶 7は 、 石英坩堝 2 a内のシリコン溶融液 4から引き上げて育成させるため、 成長した 単結晶 7は坩堝の石英 (S i O 2 ) から溶出した多くの酸素を含んでいる。 この ため、 I Cや L S Iの製造プロセスにおいて繰り返し熱処理を受けても、 スリツ プゃ反りを発生し難いという特徴がある。 さらに、 内部の酸素析出物は、 1 0 0 0 °c近傍の熱処理で高密度欠陥層を形成し、 ゥエーハの表面領域に存在する不純 物を低減するという作用 (いわゆるイントリンシックゲッタリング) もある。 こ のように単結晶 7に溶け込む酸素量によってゥェーハの品質に様々な影響を及ぼ すため、 C Z法では単結晶 7中に取り込まれる酸素量を制御することが必要にな る。 The surface of the inner quartz crucible 2a is melted by contact with the silicon melt 4 to release oxygen into the silicon melt 4. Since the single crystal 7 produced by the CZ method is pulled up from the silicon melt 4 in the quartz crucible 2a and grown, the grown single crystal 7 elutes from the quartz (Sio2) of the crucible. Contains oxygen. For this reason, even if it is repeatedly subjected to heat treatment in the manufacturing process of ICs and LSIs, it is characterized in that it is unlikely to cause slip and warp. Furthermore, the oxygen precipitates inside form a high-density defect layer by heat treatment near 100 ° C, and impurities present in the surface region of the wafer It also has the effect of reducing objects (so-called intrinsic gettering). As described above, since the amount of oxygen dissolved in the single crystal 7 has various effects on the quality of the wafer, it is necessary to control the amount of oxygen taken into the single crystal 7 in the CZ method.
単結晶中に取り込まれる酸素量の制御を行う方法として、 CZ法に磁場印加を 併用する方法がある。 この方法は MCZ法 (Ma g n e t i c— f i e l d_a P P 1 i e d CZ法) と呼ばれ、 半導体単結晶製造装置の周囲に設けた磁石に よりシリコン溶融液に磁場を印加してシリコン溶融液の動粘性率を高めた状態で 、 CZ法によるシリコン単結晶の引き上げを行う方法である。 磁場の作用により シリコン溶融液の対流が抑制されるため、 対流に伴う固液界面における振動およ び温度変動が低減し、 安定したシリコン単結晶の育成を進めることができる。 ま た、 シリコン溶融液と石英坩堝 (S i 02 ) との反応が抑制または促進される ので、 シリコン単結晶中の酸素濃度の制御に有効な方法である。 このような特徴 から、 MCZ法は半導体用単結晶の工業的な量産方式として多用されている。 一般に C Z法や M C Z法により最初に種結晶をシリコン溶融液に接触させる種 付けにおいては、 種結晶をシリコン溶融液に接触させる際に、 熱衝撃により種結 晶に高密度で発生するスリップ転位から伝播する転位を消滅させるために、 直径 を 2〜 5 mm程度に一旦細くして絞り部を形成するいわゆる種絞り (ネッキング ) を行う。 次いで肩広げ工程により、 所望の口径になるまで結晶を太らせて、 無 転位のシリコン単結晶を引き上げている。 このように、 ネッキングを施す方法は Da s h Ne c k i n g法として広く知られており、 C Z法や MC Z法でシリ コン単結晶を引き上げる場合の重要な工程である。  As a method of controlling the amount of oxygen taken into a single crystal, there is a method in which a magnetic field is applied in combination with the CZ method. This method is called the MCZ method (Magnetic-fiel d_a PP 1 ied CZ method), in which a magnetic field is applied to the silicon melt by a magnet provided around the semiconductor single crystal manufacturing equipment, and the kinematic viscosity of the silicon melt is This is a method in which a silicon single crystal is pulled by the CZ method with the temperature raised. Since the convection of the silicon melt is suppressed by the action of the magnetic field, vibration and temperature fluctuation at the solid-liquid interface due to the convection are reduced, and a stable growth of a silicon single crystal can be promoted. Further, since the reaction between the silicon melt and the quartz crucible (S i 02) is suppressed or promoted, it is an effective method for controlling the oxygen concentration in the silicon single crystal. Because of these characteristics, the MCZ method is widely used as an industrial mass production method for single crystals for semiconductors. Generally, in seeding in which the seed crystal is first brought into contact with the silicon melt by the CZ method or the MCZ method, when the seed crystal is brought into contact with the silicon melt, the slip dislocation generated at high density in the seed crystal by thermal shock is applied. In order to eliminate the dislocations that propagate, so-called seed drawing (necking) is performed, in which the diameter is once reduced to about 2 to 5 mm to form a drawing part. Next, the dislocation-free silicon single crystal is pulled up by a shoulder expanding process by increasing the thickness of the crystal until a desired diameter is obtained. As described above, the necking method is widely known as the Dash NecKing method, and is an important step in pulling a silicon single crystal by the CZ method or the MCZ method.
しかしながら、 MCZ法によるシリコン単結晶の製造においては、 磁場の印加 によりシリコン溶融液の対流が抑えられて溶融液表面近傍の温度変動が小さくな るため、 固液界面が安定した状態になる。 その結果、 種結晶に存在している転位 が左右方向に逃げずに絞り部の内部に残存したままとなり、 無転位化しにくいと いう問題があった。 そこで、 MCZ法において無転位化を達成するためには、 通 常の CZ法を用いてシリコン単結晶を引き上げる場合よりも絞り部の直径を更に 細くして転位が抜けるまで長く絞らなければならなかつた。 シリコン単結晶の製造においては、 引き上げるシリコン単結晶の重量が絞り部 の直径によって制限され、 制限重量を超えると絞り部が破断してシリコン単結晶 が落下する危険性がある。 特に、 近年はシリコン単結晶の大口径化に伴ってその 重量が増大しているため、 M C Z法による大重量のシリコン単結晶の引き上げは 一層困難となっている。 例えば直径 3 0 O mm以上の大口径ゥエーハを製造する ために大重量のシリコン単結晶を成長させる場合には、 細い絞り部はシリコン単 結晶の落下を誘発するなど安全上の問題があった。 However, in the production of silicon single crystals by the MCZ method, the convection of the silicon melt is suppressed by the application of a magnetic field, and the temperature fluctuation near the melt surface is reduced, so that the solid-liquid interface becomes stable. As a result, there was a problem that dislocations existing in the seed crystal did not escape in the left-right direction, remained in the narrowed portion, and it was difficult to eliminate dislocations. Therefore, in order to achieve dislocation-free in the MCZ method, it is necessary to make the diameter of the constricted portion even smaller than in the case of pulling a silicon single crystal using the ordinary CZ method, and to constrict the hole until dislocations escape. Was. In the production of silicon single crystals, the weight of the silicon single crystal to be pulled is limited by the diameter of the constricted portion. If the weight exceeds the limit, there is a risk that the constricted portion breaks and the silicon single crystal falls. In particular, in recent years, the weight of silicon single crystals has increased due to the increase in diameter, and it has become more difficult to pull heavy silicon single crystals by the MCZ method. For example, when growing a heavy silicon single crystal to produce a large diameter wafer having a diameter of 30 O mm or more, there is a safety problem such as a thin narrow portion inducing a drop of the silicon single crystal.
上記問題点を解決するために特開平 1 0— 7 4 8 7号公報に記載された M C Z 法では、 ネッキング工程を低磁場強度にて行うことにより、 絞り部を極端に細く することなく比較的大口径の状態で無転位化を達成する。 そして、 その後に磁場 強度を徐々に高めながら肩広げ工程を行うことにより、 大重量のシリコン単結晶 の安全な引き上げを確保している。  In order to solve the above problems, in the MCZ method described in Japanese Patent Application Laid-Open No. H10-74887, the necking step is performed at a low magnetic field strength, so that the neck portion can be relatively thinned without being extremely thin. Achieve dislocation-free operation in a large diameter state. Then, by performing the shoulder expanding process while gradually increasing the magnetic field strength, safe pulling of heavy silicon single crystals is secured.
しかしながら、 肩広げ工程において磁場を無造作に印加すると、 シリコン溶融 液の対流が急激に磁場による拘束を受ける。 この磁場拘束によりシリコン溶融液 の対流構造が変化を起こしている間は、 シリコン溶融液の状態が非常に不安定に なり、 シリコン溶融液の温度に大きな変動が起こる場合がある。  However, if a magnetic field is randomly applied during the shoulder-spreading process, the convection of the silicon melt is rapidly restrained by the magnetic field. While the convection structure of the silicon melt changes due to this magnetic field constraint, the state of the silicon melt becomes extremely unstable, and the temperature of the silicon melt may fluctuate greatly.
通常、 無磁場状態においては、 坩堝内のシリコン溶融液はヒータからの加熱に より対流が起きている。 そのため、 ヒータから与えられた熱が坩堝の内壁近辺の シリコン溶融液を加熱し、 その加熱されたシリコン溶融液が対流によつて坩堝内 を循環して、 シリコン溶融液全体の温度を上昇させる。  Normally, in the absence of a magnetic field, convection occurs in the silicon melt in the crucible due to heating from the heater. Therefore, the heat given by the heater heats the silicon melt near the inner wall of the crucible, and the heated silicon melt circulates in the crucible by convection, raising the temperature of the entire silicon melt.
これに対して、 磁場が印加された状態では坩堝内のシリコン溶融液の対流が抑 制されている。 そのため、 ヒータから与えられた熱は坩堝の内壁近辺のシリコン 溶融液を加熱し、 その後はシリコン溶融液の対流ではなく熱伝導によつて比較的 にゆつくりとシリコン溶融液の中心部に向かって熱が伝達される。 熱伝導による 伝熱量は、 対流による伝熱量に比較して小さいため、 坩堝中心部の溶融液温度を 融点付近に保っためには、 坩堝内壁付近の溶融液温度が上昇することになる。 上記のように肩広げ工程において磁場を無造作に印加すると、 無磁場状態から 所望の磁場強度に変化する際にシリコン溶融液の対流構造に急激な変化が起き、 固液界面におけるシリコン溶融液の温度が急速に下がったり上がったりすること を実験によって確かめた。 このようなシリコン溶融液の急激な温度変化は、 引き 上げられるシリコン単結晶の形状制御を困難にし、 更には、 シリコン単結晶の有 転位化を起こすという問題があった。 On the other hand, the convection of the silicon melt in the crucible is suppressed when the magnetic field is applied. Therefore, the heat given by the heater heats the silicon melt near the inner wall of the crucible, and then slowly relaxes toward the center of the silicon melt by heat conduction instead of convection of the silicon melt. Heat is transferred. Since the amount of heat transferred by heat conduction is smaller than the amount of heat transferred by convection, the temperature of the melt near the inner wall of the crucible rises in order to keep the temperature of the melt near the melting point in the center of the crucible. As described above, when a magnetic field is applied casually in the shoulder-spreading process, a sudden change occurs in the convection structure of the silicon melt when changing from the no-magnetic field state to a desired magnetic field strength, and the temperature of the silicon melt at the solid-liquid interface Can go down and up quickly Was confirmed by experiment. Such a rapid change in the temperature of the silicon melt makes it difficult to control the shape of the pulled silicon single crystal, and further causes the silicon single crystal to have dislocations.
例えば、 無磁場で種結晶をシリコン溶融液に接触させる種付けを行い、 ネツキ ングを行った後に引き上げを停止させ、 その状態で磁場強度を徐々に上昇させる と、 シリコン溶融液の温度が上下変動する。 その結果、 絞り部から急激な結晶成 長が起こり単結晶が太つたり、 成長した結晶が急激に再溶解して単結晶が痩せた りした。 このことから単結晶を引き上げながら磁場強度を徐々に上昇させる場合 には、 単結晶形状の制御が困難であることがわかった。  For example, if the seed crystal is brought into contact with the silicon melt in the absence of a magnetic field, pulling is stopped after netting, and the magnetic field strength is gradually increased in that state, the temperature of the silicon melt will fluctuate up and down . As a result, rapid crystal growth occurred from the narrowed portion, and the single crystal became thicker, and the grown crystal rapidly re-dissolved and the single crystal became thinner. This indicates that it is difficult to control the shape of the single crystal when gradually increasing the magnetic field strength while pulling the single crystal.
また、 磁場強度を徐々に上昇して行き、 シリコン溶融液の温度変動の成り行き にまかせて、 絞り部の径が拡大, 縮小を繰り返した単結晶を X線解析したら、 一 度無転位化した絞り部に転位が導入されていた。 このことから、 磁場の変動に伴 ぅシリコン溶融液の温度変動にまかせた状態で単結晶を製造すると、 単結晶が有 転位化する可能性のあることが分かつた。 このような磁場強度上昇中の単結晶形 状の制御は、 大容量の溶融液ほど困難である。 発明の開示  In addition, the magnetic field strength was gradually increased, and the temperature fluctuation of the silicon melt was allowed to proceed, and the X-ray analysis of a single crystal whose diameter was repeatedly expanded and contracted was performed. Dislocations were introduced in the part. From this, it was found that if a single crystal is manufactured with the temperature fluctuation of the silicon melt accompanying the fluctuation of the magnetic field, the single crystal may be dislocated. Controlling the single crystal shape during such an increase in the magnetic field strength is more difficult with a larger volume of melt. Disclosure of the invention
本出願に係る発明は、 上記のような問題点を解決するためになされたものであ り、 その目的とするところは、 大口径, 大重量の半導体単結晶を絞り部の破断を 起こさずに安全に引き上げることが可能な、 半導体単結晶の製造方法および製造 装置を提供することにある。  The invention according to the present application has been made in order to solve the above-described problems, and an object of the invention is to provide a large-diameter, heavy-weight semiconductor single crystal without breaking the drawn portion. An object of the present invention is to provide a method and an apparatus for manufacturing a semiconductor single crystal that can be safely pulled up.
また、 本出願に係る発明の他の目的は、 ネッキング工程の際に絞り部における 転位を除去することが可能な半導体単結晶の製造方法および製造装置を提供する ことにある。  Another object of the invention according to the present application is to provide a method and an apparatus for manufacturing a semiconductor single crystal capable of removing dislocations in a narrowed portion during a necking step.
上記目的を達成するため、 本出願に係る第 1の発明は、 無磁場において、 種結 晶の先端をシリコン溶融液に接触させ、 前記種結晶を引き上げて絞り工程を行い 、 前記種結晶の引き上げを停止して、 磁場の印加を開始し、 所望の強度まで磁場 強度を上昇させてから、 磁場を印加した状態で前記種結晶の引き上げを再開する 、 ことを特徴とする単結晶の製造方法である。 また、 本出願に係る第 2の発明は、 前記磁場を印加する前、 または、 磁場強度 を上昇させている最中、 または、 所望の強度まで磁場強度を上昇させた後に、 前 記シリコン溶融液の温度制御を行う、 ことを特徴とする上記第 1の発明に記載の 単結晶の製造方法である。 In order to achieve the above object, a first invention according to the present application is directed to a method in which a tip of a seed crystal is brought into contact with a silicon melt in a no magnetic field, the seed crystal is pulled up, a drawing step is performed, and the seed crystal is pulled up. Stopping the application of a magnetic field, increasing the magnetic field intensity to a desired intensity, and then restarting the pulling of the seed crystal in a state where a magnetic field is applied. is there. Further, the second invention according to the present application provides the above-mentioned silicon molten liquid before applying the magnetic field, while increasing the magnetic field strength, or after increasing the magnetic field strength to a desired strength. The method for producing a single crystal according to the first aspect, wherein the temperature is controlled as follows.
更に、 本出願に係る第 3の発明は、 前記磁場を印加する前に、 前記種結晶の引 き上げを停止した状態で前記シリコン溶融液の温度制御を行う、 ことを特徴とす る上記第 1の発明に記載の単結晶の製造方法である。  Further, a third invention according to the present application is characterized in that before applying the magnetic field, the temperature of the silicon melt is controlled in a state where the pulling of the seed crystal is stopped. 1 is a method for producing a single crystal according to the invention of 1).
また、 本出願に係る第 4の発明は、 無磁場において、 種結晶の先端をシリコン 溶融液に接触させ、 前記種結晶を引き上げて絞り工程を行い、 前記種結晶の引き 上げを停止し、 前記シリコン溶融液の温度制御を行った後に、 磁場を印加する、 ことを特徴とする単結晶の製造方法である。  Further, the fourth invention according to the present application is characterized in that, in a absence of a magnetic field, the tip of the seed crystal is brought into contact with a silicon melt, the seed crystal is pulled up, a drawing process is performed, and the pulling of the seed crystal is stopped. A method for producing a single crystal, comprising applying a magnetic field after controlling the temperature of a silicon melt.
更に、 本出願に係る第 5、 第 6の発明は、 前記シリコン溶融液の前記温度制御 を行い、 前記シリコン溶融液の温度が安定するだけの時間が経過した後に、 前記 磁場を印加する、 ことを特徴とする上記第 3または第 4の発明に記載の単結晶の 製造方法である。  Further, in the fifth and sixth inventions according to the present application, the temperature control of the silicon melt is performed, and the magnetic field is applied after a lapse of time sufficient for the temperature of the silicon melt to stabilize. A method for producing a single crystal according to the third or fourth invention, characterized in that:
また、 本出願に係る第 7、 第 8の発明は、 前記引き上げを停止している絞り部 の径の変化に応じて、 前記シリコン溶融液の前記温度制御を行う、 ことを特徴と する上記第 2または第 4の発明に記載の単結晶の製造方法である。  Further, the seventh and eighth inventions according to the present application are characterized in that the temperature control of the silicon melt is performed in accordance with a change in the diameter of the narrowed portion where the lifting is stopped. A method for producing a single crystal according to the second or fourth invention.
更に、 本出願に係る第 9の発明は、 前記引き上げ再開後、 肩広げ工程の前に前 記シリコン溶融液の温度制御を行う、 ことを特徴とする上記第 1の発明に記載の 単結晶の製造方法である。  Further, a ninth invention according to the present application is characterized in that, after the resumption of the pulling, the temperature of the silicon melt is controlled before the shoulder expanding step, wherein the single crystal according to the first invention is characterized in that: It is a manufacturing method.
また、 本出願に係る第 1 0の発明は、 前記引き上げ再開後、 肩広げ工程におい て、 前記磁場強度の上昇に伴う前記シリコン溶融液の温度変動を相殺するように 、 前記シリコン溶融液の温度制御を行う、 ことを特徴とする上記第 1の発明に記 載の単結晶の製造方法である。  Further, in the tenth invention according to the present application, the temperature of the silicon melt is set so as to cancel a temperature change of the silicon melt due to an increase in the magnetic field strength in the shoulder expanding step after the lifting is restarted. The method for producing a single crystal according to the first aspect of the present invention, wherein control is performed.
更に、 本出願に係る第 1 1の発明は、 成長させるべき単結晶の原料溶融液を収 容する坩堝と、 この溶融液を加熱するヒータと、 坩堝内の溶融液の表面に種結晶 を接触させて単結晶を成長させる引き上げ手段と、 磁場を印加する磁場印加手段 と、 前記各部材を収容するチャンバとを具備する単結晶製造装置において、 無磁 場において種結晶の先端を前記溶融液に接触させ前記種結晶を引き上げて絞りェ 程を行い、 前記種結晶の引き上げを停止して磁場の印加を開始し、 所望の強度ま で磁場強度を上昇させた状態で前記種結晶の引き上げを再開する、 ように前記引 き上げ手段おょぴ前記磁場印加手段を制御する制御手段を有する、 ことを特徴と する単結晶製造装置である。 Furthermore, the eleventh invention according to the present application provides a crucible containing a single crystal raw material melt to be grown, a heater for heating the melt, and a seed crystal contacting the surface of the melt in the crucible. A single crystal manufacturing apparatus comprising: a pulling means for growing a single crystal by growing the magnetic field; a magnetic field applying means for applying a magnetic field; and a chamber accommodating the above members. In the field, the tip of the seed crystal is brought into contact with the melt, the seed crystal is pulled up, a drawing step is performed, the pulling up of the seed crystal is stopped, the application of a magnetic field is started, and the magnetic field strength is increased to a desired strength. The apparatus for producing a single crystal according to claim 1, further comprising control means for controlling the pulling means and the magnetic field applying means so as to restart the pulling of the seed crystal in a state in which the single crystal is pulled.
また、 本出願に係る第 1 2の発明は、 成長させるべき単結晶の原料溶融液を収 容する坩堝と、 この溶融液を加熱するヒータと、 坩堝内の溶融液の表面に種結晶 を接触させて単結晶を成長させる引き上げ手段と、 磁場を印加する磁場印加手段 と、 前記各部材を収容するチャンバとを具備する単結晶製造装置において、 前記 ヒータの制御を行い、 前記溶融液の温度が安定するだけの時間が経過した後に、 前記磁場印加手段を所望の磁場強度まで励磁する、 ように前記ヒータおょぴ前記 磁場印加手段を制御する制御手段を有する、 ことを特徴とする単結晶製造装置で める。  Further, a twelfth invention according to the present application provides a crucible containing a single crystal raw material melt to be grown, a heater for heating the melt, and a seed crystal contacting the surface of the melt in the crucible. A single crystal manufacturing apparatus comprising: a pulling unit that grows a single crystal by applying a magnetic field; a magnetic field applying unit that applies a magnetic field; and a chamber that accommodates each of the members. After the time required for stabilization has elapsed, the heater and the control means for controlling the magnetic field applying means so as to excite the magnetic field applying means to a desired magnetic field intensity. Use the device.
図面の簡単な説明 、 ' Brief description of the drawings, '
図 1は本願発明の単結晶製造装置が単結晶を引き上げている状態を示す、 縦断 面図である。  FIG. 1 is a longitudinal sectional view showing a state where a single crystal manufacturing apparatus of the present invention pulls a single crystal.
図 2は本願発明の単結晶製造装置が種結晶の引き上げを停止している状態を示 す、 縦断面図である。  FIG. 2 is a longitudinal sectional view showing a state where the single crystal manufacturing apparatus of the present invention has stopped pulling a seed crystal.
図 3は本願発明の単結晶製造装置が肩広げ工程を行っている状態を示す、 縦断 面図である。 ,  FIG. 3 is a longitudinal sectional view showing a state where the single crystal manufacturing apparatus of the present invention is performing a shoulder expanding step. ,
' 図 4は実施例 1における引き上げの〇N, O F Fと、 磁場印加の関係を示すタ イミングチャート図である。 '  FIG. 4 is a timing chart showing a relationship between ΔN, OFF of the pulling up and the application of the magnetic field in the first embodiment. '
図 5 ( a ) は引き上げの O N, O F F , 図 5 ( b ) はヒータ温度、 図 5 ( c ) はシリコン溶融液の温度、 図 5 ( d ) は磁場強度をそれぞれ示すタイミングチヤ 一ト図である。  Fig. 5 (a) is a timing chart showing ON / OFF of the lifting, Fig. 5 (b) is the heater temperature, Fig. 5 (c) is the temperature of the silicon melt, and Fig. 5 (d) is a timing chart showing the magnetic field strength. is there.
図 6は、 シリコン単結晶を C Z法によつて製造する単結晶製造装置の縦断面図 である。  FIG. 6 is a longitudinal sectional view of a single crystal manufacturing apparatus for manufacturing a silicon single crystal by the CZ method.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本出願に係る単結晶製造方法おょぴ製造装置の実施の形態について、 図 面に基づいて詳細に説明する。 Hereinafter, an embodiment of a single crystal manufacturing method and a manufacturing apparatus according to the present application, FIG. This will be described in detail based on the plane.
図 1は、 単結晶製造装置を示す縦断面図である。  FIG. 1 is a longitudinal sectional view showing a single crystal manufacturing apparatus.
同図中の符号 2は坩堝であり、 内側を石英坩堝 2 aとし、 外側を黒鉛坩堝 2 b とした二重構造で構成され、 坩堝支持軸 2 c上に設置される。 単結晶製造装置 1 の外観を構成するチヤンバ 9はシリコンへの汚染が少ないステンレスより成り、 単結晶の引き上げ軸を中心として配される円筒状の容器である。 その中央位置に 坩堝 2が配設され、 その外周にはこれを囲んで坩堝 2内のシリコン溶融液 4を加 熱するヒータ 3が配設されている。 ヒータ 3は等方性黒鉛よりなり、 チャンバ 9 外に配置された温度コントローラ 1 4によつて設定電力を調節することにより、 ヒータ 3の温度が制御される。  Reference numeral 2 in the figure denotes a crucible, which has a double structure of a quartz crucible 2a on the inside and a graphite crucible 2b on the outside, and is set on a crucible support shaft 2c. The chamber 9 constituting the appearance of the single crystal manufacturing apparatus 1 is made of stainless steel with little contamination to silicon, and is a cylindrical container arranged around a single crystal pulling shaft. A crucible 2 is disposed at the center thereof, and a heater 3 for heating the silicon melt 4 in the crucible 2 is provided around the crucible 2 around the crucible 2. The heater 3 is made of isotropic graphite, and the temperature of the heater 3 is controlled by adjusting the set power by the temperature controller 14 arranged outside the chamber 9.
ヒータ 3の外側にはヒータ 3の外周を取り囲むように、 円筒状の保温筒 1 1が 配置される。 保温筒 1 1はヒータ 3からの熱によってチャンバ 9が傷むのを防止 するとともに、 保温筒 1 1内の温度を高温状態に保つ役割を果たす。 保温筒 1 1 の材質としては、 主に炭素繊維材が用いられる。  Outside the heater 3, a cylindrical heat insulating cylinder 11 is arranged so as to surround the outer periphery of the heater 3. The heat retaining cylinder 11 serves to prevent the chamber 9 from being damaged by heat from the heater 3 and to maintain the temperature in the heat retaining cylinder 11 at a high temperature. As a material of the heat retaining cylinder 11, a carbon fiber material is mainly used.
チヤンバ 9の左右両側には、 磁場印加手段である一対の磁石 1 5がそれぞれ垂 直に立てた状態で対向配置されている。 磁石 1 5は電磁石や超伝導磁石など、 磁 場強度が可変のものを使用する。 他に可変磁場を印加する方法としては、 シリコ ン溶融液 4との距離を可変に設置した永久磁石によって代用することもできる。 また、 上部磁石と下部磁石によりカスプ磁場を印加してもよい。 磁石 1 5は磁場 コントローラ 1 6によってその出力が制御される。  On both left and right sides of the chamber 9, a pair of magnets 15 as magnetic field applying means are arranged to face each other in a vertically standing state. As the magnet 15, use is made of an electromagnet, a superconducting magnet, or the like having a variable magnetic field strength. As another method of applying a variable magnetic field, a permanent magnet having a variable distance from the silicon melt 4 can be used instead. Further, a cusp magnetic field may be applied by the upper magnet and the lower magnet. The output of the magnet 15 is controlled by the magnetic field controller 16.
一方、 坩堝 2の上方には、 単結晶の引き上げ手段としてチャンバ 9の上部の中 央からワイヤ 5が回転および昇降可能に垂設され、 その下端にはシードチヤック 8が設けられている。 シードチャック 8により種結晶 6を保持し、 種結晶6をヮ ィャ 5によって回転させた状態で上昇させることにより、 シリコン溶融液 4との 接触面である固液界面に単結晶 7が成長する。 On the other hand, above the crucible 2, a wire 5 is suspended from the center of the upper part of the chamber 9 as a single crystal pulling means so as to be rotatable and vertically movable, and a seed chuck 8 is provided at the lower end thereof. The seed crystal 6 is held by the seed chuck 8 and raised while the seed crystal 6 is rotated by the wire 5, whereby a single crystal 7 grows on the solid-liquid interface that is the contact surface with the silicon melt 4. .
また、 単結晶製造装置 1は、 固液界面における単結晶 7の径の変化を観測する ために、 テレビカメラ 1 9とカメラコントローノレユニット 2 0を備えている。 さ らに、 カメラコントロールユニット 2 0にディスプレイ 2 1を接続しており、 テ レビカメラ 1 9による撮影画像をディスプレイ 2 1に表示し、 可視化を可能にし ている。 作業者はディスプレイ 2 1の表示から単結晶 7の径の変化を観測するこ とができ、 単結晶 7の径の変化に応じて温度コントローラ 1 4の設定温度を調節 することにより、 ヒータ 3の温度を制御する。 他に、 テレビカメラ 1 9の代わり に又はテレビカメラ 1 9と併用して、 赤外線温度計等の温度計測手段により固液 界面の温度変化を計測し、 その温度変化に基づいて温度コントローラ 1 4の設定 温度を調節することによりヒータ 3の温度を制御してもよい。 これら作業は作業 者が手作業で行つてもよく、 または、 カメラコント口ールュニット 2 0や温度計 測手段と温度コントローラ 1 4を相互に接続し、 自動的にフィードバック可能な 機構としてもよい。 The single crystal manufacturing apparatus 1 also includes a television camera 19 and a camera controller unit 20 for observing a change in the diameter of the single crystal 7 at the solid-liquid interface. In addition, the display 21 is connected to the camera control unit 20, and images taken by the TV camera 19 are displayed on the display 21 for visualization. ing. The operator can observe the change in the diameter of the single crystal 7 from the display 21 and adjust the set temperature of the temperature controller 14 in accordance with the change in the diameter of the single crystal 7 to change the heater 3. Control the temperature. In addition, instead of the TV camera 19 or in combination with the TV camera 19, the temperature change of the solid-liquid interface is measured by a temperature measuring means such as an infrared thermometer, and the temperature controller 14 is controlled based on the temperature change. The temperature of the heater 3 may be controlled by adjusting the set temperature. These operations may be performed manually by an operator, or may be a mechanism capable of automatically connecting the camera controller unit 20 or the temperature measuring means and the temperature controller 14 to each other and automatically providing feedback.
図 1においては記載を省略しているが、 単結晶 7の引き上げ速度を速め効率的 な成長を促すために、 坩堝 2の上方に、 引き上げられる単結晶 7の周囲を囲繞す るように輻射スクリーンを配設してもよい。 チャンバ 9の底面上には事故で坩堝 2からシリコン溶融液 4が漏れた場合に備えて、 それを受けるための受け皿 1 8 を設けている。  Although not shown in FIG. 1, a radiation screen is provided above the crucible 2 so as to surround the periphery of the single crystal 7 to be pulled, so as to increase the pulling speed of the single crystal 7 and promote efficient growth. May be provided. On the bottom surface of the chamber 9, there is provided a receiving tray 18 for receiving the silicon melt 4 from the crucible 2 in case of accident.
チャンバ 9の上部には供給口 1 2を設け、 チャンバ 9の雰囲気調整および蒸発 物を排出させるために高純度のアルゴンガスが、 供給口 1 2から常時供給される 。 アルゴンガスを供給するには一般に慣用されている手法で良く、 原料として液 体アルゴンが用いられ、 ガス化ののちチャンバ 9内に供給される。 チャンバ 9の 下部には排出口 1 0を設け、 真空ポンプ 1 3を接続している。 アルゴンガスは、 供給口 1 2から供給され、 坩堝 2を越えて下方に向かって流れて、 真空ポンプ 1 3によって排出口 1 0より排出される (図 6の矢印参照) 。  A supply port 12 is provided at an upper portion of the chamber 9, and a high-purity argon gas is constantly supplied from the supply port 12 to adjust the atmosphere of the chamber 9 and discharge evaporated substances. The argon gas may be supplied by a commonly used method, and liquid argon is used as a raw material, and is supplied into the chamber 9 after gasification. A discharge port 10 is provided at the lower part of the chamber 9 and a vacuum pump 13 is connected thereto. The argon gas is supplied from the supply port 12, flows downward over the crucible 2, and is discharged from the discharge port 10 by the vacuum pump 13 (see the arrow in FIG. 6).
[実施例 1 ]  [Example 1]
図 1〜 3に示す半導体単結晶製造装置 1により、 半導体単結晶を製造する方法 について説明する。  A method for manufacturing a semiconductor single crystal using the semiconductor single crystal manufacturing apparatus 1 shown in FIGS. 1 to 3 will be described.
まず、 高純度の多結晶シリコンを粗く砕いて洗浄した後、 坩堝 2に入れてヒー タ 3で加熱する。 このとき同時に微量の導電型不純物 (添加剤またはドープ剤) を必要量だけ添加する。 P型結晶を得るにはホウ素 (B ) を、 N型結晶をつくる にはリン (P ) やアンチモン (S b ) を添加し、 不純物の添加量によって結晶の 抵抗率をコントロールする。 このときは、 磁場コントローラ 1 6により磁石 1 5 を非励磁状態に制御し、 シリコン溶融液 4には磁場を印加していない。 First, high-purity polycrystalline silicon is roughly crushed and washed, then put into crucible 2 and heated by heater 3. At this time, a small amount of a conductive impurity (additive or doping agent) is simultaneously added in a required amount. Boron (B) is added to obtain a P-type crystal, and phosphorus (P) or antimony (Sb) is added to form an N-type crystal. The resistivity of the crystal is controlled by the amount of impurities added. In this case, the magnetic field controller 16 controls the magnet 15 Is controlled to a non-excited state, and no magnetic field is applied to the silicon melt 4.
引き上げワイヤ 5の下端に設けたシードチヤック 8により種結晶 6を保持し、 シリコン溶融液 4に種結晶 6を接触させる。 そして、 図 2に示すように坩堝 2お よぴ種結晶 6を回転させた状態でワイヤ 5を巻き取り、 種結晶 6を上方に引き上 げる。 種結晶 6をシリコン溶融液 4に接触させる種付けにおいては、 種結晶 6に 高密度で発生するスリップ転位から伝播する転位を消滅させるために、 直径 1 2 . 7 mmの種結晶を 5 mm程度にー且細くして絞り部 1 7を形成するネッキング を行う。  The seed crystal 6 is held by the seed chuck 8 provided at the lower end of the pulling wire 5, and the seed crystal 6 is brought into contact with the silicon melt 4. Then, as shown in FIG. 2, the wire 5 is wound up while the crucible 2 and the seed crystal 6 are rotated, and the seed crystal 6 is pulled upward. In seeding in which the seed crystal 6 is brought into contact with the silicon melt 4, a seed crystal having a diameter of 12.7 mm is reduced to about 5 mm in order to eliminate dislocations propagating from slip dislocations generated at high density in the seed crystal 6. A necking is performed to form a narrowed portion 17 by narrowing.
従来から行われている通常の M C Z法では、 種付けの時点でシリコン溶融液 4 に磁場が印加され、 シリコン溶融液 4の対流が抑えられて固液界面が安定した状 態にあるため、 種結晶 6に存在している転位が左右方向に逃げずに絞り部の内部 に残存したままとなり、 無転位化しにくい。 そのため、 従来の M C Z法において は、 絞り部の直径を 2 mmまで絞らなければならなかった。 これに対し、 本願の 単結晶製造方法においては無磁場状態でネッキングを行うため、 絞り部 1 7の直 径は 5 mm程度で良い。  In the conventional MCZ method, a magnetic field is applied to the silicon melt 4 at the time of seeding, the convection of the silicon melt 4 is suppressed, and the solid-liquid interface is in a stable state. Dislocations existing in 6 do not escape in the left-right direction and remain inside the constricted portion, making it difficult to eliminate dislocations. Therefore, in the conventional M CZ method, the diameter of the constricted portion had to be reduced to 2 mm. On the other hand, in the single crystal manufacturing method of the present invention, necking is performed in the absence of a magnetic field, so that the diameter of the narrowed portion 17 may be about 5 mm.
図 4に、 引き上げと磁場印加の関係を表すタイミングチャートを示す。 横軸に 時間軸 [m i n ] を、 縦軸に引き上げの O N, O F Fおよび磁場強度 [T] (テ スラ) をとつている。 上述の通りネッキングを行つたら、 引き上げワイヤ 5の卷 き取りを止め、 種結晶 6の引き上げを停止する。 図 4においては、 この引き上げ 停止時点を時間軸で 0 [m i n ] にとつている。  Figure 4 shows a timing chart showing the relationship between pulling up and applying a magnetic field. The horizontal axis is the time axis [min], and the vertical axis is the upward ON, OFF, and magnetic field strength [T] (tesla). After necking as described above, the winding of the pulling wire 5 is stopped, and the pulling of the seed crystal 6 is stopped. In FIG. 4, the time at which the lifting stops is set to 0 [min] on the time axis.
次に、 種結晶 6の引き上げを停止した状態で、 1 5分程度経過した後に磁場コ ントローラ 1 6により磁石 1 5を励磁し、 シリコン溶融液 4に磁場の印加を開始 する。 磁石 1 5の磁場強度は、 時間の経過とともに徐々に上昇させる。 本実施例 Next, with the pulling of the seed crystal 6 stopped, after about 15 minutes have passed, the magnet 15 is excited by the magnetic field controller 16 and the application of a magnetic field to the silicon melt 4 is started. The magnetic field strength of the magnet 15 is gradually increased with time. This embodiment
1においては、 約 1時間かけて 0 . 3〜0 . 4テスラ [ T] に上昇させている。 磁石 1 5の磁場強度の上昇率は、 時間の経過に対して一定でもよく、 または、 時 間の経過とともに変化させてもよい。 磁場強度の上昇率は、 図2に示す磁場コン トローラ 1 6によりプログラム制御することができる。 例えば、 固液界面におけ る絞り部 1 7の径が一定になるように、 テレビカメラ 1 9による撮影画像に基づ いて磁場コントローラ 1 6を調節して、 磁石 1 5の出力を変化させることもでき る。 At 1, the value is raised to 0.3 to 0.4 Tesla [T] over about one hour. The rate of increase of the magnetic field strength of the magnet 15 may be constant over time, or may be changed over time. Rate of increase in the magnetic field strength can be programmed controlled by the magnetic field controller 1 6 shown in FIG. For example, changing the output of the magnet 15 by adjusting the magnetic field controller 16 based on the image captured by the TV camera 19 so that the diameter of the aperture 17 at the solid-liquid interface becomes constant. Can also You.
磁石 1 5の磁場強度を所望の値まで上昇させたら、 磁場コントローラ 1 6によ り磁場強度を一定の値にする。 そして、 磁場強度を一定値にして、 5分間以上が 経過した後に、 引き上げワイヤ 5の巻き取りを再開する。 より好ましくは 1 5分 間以上が経過した後に、 引き上げワイヤ 5の巻き取りを再開する。  After increasing the magnetic field strength of the magnet 15 to a desired value, the magnetic field controller 16 sets the magnetic field strength to a constant value. Then, the magnetic field intensity is set to a constant value, and after 5 minutes or more, the winding of the pulling wire 5 is restarted. More preferably, after the elapse of 15 minutes or more, the winding of the lifting wire 5 is restarted.
このときの引き上げ速度に対する絞り部 1 7の径の拡大或いは縮小具合で、 シ リコン溶融液 4の温度状態が適切であるか否かを判定し、 必要であればヒータ 3 の温度補正操作を入れた後に、 肩広げ工程に成長フェイズを移行してもよい。 次いで、 図 3に示すように磁場を印加した状態で肩広げ工程を行い、 所望の口 径になるまで単結晶 7を太らせ、 引き続いて図 1に示すように直胴部を形成する 。 例えば直径 3 0 O mmの半導体ゥエーハを製造する場合には、 単結晶 7の径が 3 0 O mmよりも若干大きな径になるまで拡大してから、 直胴部を形成する。 こ のとき磁場は、 一定値を保っていてもよく、 または単結晶 7の口径の変化に応じ て変動させてもよい。  At this time, it is determined whether or not the temperature state of the silicon melt 4 is appropriate based on how the diameter of the narrowed portion 17 is increased or decreased with respect to the lifting speed, and if necessary, a temperature correction operation of the heater 3 is performed. After that, the growth phase may be shifted to the shoulder expanding step. Next, as shown in FIG. 3, a shoulder expanding step is performed in a state where a magnetic field is applied, and the single crystal 7 is thickened until a desired diameter is obtained. Then, a straight body is formed as shown in FIG. For example, when manufacturing a semiconductor wafer having a diameter of 30 O mm, the diameter of the single crystal 7 is enlarged until the diameter becomes slightly larger than 30 O mm, and then the straight body is formed. At this time, the magnetic field may be maintained at a constant value, or may be changed according to a change in the diameter of the single crystal 7.
従来技術で説明した通り、 磁場強度を上昇させている最中のシリコン溶融液 4 の温度は安定せずに急激に上下変動するため、 その状態で肩広げ工程を行うこと は好ましくない。 し力、し、 磁場強度を一定に保ってから 5分間以上が経過すると 、 シリコン溶融液 4の温度が安定しており、 固液界面の状態も安定することが実 験により明らかになった。  As described in the related art, the temperature of the silicon melt 4 during the increase of the magnetic field strength is not stabilized, and fluctuates rapidly. Therefore, it is not preferable to perform the shoulder expanding step in that state. Experiments have shown that when 5 minutes or more have passed since the magnetic field strength was kept constant, the temperature of the silicon melt 4 was stabilized and the state of the solid-liquid interface was also stabilized.
本実施例 1によれば、 このように種結晶 6の引き上げを停止した状態で、 無磁 場から徐々に磁場強度を上昇させて行き、 磁場強度が所定の値まで上昇したら一 定値を保つ。 そして、 シリコン溶融液 4の温度変化が安定するだけの十分な時間 が経過した後に、 種結晶 6の引き上げを再開し、 肩広げ工程に移る。 その結果、 シリコン溶融液 4の対流構造の変動が収まり溶融液温度が安定した後に肩広げェ 程を行うことができるため、 引き上げられるシリコン単結晶7の形状制御が容易 になる。 また、 無磁場状態でネッキングを行うため、 絞り部 1 7の径が比較的大 きい場合であっても、 効果的にシリコン単結晶 7の無転位化が達成できる。 According to the first embodiment, with the pulling of the seed crystal 6 stopped in this way, the magnetic field strength is gradually increased from the non-magnetic field, and when the magnetic field strength increases to a predetermined value, a constant value is maintained. Then, after a sufficient time has passed for the temperature change of the silicon melt 4 to stabilize, the pulling of the seed crystal 6 is restarted, and the process proceeds to the shoulder expanding step. As a result, the variation of the convection structure of the silicon melt 4 is suppressed, and the shoulder spreading process can be performed after the melt temperature is stabilized, so that the shape of the pulled silicon single crystal 7 can be easily controlled. Further, since necking is performed in the absence of a magnetic field, dislocation-free silicon single crystal 7 can be effectively achieved even when the diameter of aperture portion 17 is relatively large.
[実施例 2 ]  [Example 2]
次に、 半導体単結晶を製造する他の方法について説明する。 実施例 1において、 シリコン溶融液 4に磁場を印加し、 磁場強度を上昇させて いる最中のシリコン溶融液 4の温度は上下変動しながらも平均的には下降するこ とがわかった。 そのため、 実施例 2においては、 併せてヒータ 3の温度の制御を 行う。 Next, another method for manufacturing a semiconductor single crystal will be described. In Example 1, it was found that a magnetic field was applied to the silicon melt 4 and the temperature of the silicon melt 4 during the increase in the magnetic field strength was on average decreased while fluctuating up and down. Therefore, in the second embodiment, the temperature of the heater 3 is also controlled.
まず、 実施例 1と同様に、 引き上げワイヤ 5の下端に設けたシードチャック 8 により種結晶 6を保持し、 シリコン溶融液 4に種結晶 6を接触させる。 そして図 2に示すように、 坩堝 2および種結晶 6を回転させた状態でワイヤ 5を巻き取り 、 種結晶 6を上方に引き上げる。 種結晶 6をシリコン溶融液 4に接触させる種付 けにおいては、 種結晶 6に高密度で発生するスリップ転位から伝播する転位を消 滅させるために、 直径 1 2. 7 mmの種結晶を 5 mm程度に一旦細くして絞り部 17を形成するネッキングを行う。  First, similarly to the first embodiment, the seed crystal 6 is held by the seed chuck 8 provided at the lower end of the pulling wire 5, and the seed crystal 6 is brought into contact with the silicon melt 4. Then, as shown in FIG. 2, the wire 5 is wound up while the crucible 2 and the seed crystal 6 are rotated, and the seed crystal 6 is pulled up. In the seeding in which the seed crystal 6 is brought into contact with the silicon melt 4, a seed crystal having a diameter of 12.7 mm is removed from the seed crystal 6 in order to eliminate dislocations propagating from slip dislocations generated at high density in the seed crystal 6. The necking for forming the squeezed portion 17 by once thinning to about mm is performed.
ネッキングを行ったら、 引き上げワイヤ 5の巻き取りを止め、 種結晶 6の引き 上げを停止する。  After necking, stop winding the pulling wire 5 and stop pulling the seed crystal 6.
図 5に、 ヒータ温度とシリコン溶融液温度および磁場印加の関係を表すタイミ ングチャートを示す。 横軸に時間軸を、 縦軸に (a) 引き上げの ON, OFF,Figure 5 shows a timing chart showing the relationship between the heater temperature, the silicon melt temperature, and the application of a magnetic field. The horizontal axis is the time axis, and the vertical axis is ( a ) Pull ON, OFF,
(b) ヒータ温度 [°C] 、 (c) シリコン溶融液の温度 [。C] 、 および (d) 磁 場強度 [T] (テスラ) をとつている。 図5においては、 この引き上げ停止時点 を時間軸で 0 [m i n] にとつている。 (b) Heater temperature [° C], (c) Silicon melt temperature [. C] and (d) Magnetic field strength [T] (Tesla). In FIG. 5 , the point of time when the lifting is stopped is set to 0 [min] on the time axis.
種結晶 6の引き上げを停止して (図 5 (a) ) 、 約 1〜5分間が経過した後に 、 温度制御コントローラ 14によりヒータ 3の設定温度を上げる (図 5 (b) ) 。 本実施例 2においては、 通常のヒータ温度よりも 10〜20°C程度高い温度に 設定する。 ヒータ 3の温度の上昇に伴い、 シリコン溶融液 4の温度も上昇する ( 図 5 (c) ) 。  The pulling of the seed crystal 6 is stopped (FIG. 5 (a)), and after about 1 to 5 minutes have elapsed, the set temperature of the heater 3 is increased by the temperature controller 14 (FIG. 5 (b)). In the second embodiment, the temperature is set to about 10 to 20 ° C. higher than the normal heater temperature. As the temperature of the heater 3 rises, the temperature of the silicon melt 4 also rises (Fig. 5 (c)).
シリコン溶融液 4の温度が安定するまでには、 5〜 1 5分間程度の時間を要す る。 そして、 シリコン溶融液 4の温度が安定するだけの十分な時間が経過したら 、 磁場コントローラ 1 6により磁石 1 5の励磁を開始し、 シリコン溶融液4に磁 場を印加する (図 5 (d) ) 。 磁石 1 5の磁場強度は、 時間の経過とともに徐々 に上昇させる。 本実施例においては、 約 1時間かけて 0. 3〜0. 4テスラ [T ] に上昇させている。 磁石 1 5の磁場強度の上昇率は、 時間の経過に対して一定 でもよく、 または、 時間の経過とともに変化させてもよい。 磁場強度の上昇率はIt takes about 5 to 15 minutes for the temperature of the silicon melt 4 to stabilize. Then, after a lapse of sufficient time for the temperature of the silicon melt 4 to stabilize, the magnetic field controller 16 starts excitation of the magnet 15 and applies a magnetic field to the silicon melt 4 (FIG. 5 (d) ). The magnetic field strength of the magnet 15 is gradually increased over time. In this embodiment, the pressure is increased to 0.3 to 0.4 Tesla [T] over about one hour. The rate of increase of the magnetic field strength of magnet 15 is constant over time Or may change over time. The rate of increase of the magnetic field strength is
、 図 2に示す磁場コントローラ 1 6によりプログラム制御することができる。 例 えば、 固液界面における絞り部 1 7の径が一定になるように、 テレビカメラ 1 9 による撮影画像に基づいて磁場コントローラ 1 6を調節して、 磁石 1 5の出力を 変化させることもできる。 The program can be controlled by the magnetic field controller 16 shown in FIG. For example, the output of the magnet 15 can be changed by adjusting the magnetic field controller 16 based on the image captured by the TV camera 19 so that the diameter of the aperture 17 at the solid-liquid interface is constant. .
図 5においては、 磁場強度を徐々に上昇させている間、 ヒータ 3の温度を一定 に保っている例を示しているが、 ヒータ 3の温度は変動させてもよい。 例えば、 磁場を印加した初期においては、 シリコン溶融液 4の対流構造に急激な変化が起 きるため、 シリコン溶融液 4の温度の上下変動が激しい。 そのため、 図 2に示す ように磁場印加中に引き上げを停止させている絞り部 1 7の径の拡大, 縮小をテ レビカメラ 1 9で撮影し、 ディスプレイ 2 1を観察しながら温度コントローラ 1 4を調節してヒータ 3の温度の微調整を積極的に行うことにより、 シリコン溶融 液 4の温度を安定させることができる。 また、 磁場変動に伴うシリコン溶融液 4 の温度変動を相殺するように温度コントローラ 1 4をプログラム制御してもよい 磁石 1 5の磁場強度を所望の値まで上昇させたら、 磁場コントローラ 1 6によ り磁場強度を一定の値にする。 そして、 磁場強度を一定値にして、 5分間以上が 経過した後に、 引き上げワイヤ 5の卷き取りを再開する。 より好ましくは 1 5分 間以上が経過した後に、 引き上げワイヤ 5の巻き取りを再開する。  FIG. 5 shows an example in which the temperature of the heater 3 is kept constant while the magnetic field strength is gradually increased, but the temperature of the heater 3 may be varied. For example, in the initial stage of the application of the magnetic field, the convective structure of the silicon melt 4 undergoes a sudden change, so that the temperature of the silicon melt 4 fluctuates greatly. For this reason, as shown in Fig. 2, the expansion and contraction of the diameter of the diaphragm section 17 whose lifting is stopped during application of the magnetic field is photographed with a television camera 19, and the temperature controller 14 is adjusted while observing the display 21. The temperature of the silicon melt 4 can be stabilized by positively performing fine adjustment of the temperature of the heater 3. Also, the temperature controller 14 may be program-controlled to offset the temperature fluctuation of the silicon melt 4 caused by the magnetic field fluctuation.When the magnetic field strength of the magnet 15 is increased to a desired value, the magnetic field controller 16 The magnetic field strength to a constant value. Then, after the magnetic field intensity is set to a constant value and 5 minutes or more have elapsed, winding of the pulling wire 5 is resumed. More preferably, after the elapse of 15 minutes or more, the winding of the lifting wire 5 is restarted.
このときの引き上げ速度に対する絞り部 1 7の径の拡大或いは縮小具合で、 シ リコン溶融液 4の温度状態が適切であるか否かを判定し、 必要であればヒータ 3 の温度補正操作を入れた後に、 肩広げ工程に成長フェイズを移行してもよい。 次いで、 図 3に示すように磁場を印加した状態で肩広げ工程を行い、 所望の口 径になるまで単結晶 7を太らせ、 引き続いて図 1に示すように直胴部を形成する 。 例えば直径 3 0 O mmの半導体ゥエーハを製造する場合には、 単結晶 7の径が 3 0 O mmよりも若干大きな径になるまで拡大してから、 直胴部を形成する。 こ のとき磁場強度は、 一定値を保っていてもよく、 または単結晶 7の口径の変化に 応じて変動させてもよい。  At this time, it is determined whether or not the temperature state of the silicon melt 4 is appropriate based on how the diameter of the narrowed portion 17 is increased or decreased with respect to the lifting speed, and if necessary, a temperature correction operation of the heater 3 is performed. After that, the growth phase may be shifted to the shoulder expanding step. Next, as shown in FIG. 3, a shoulder expanding step is performed in a state where a magnetic field is applied, and the single crystal 7 is thickened until a desired diameter is obtained. Then, a straight body is formed as shown in FIG. For example, when manufacturing a semiconductor wafer having a diameter of 30 O mm, the diameter of the single crystal 7 is enlarged until the diameter becomes slightly larger than 30 O mm, and then the straight body is formed. At this time, the magnetic field strength may be maintained at a constant value, or may be changed according to a change in the diameter of the single crystal 7.
本実施例 2によれば、 ヒータ 3の温度を上げることにより、 磁場を印加する際 のシリコン溶融液 4の温度下降を打ち消すことができるため、 絞り部 1 7の径の 変動を抑えることができる。 According to the second embodiment, when the magnetic field is applied by increasing the temperature of the heater 3 Since the temperature drop of the silicon melt 4 can be canceled, fluctuations in the diameter of the narrowed portion 17 can be suppressed.
もちろん、 シリコン溶融液 4に印加する磁場を徐々に上昇させている最中に、 シリコン溶融液 4の温度が平均的に上昇する場合には、 ヒータ 3の温度を下げる ように制御すれば良い。  Of course, if the temperature of the silicon melt 4 rises on average while the magnetic field applied to the silicon melt 4 is gradually increasing, the temperature of the heater 3 may be controlled to decrease.
実施例 1または実施例 2を実現する図 1〜 3に示す半導体単結晶製造装置 1に おいて、 種結晶 6の引き上げおよび引き上げ停止, 温度コントローラ 1 4および 磁場コントローラ 1 6の制御は、 周知の制御手段によって相互に連動させること により自動コントロールさせることもできる。  In the semiconductor single crystal manufacturing apparatus 1 shown in FIGS. 1 to 3 for realizing the first embodiment or the second embodiment, the pulling of the seed crystal 6 and the stopping of the pulling, the control of the temperature controller 14 and the control of the magnetic field controller 16 are well known. Automatic control is also possible by linking them with each other by control means.
本発明の単結晶製造方法および製造装置によれば、 大口径, 大重量の半導体単 結晶を絞り部の破断を起こさずに安全に引き上げることができる。  ADVANTAGE OF THE INVENTION According to the single crystal manufacturing method and manufacturing apparatus of this invention, a large-diameter and heavy semiconductor single crystal can be safely pulled up without causing breakage of a drawing part.
また、 本発明の単結晶製造方法および製造装置によれば、 ネッキング工程の際 に絞り部における転位を効果的に除去することができる。  Further, according to the method and the apparatus for producing a single crystal of the present invention, dislocations in the narrowed portion can be effectively removed during the necking step.

Claims

請求の範囲 The scope of the claims
1 . 無磁場において、 種結晶の先端をシリコン溶融液に接触させ、 前記種結晶を 引き上げて絞り工程を行い、  1. In the absence of a magnetic field, the tip of the seed crystal is brought into contact with the silicon melt, the seed crystal is pulled up, and a drawing process is performed.
前記種結晶の引き上げを停止して、 磁場の印加を開始し、  Stop pulling up the seed crystal, start applying a magnetic field,
所望の強度まで磁場強度を上昇させてから、 磁場を印加した状態で前記種結晶 の引き上げを再開する、  After increasing the magnetic field strength to a desired strength, the pulling of the seed crystal is resumed with the magnetic field applied,
ことを特徴とする単結晶の製造方法。 A method for producing a single crystal, comprising:
2 . 前記磁場を印加する前、 または、 磁場強度を上昇させている最中、 または、 所望の強度まで磁場強度を上昇させた後に、  2. Before applying the magnetic field, or while increasing the magnetic field strength, or after increasing the magnetic field strength to a desired strength,
前記シリコン溶融液の温度制御を行う、  Performing temperature control of the silicon melt;
ことを特徴とする請求範囲 1に記載の単結晶の製造方法。 2. The method for producing a single crystal according to claim 1, wherein:
3 . 前記磁場を印加する前に、 前記種結晶の引き上げを停止した状態で前記シリ コン溶融液の温度制御を行う、  3. Before applying the magnetic field, perform temperature control of the silicon melt in a state where the pulling of the seed crystal is stopped.
ことを特徴とする請求範囲 1に記載の単結晶の製造方法。 2. The method for producing a single crystal according to claim 1, wherein:
4 . 無磁場において、 種結晶の先端をシリコン溶融液に接触させ、 前記種結晶を 引き上げて絞り工程を行レ、、  4. In the absence of a magnetic field, the tip of the seed crystal is brought into contact with the silicon melt, the seed crystal is pulled up, and the drawing process is performed.
前記種結晶の引き上げを停止し、  Stop pulling the seed crystal,
前記シリコン溶融液の温度制御を行った後に、 磁場を印加する、  Applying a magnetic field after controlling the temperature of the silicon melt;
ことを特徴とする単結晶の製造方法。 A method for producing a single crystal, comprising:
5 . 前記シリコン溶融液の前記温度制御を行い、 前記シリコン溶融液の温度が安 定するだけの時間が経過した後に、 前記磁場を印加する、  5. performing the temperature control of the silicon melt and applying the magnetic field after a lapse of time sufficient for the temperature of the silicon melt to stabilize;
ことを特徴とする請求範囲 3に記載の単結晶の製造方法。 4. The method for producing a single crystal according to claim 3, wherein:
6 . 前記シリコン溶融液の前記温度制御を行い、 前記シリコン溶融液の温度が安 定するだけの時間が経過した後に、 前記磁場を印加する、  6. performing the temperature control of the silicon melt, applying the magnetic field after a lapse of time sufficient for the temperature of the silicon melt to stabilize,
ことを特徴とする請求範囲 4に記載の単結晶の製造方法。 5. The method for producing a single crystal according to claim 4, wherein:
7 . 前記引き上げを停止している絞り部の径の変化に応じて、 前記シリコン溶融 液の前記温度制御を行う、  7. Perform the temperature control of the silicon melt in accordance with a change in the diameter of the narrowed portion where the lifting is stopped.
ことを特徴とする請求範囲 2に記載の単結晶の製造方法。 3. The method for producing a single crystal according to claim 2, wherein:
8 . 前記引き上げを停止している絞り部の径の変化に応じて、 前記シリコン溶融 液の前記温度制御を行う、 8. In accordance with the change of the diameter of the drawing part where the lifting is stopped, the silicon melting Performing the temperature control of the liquid,
ことを特徴とする請求範囲 4に記載の単結晶の製造方法。 5. The method for producing a single crystal according to claim 4, wherein:
9 . 前記引き上げ再開後、  9. After the above resumption,
肩広げ工程の前に前記シリコン溶融液の温度制御を行う、  Performing a temperature control of the silicon melt before the shoulder expanding step,
ことを特徴とする請求範囲 1に記載の単結晶の製造方法。 2. The method for producing a single crystal according to claim 1, wherein:
1 0 . 前記引き上げ再開後、  1 0. After resuming the withdrawal,
肩広げ工程において、 前記磁場強度の上昇に伴う前記シリコン溶融液の温度変 動を相殺するように、 前記シリコン溶融液の温度制御を行う、  In the shoulder expanding step, the temperature of the silicon melt is controlled so as to cancel the temperature change of the silicon melt due to the increase in the magnetic field strength.
ことを特徴とする請求範囲 1に記載の単結晶の製造方法。 2. The method for producing a single crystal according to claim 1, wherein:
1 1 . 成長させるべき単結晶の原料溶融液を収容する坩堝と、 この溶融液を加熱 するヒータと、 坩堝内の溶融液の表面に種結晶を接触させて単結晶を成長させる 引き上げ手段と、 磁場を印加する磁場印加手段と、 前記各部材を収容するチャン バとを具備する単結晶製造装置において、  11. A crucible containing a single crystal raw material melt to be grown, a heater for heating the melt, and a pulling means for growing a single crystal by bringing a seed crystal into contact with the surface of the melt in the crucible; In a single crystal manufacturing apparatus comprising: a magnetic field applying means for applying a magnetic field; and a chamber for accommodating each of the members.
無磁場において種結晶の先端を前記溶融液に接触させ前記種結晶を引き上げて 絞り工程を行い、 前記種結晶の引き上げを停止して磁場の印加を開始し、 所望の 強度まで磁場強度を上昇させた状態で前記種結晶の弓 Iき上げを再開する、 ように前記引き上げ手段おょぴ前記磁場印加手段を制御する制御手段を有する、 ことを特徴とする単結晶製造装置。  In the absence of a magnetic field, the seed crystal tip is brought into contact with the melt, the seed crystal is pulled up, a squeezing process is performed, the pulling up of the seed crystal is stopped, the application of a magnetic field is started, and the magnetic field strength is increased to a desired strength. And a control means for controlling the pulling means and the magnetic field applying means so as to restart the raising of the seed crystal bow I in a tilted state.
1 2 . 成長させるべき単結晶の原料溶融液を収容する坩堝と、 この溶融液を加熱 するヒータと、 坩堝内の溶融液の表面に種結晶を接触させて単結晶を成長させる 引き上げ手段と、 磁場を印加する磁場印加手段と、 前記各部材を収容するチャン バとを具備する単結晶製造装置において、  1 2. A crucible containing a single crystal material melt to be grown, a heater for heating the melt, and a pulling means for growing a single crystal by bringing a seed crystal into contact with the surface of the melt in the crucible; In a single crystal manufacturing apparatus comprising: a magnetic field applying means for applying a magnetic field; and a chamber for accommodating each of the members.
前記ヒータの制御を行い、 前記溶融液の温度が安定するだけの時間が経過した 後に、 前記磁場印加手段を所望の磁場強度まで励磁する、  The heater is controlled, and after a lapse of time sufficient for the temperature of the melt to stabilize, the magnetic field applying unit is excited to a desired magnetic field intensity,
ように前記ヒータおよび前記磁場印加手段を制御する制御手段を有する、 ことを特徴とする単結晶製造装置。 And a control means for controlling the heater and the magnetic field applying means as described above.
PCT/JP2003/005730 2002-05-10 2003-05-08 Production method and production device for single crystal WO2003095717A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002136261A JP4187998B2 (en) 2002-05-10 2002-05-10 Single crystal manufacturing method and manufacturing apparatus
JP2002/136261 2002-05-10

Publications (1)

Publication Number Publication Date
WO2003095717A1 true WO2003095717A1 (en) 2003-11-20

Family

ID=29416784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005730 WO2003095717A1 (en) 2002-05-10 2003-05-08 Production method and production device for single crystal

Country Status (3)

Country Link
JP (1) JP4187998B2 (en)
TW (1) TWI231319B (en)
WO (1) WO2003095717A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4857920B2 (en) * 2006-06-07 2012-01-18 株式会社Sumco Method for producing silicon single crystal
JP5240905B2 (en) * 2008-04-07 2013-07-17 国立大学法人信州大学 Magnetic field applied silicon crystal growth method and apparatus
JP5336779B2 (en) * 2008-06-27 2013-11-06 インターナショナル・ビジネス・マシーンズ・コーポレーション Information processing apparatus for performing character string conversion, character string conversion method, program, and information processing system
JP6950581B2 (en) 2018-02-28 2021-10-13 株式会社Sumco Silicon single crystal manufacturing method and silicon single crystal pulling device
US11186921B2 (en) 2019-02-27 2021-11-30 Sumco Corporation Method for controlling convection pattern of silicon melt and method for producing monocrystalline silicon

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09175885A (en) * 1995-12-27 1997-07-08 Mitsubishi Materials Shilicon Corp Single crystal pull-up apparatus
US5925185A (en) * 1996-06-20 1999-07-20 Komatsu Electronic Metals Co., Ltd. Magnetic field-applied fabrication method for a semiconductor single crystal and an apparatus therefor
JPH11209197A (en) * 1998-01-23 1999-08-03 Shin Etsu Handotai Co Ltd Production of silicon single crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09175885A (en) * 1995-12-27 1997-07-08 Mitsubishi Materials Shilicon Corp Single crystal pull-up apparatus
US5925185A (en) * 1996-06-20 1999-07-20 Komatsu Electronic Metals Co., Ltd. Magnetic field-applied fabrication method for a semiconductor single crystal and an apparatus therefor
JPH11209197A (en) * 1998-01-23 1999-08-03 Shin Etsu Handotai Co Ltd Production of silicon single crystal

Also Published As

Publication number Publication date
TW200307065A (en) 2003-12-01
JP2003327491A (en) 2003-11-19
TWI231319B (en) 2005-04-21
JP4187998B2 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
WO2001057294A1 (en) Method for controlling growth of a silicon crystal to minimize growth rate and diameter deviations
US6120749A (en) Silicon single crystal with no crystal defect in peripheral part of wafer and process for producing the same
JPH10101482A (en) Production unit for single crystal silicon and its production
JPWO2003091483A1 (en) Method for producing silicon single crystal and silicon single crystal and silicon wafer
JP6579046B2 (en) Method for producing silicon single crystal
JP3760769B2 (en) Method for producing silicon single crystal
WO2003095717A1 (en) Production method and production device for single crystal
WO2023051616A1 (en) Crystal pulling furnace for pulling monocrystalline silicon rod
JP4013324B2 (en) Single crystal growth method
JPH04104988A (en) Growth of single crystal
JP4640796B2 (en) Method for producing silicon single crystal
JP2007254200A (en) Method for manufacturing single crystal
JP2010018506A (en) Process of manufacturing silicon single crystal
KR102492237B1 (en) Method and apparatus for growing silicon single crystal ingot
JP2022526817A (en) Manufacturing method of ingot with reduced distortion in the latter half of the main body length
JP4407192B2 (en) Single crystal manufacturing method
TWI751028B (en) Method for manufacturing single crystal silicon
JP2959464B2 (en) Component management method and apparatus for single crystal pulling apparatus
JP4082213B2 (en) Single crystal growth method, single crystal manufacturing apparatus, and silicon single crystal manufactured by this method
JP2004345907A (en) Semiconductor single crystal growth apparatus
JPH07277874A (en) Method for pulling up silicon single crystal
JP4341379B2 (en) Single crystal manufacturing method
US20240018689A1 (en) Crystal Puller for Pulling Monocrystalline Silicon Ingots
JP4007193B2 (en) Method for producing silicon single crystal
KR20100071507A (en) Apparatus, method of manufacturing silicon single crystal and method of controlling oxygen density of silicon single crystal

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE US