JPH09175885A - Single crystal pull-up apparatus - Google Patents

Single crystal pull-up apparatus

Info

Publication number
JPH09175885A
JPH09175885A JP34170095A JP34170095A JPH09175885A JP H09175885 A JPH09175885 A JP H09175885A JP 34170095 A JP34170095 A JP 34170095A JP 34170095 A JP34170095 A JP 34170095A JP H09175885 A JPH09175885 A JP H09175885A
Authority
JP
Japan
Prior art keywords
crucible
semiconductor
single crystal
raw material
semiconductor melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34170095A
Other languages
Japanese (ja)
Other versions
JP3885245B2 (en
Inventor
Hiroaki Taguchi
裕章 田口
Takashi Atami
貴 熱海
Hisashi Furuya
久 降屋
Michio Kida
道夫 喜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Silicon Corp
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Silicon Corp
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Silicon Corp, Mitsubishi Materials Corp filed Critical Mitsubishi Materials Silicon Corp
Priority to JP34170095A priority Critical patent/JP3885245B2/en
Publication of JPH09175885A publication Critical patent/JPH09175885A/en
Application granted granted Critical
Publication of JP3885245B2 publication Critical patent/JP3885245B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively suppress the deterioration of the members in a furnace and the adhesion of bubbles on an inner crucible, etc., in a single crystal pull-up process. SOLUTION: This single crystal pull-up process is constituted in such a manner that semiconductor melt is held in a double layered crucible constructed by an outer crucible placed in a closed container and an inner crucible of a cylindrical partitioning body placed in the outer crucible, and a semiconductor single crystal is pulled up from the semiconductor melt in the inner crucible. In the state where the inner crucible 12 is separated from the outer crucible 11, a semiconductor raw material is melted in the outer crucible 11 and the semiconductor melt 21 is held in it. After the raw material has melted, the inner crucible is placed in the outer crucible to construct the double layered crucible. Thereafter, a magnetic field is applied on the semiconductor melt from the outside of the outer crucible to suppress the convection current of the semiconductor melt. In the state where the magnetic field is applied by a magnetic field-applying process, the semiconductor melt is adjusted at a temperature suitable for crystal growth.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、二重構造のルツボ
を用いて貯留された半導体融液より半導体単結晶を引き
上げる単結晶引上方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal pulling method for pulling a semiconductor single crystal from a semiconductor melt stored by using a double-structured crucible.

【0002】[0002]

【従来の技術】従来、シリコン(Si)やガリウムヒ素
(GaAs)等の半導体単結晶を成長する方法の一つと
して、CZ法が知られている。このCZ法は、大口径、
高純度の単結晶が無転位あるいは格子欠陥の極めて少な
い状態で容易に得られること等の特徴を有することか
ら、様々な半導体結晶の成長に用いられている方法であ
る。
2. Description of the Related Art Conventionally, the CZ method is known as one of the methods for growing a semiconductor single crystal such as silicon (Si) or gallium arsenide (GaAs). This CZ method has a large diameter,
It is a method used for the growth of various semiconductor crystals because it has characteristics such that a high-purity single crystal can be easily obtained without dislocations or with very few lattice defects.

【0003】近年、単結晶の大口径化、高純度化、酸素
濃度および不純物濃度等の均一化の要求に伴いこのCZ
法も様々に改良され実用に供されている。上記CZ法の
改良型の一つにいわゆる二重ルツボを用いた連続チャー
ジ型磁界印加CZ法(以下、CMCZ法と略称する)が
提案されている。この方法は、外部からルツボ内の半導
体融液に磁界を印加することにより前記半導体融液内の
対流を抑制し極めて酸素濃度の制御性が良く単結晶化率
が良い単結晶を成長することができ、外側のルツボと内
側のルツボとの間に原料を連続供給し長尺の半導体単結
晶を容易に得ることができる等の特徴を有する。したが
って、大口径かつ長尺の半導体単結晶を得るには最も優
れた方法の一つであると言われている。
In recent years, with the demand for a single crystal having a large diameter, high purity, and uniform oxygen concentration and impurity concentration, the CZ
The method has been variously improved and put to practical use. As one of the improved CZ methods, a continuous charge type magnetic field application CZ method using a so-called double crucible (hereinafter, abbreviated as CMCZ method) has been proposed. This method suppresses convection in the semiconductor melt by applying a magnetic field to the semiconductor melt in the crucible from the outside, and can control a single crystal with good controllability of oxygen concentration and good single crystallization rate. In addition, the raw material can be continuously supplied between the outer crucible and the inner crucible to easily obtain a long semiconductor single crystal. Therefore, it is said to be one of the most excellent methods for obtaining a large-diameter and long semiconductor single crystal.

【0004】図2は、特開平4−305091号公報に
記載されている上記のCMCZ法を用いたシリコンの単
結晶引上装置の一例である。この単結晶引上装置1は、
中空の気密容器であるチャンバ2内に、二重ルツボ3、
ヒーター4、原料供給装置5がそれぞれ配置され、該チ
ャンバ2の外部にマグネット6が配置されている。
FIG. 2 shows an example of a silicon single crystal pulling apparatus using the CMCZ method described in Japanese Patent Laid-Open No. 4-305091. This single crystal pulling apparatus 1 is
In the chamber 2 which is a hollow airtight container, the double crucible 3,
A heater 4 and a raw material supply device 5 are arranged respectively, and a magnet 6 is arranged outside the chamber 2.

【0005】二重ルツボ3は、略半球状の石英(SiO
2)製の外ルツボ11と、図4に示すように、該外ルツ
ボ11内に設けられた円筒状の仕切り体である石英(S
iO2)製の内ルツボ12とから形成され、該内ルツボ
12の側壁には、内ルツボ12と外ルツボ11との間
(原料融解領域)と内ルツボ12の内側(結晶成長領
域)とを連通する連通孔13が複数個形成されている。
The double crucible 3 is made of substantially hemispherical quartz (SiO 2).
2 ) an outer crucible 11 and, as shown in FIG. 4, quartz (S) which is a cylindrical partition body provided in the outer crucible 11.
The inner crucible 12 made of iO 2 ) is provided on the side wall of the inner crucible 12 between the inner crucible 12 and the outer crucible 11 (raw material melting region) and the inner crucible 12 (crystal growth region). A plurality of communication holes 13 that communicate with each other are formed.

【0006】この二重ルツボ3は、チャンバ2の中央下
部に垂直に立設されたシャフト14上のサセプタ15に
載置されており、前記シャフト14の軸線を中心として
水平面上で所定の角速度で回転する構成になっている。
そして、この二重ルツボ3内には半導体融液(加熱融解
された半導体単結晶の原料)21が貯留されている。
The double crucible 3 is mounted on a susceptor 15 on a shaft 14 which is vertically erected in the lower center of the chamber 2 and has a predetermined angular velocity on a horizontal plane about the axis of the shaft 14. It is designed to rotate.
A semiconductor melt (raw material for a semiconductor single crystal that has been heated and melted) 21 is stored in the double crucible 3.

【0007】ヒーター4は、半導体の原料をルツボ内で
加熱・融解するとともに生じた半導体融液21を保温す
るもので、通常、抵抗加熱が用いられる。原料供給装置
5は、所定量の半導体の原料22を外ルツボ11と内ル
ツボ12との間の半導体融液21面上に連続的に投入す
るものである。
The heater 4 heats and melts the semiconductor raw material in the crucible and keeps the temperature of the generated semiconductor melt 21, and normally resistance heating is used. The raw material supply device 5 continuously feeds a predetermined amount of semiconductor raw material 22 onto the surface of the semiconductor melt 21 between the outer crucible 11 and the inner crucible 12.

【0008】マグネット6は、二重ルツボ3の外方から
二重ルツボ3内の半導体融液21に磁界を印加すること
で、半導体融液21内で発生するローレンツ力により該
半導体融液21の対流の制御および酸素濃度の制御、液
面振動の抑制等を行うものである。
The magnet 6 applies a magnetic field from the outside of the double crucible 3 to the semiconductor melt 21 in the double crucible 3, whereby the Lorentz force generated in the semiconductor melt 21 causes the semiconductor melt 21 to move. Control of convection, control of oxygen concentration, suppression of liquid level vibration, etc. are performed.

【0009】上記原料供給装置5から供給される原料2
2としては、例えば、多結晶シリコンのインゴットを破
砕機等で破砕してフレーク状にしたもの、あるいは、気
体原料から熱分解法により粒状に析出させた多結晶シリ
コンの顆粒が好適に用いられ、必要に応じてホウ素
(B)(p型シリコン単結晶を作る場合)やリン(P)
(n型シリコン単結晶を作る場合)等のドーパントと呼
ばれる添加元素がさらに供給される。また、ガリウムヒ
素(GaAs)の場合も同様で、この場合、添加元素は
亜鉛(Zn)もしくはシリコン(Si)等となる。
Raw material 2 supplied from the raw material supply device 5
As 2, the ingot of polycrystalline silicon is crushed by a crusher or the like to form flakes, or the granular particles of polycrystalline silicon deposited by a thermal decomposition method from a gas raw material are preferably used, If necessary, boron (B) (when making p-type silicon single crystal) or phosphorus (P)
An additional element called a dopant such as (for forming an n-type silicon single crystal) is further supplied. The same applies to gallium arsenide (GaAs). In this case, the additive element is zinc (Zn) or silicon (Si).

【0010】上記の単結晶引上装置1により、内ルツボ
12の上方かつ軸線上に配された引上軸24に種結晶2
5を吊り下げ、半導体融液21上部において種結晶25
を核として半導体単結晶26を成長させる。
By the single crystal pulling apparatus 1 described above, the seed crystal 2 is attached to the pulling shaft 24 arranged above the inner crucible 12 and axially.
5 is suspended, and the seed crystal 25 is placed above the semiconductor melt 21.
The semiconductor single crystal 26 is grown using the as a nucleus.

【0011】ところで、従来の単結晶引上方法において
は、特開昭63−303894公報に記載されているよ
うに、単結晶を成長する前工程において、外ルツボ11
に予め多結晶シリコン塊等の多結晶原料を融解させて半
導体融液21を貯留した後、マグネット6により外ルツ
ボ11内の半導体融液2に一定の磁場を印加してその対
流を抑制し(流速が約10分の1に減速される)、ヒー
ター4によって外ルツボ11内の半導体融液21の温度
を調整している。そして、半導体融液21の温度調整
後、外ルツボ11の上方に配された内ルツボ12を、外
ルツボ11内に載置して、二重ルツボ3を形成してい
る。
By the way, in the conventional method for pulling a single crystal, as described in JP-A-63-303894, the outer crucible 11 is used in the previous step of growing the single crystal.
After a polycrystalline raw material such as a polycrystalline silicon mass is melted in advance to store the semiconductor melt 21, a constant magnetic field is applied to the semiconductor melt 2 in the outer crucible 11 by the magnet 6 to suppress its convection ( The flow rate is reduced to about 1/10), and the temperature of the semiconductor melt 21 in the outer crucible 11 is adjusted by the heater 4. After adjusting the temperature of the semiconductor melt 21, the inner crucible 12 arranged above the outer crucible 11 is placed in the outer crucible 11 to form the double crucible 3.

【0012】このように原料の融解後に二重ルツボ3を
形成するのは、原料を完全に融解して半導体融液21を
得るために、ヒーター4によって外ルツボ11内の原料
を単結晶成長温度以上の温度まで高温加熱する必要があ
り、この際に、予め内ルツボ12を外ルツボ11内に載
置させていると、内ルツボ12に大きな熱変形が生じて
しまうからである。
The double crucible 3 is formed after the raw material is melted in this manner. The raw material in the outer crucible 11 is heated by the heater 4 to obtain the semiconductor melt 21 by completely melting the raw material. This is because it is necessary to heat at a high temperature to the above temperature, and at this time, if the inner crucible 12 is placed in the outer crucible 11 in advance, large thermal deformation will occur in the inner crucible 12.

【0013】したがって、原料を完全に融解した後、ヒ
ーター4による加熱をある程度弱めてから内ルツボ12
を外ルツボ11に載置させることによって、初期原料融
解時の高温加熱を避け、内ルツボ12の変形を抑制して
いる。
Therefore, after the raw material is completely melted, the heating by the heater 4 is weakened to some extent, and then the inner crucible 12 is heated.
By placing the on the outer crucible 11, high temperature heating at the time of melting the initial raw material is avoided and deformation of the inner crucible 12 is suppressed.

【0014】また、上記前工程における半導体融液21
の温度調整は以下のように行っている。 〔原料融解工程〕まず、外ルツボ11内の原料を完全に
融解して半導体融液21とするためにヒーター4によ
り、例えばシリコン原料の場合は、融点1420℃に対
して外ルツボ11の中央液面23付近を1470℃程度
の高温状態となるように加熱している。このとき、図4
の実線に示すように、外ルツボ11の液面における径
方向の融液温度の分布は、高温状態の外ルツボ11外周
近傍では高く、中央液面23付近では低くなる。
Further, the semiconductor melt 21 in the previous step
The temperature is adjusted as follows. [Raw Material Melting Step] First, by the heater 4 in order to completely melt the raw material in the outer crucible 11 to form the semiconductor melt 21, for example, in the case of a silicon raw material, the center liquid of the outer crucible 11 with respect to the melting point 1420 ° C. The vicinity of the surface 23 is heated to a high temperature of about 1470 ° C. At this time, FIG.
As shown by the solid line, the distribution of the melt temperature in the radial direction on the liquid surface of the outer crucible 11 is high in the vicinity of the outer periphery of the outer crucible 11 in the high temperature state and is low in the vicinity of the central liquid surface 23.

【0015】〔磁場印加工程〕原料が完全に融解した
後、マグネット6により半導体融液21に磁場を印加す
ると、半導体融液21の熱対流が抑制され攪拌効果が低
下するため、上記融液温度の分布(図中の一点鎖線)
は、ヒーター4の出力を一定とすると、外ルツボ11外
周近傍ではさらに高くなるとともに、中央液面23付近
では逆に低くなる。なお、前記原料溶解工程中に磁場印
加を行わないのは、磁場印加に伴って中央液面23付近
の融液温度が下がることにより、中央液面23付近の浮
遊原料が十分に融解されないため、ヒーター4の出力を
上げて加熱し、中央液面23付近の温度を磁場印加前の
温度に戻す調整を行う必要があるからである。
[Magnetic field applying step] When the magnetic field is applied to the semiconductor melt 21 by the magnet 6 after the raw material is completely melted, the thermal convection of the semiconductor melt 21 is suppressed and the stirring effect is deteriorated. Distribution (dotted line in the figure)
When the output of the heater 4 is constant, the value becomes higher near the outer periphery of the outer crucible 11 and, conversely, becomes lower near the central liquid level 23. Note that the magnetic field is not applied during the raw material melting step because the temperature of the melt near the central liquid level 23 decreases with the application of the magnetic field, so that the floating raw material near the central liquid level 23 is not sufficiently melted. This is because it is necessary to raise the output of the heater 4 to heat it and adjust the temperature near the central liquid surface 23 to the temperature before applying the magnetic field.

【0016】〔二重ルツボ形成工程〕さらに、磁場印加
状態で外ルツボ11内に内ルツボ12を載置して二重ル
ツボ3を形成する際、内ルツボ12の下部が半導体融液
21に接触すると、内ルツボ12によって半導体融液2
1の熱が吸収されるとともに、局所的な温度低下を引き
起こし内ルツボ12の下部において結晶成長が始まって
しまうおそれもある。このため、ヒーター4の出力をさ
らに上げて、内ルツボ12の熱吸収による温度低下に対
しても結晶成長が生じない十分に高い温度(図中の一点
鎖線)に加熱しておく必要がある。
[Double Crucible Forming Step] Further, when the inner crucible 12 is placed inside the outer crucible 11 to form the double crucible 3 in a magnetic field applied state, the lower part of the inner crucible 12 contacts the semiconductor melt 21. Then, the semiconductor melt 2 is moved by the inner crucible 12.
There is a possibility that the heat of No. 1 will be absorbed and a local temperature drop will occur, and crystal growth will start in the lower part of the inner crucible 12. Therefore, it is necessary to further increase the output of the heater 4 and heat it to a sufficiently high temperature (one-dot chain line in the figure) at which crystal growth does not occur even if the temperature decreases due to heat absorption of the inner crucible 12.

【0017】二重ルツボを形成した後、ヒーター4の出
力を下げるとともに、結晶成長に適した融液温度に下げ
(図中の二点鎖線)、安定した時点で結晶成長工程へ
移行する。
After forming the double crucible, the output of the heater 4 is lowered and the melt temperature is lowered to a temperature suitable for crystal growth (two-dot chain line in the figure), and the process proceeds to the crystal growth step at a stable point.

【0018】[0018]

【発明が解決しようとする課題】しかしながら、上記の
単結晶引上方法には、以下のような課題が残されてい
る。すなわち、上述したように、内ルツボ載置時には、
温度低下を防ぐためヒーター4の高い出力を要するとと
もに、これに伴って炉内部材等に過剰な加熱が長時間加
わりこれらの早期劣化を引き起こす原因ともなる。
However, the above-mentioned single crystal pulling method has the following problems. That is, as described above, when the inner crucible is placed,
A high output of the heater 4 is required to prevent the temperature from decreasing, and accompanying this, excessive heating is applied to the internal members of the furnace for a long period of time, which causes these early deterioration.

【0019】一方、内ルツボ12を半導体融液21中に
入れる際に、顕著に対流が生じていると雰囲気ガスであ
るアルゴン等のガス(気泡)が内ルツボ12に付着し難
いが、予め磁場によって対流が抑制されていると、前記
ガスの付着抑制効果が低減されてしまう。
On the other hand, when the inner crucible 12 is put into the semiconductor melt 21, if convection is remarkably generated, it is difficult for a gas (bubbles) such as argon, which is an atmospheric gas, to adhere to the inner crucible 12, but the magnetic field is previously set. If the convection is suppressed by the above, the effect of suppressing the adhesion of the gas is reduced.

【0020】本発明は、前述の課題に鑑みてなされたも
ので、炉内部材の劣化および内ルツボへのガスの付着等
を効果的に抑制し、長尺大口径の単結晶を安定して引き
上げる方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and effectively suppresses the deterioration of furnace internal members, the adhesion of gas to the inner crucible, and the like, and stabilizes a long, large-diameter single crystal. The purpose is to provide a way to pull up.

【0021】[0021]

【課題を解決するための手段】本発明は、前記課題を解
決するために以下の構成を採用した。すなわち、請求項
1記載の単結晶引上装置では、気密容器の内部に設けら
れた外ルツボおよび該外ルツボ内に配された筒状仕切り
体である内ルツボで形成された二重ルツボに半導体融液
を貯留し、前記内ルツボ内の半導体融液より半導体単結
晶を引き上げる単結晶引上方法において、内ルツボと外
ルツボとを分離しておき、該外ルツボに入れた半導体原
料を融解して半導体融液を貯留する原料融解工程と、該
原料融解工程の後に、前記外ルツボ内に前記内ルツボを
載置して二重ルツボを形成する二重ルツボ形成工程と、
該二重ルツボ形成工程の後に、前記外ルツボの外方から
前記半導体融液に磁場を印加して半導体融液の対流を抑
制する磁場印加工程と、該磁場印加工程により磁場を印
加した状態で前記半導体融液を結晶成長の温度に調整す
る温度調整工程とを具備する。
The present invention has the following features to attain the object mentioned above. That is, in the apparatus for pulling a single crystal according to claim 1, a semiconductor is provided in a double crucible formed by an outer crucible provided inside an airtight container and an inner crucible that is a cylindrical partition member arranged in the outer crucible. In a single crystal pulling method for storing a melt and pulling a semiconductor single crystal from the semiconductor melt in the inner crucible, the inner crucible and the outer crucible are separated, and the semiconductor raw material put in the outer crucible is melted. A raw material melting step of storing a semiconductor melt, and a double crucible forming step of forming a double crucible by placing the inner crucible in the outer crucible after the raw material melting step,
After the double crucible forming step, a magnetic field applying step for suppressing convection of the semiconductor melt by applying a magnetic field to the semiconductor melt from the outside of the outer crucible, and a magnetic field applied by the magnetic field applying step. A temperature adjusting step of adjusting the semiconductor melt to a crystal growth temperature.

【0022】この単結晶引上方法では、原料融解工程の
後に、外ルツボ内に内ルツボを載置し、その後に半導体
融液に磁場印加を行い、この状態で融液温度の調整をす
るので、内ルツボ載置時において、半導体融液が原料融
解工程後では融点より十分高い高温状態であるため、内
ルツボの熱吸収による半導体融液の局所的な温度低下が
生じても融点より十分高い温度が維持され、内ルツボの
下部で結晶成長が始まることがないとともに、ヒーター
の出力をさらに上げる必要がなく、炉内部材に過剰な加
熱が加わらない。また、磁場が印加される前であるた
め、熱対流が顕著に生じて、内ルツボに付着したガスが
容易に離脱するとともに、半導体融液に含まれるガスの
液面からの蒸発が促進される。
In this single crystal pulling method, after the raw material melting step, the inner crucible is placed in the outer crucible, the magnetic field is applied to the semiconductor melt, and the melt temperature is adjusted in this state. When the inner crucible is placed, since the semiconductor melt is in a high temperature state sufficiently higher than the melting point after the raw material melting step, even if a local temperature decrease of the semiconductor melt occurs due to heat absorption of the inner crucible, it is sufficiently higher than the melting point. The temperature is maintained, crystal growth does not start in the lower part of the inner crucible, the output of the heater does not need to be further increased, and excessive heating is not applied to the furnace internal member. Further, since the magnetic field is not yet applied, thermal convection remarkably occurs, the gas attached to the inner crucible is easily separated, and the evaporation of the gas contained in the semiconductor melt from the liquid surface is promoted. .

【0023】[0023]

【発明の実施の形態】以下に、本発明に係る単結晶引上
方法の一形態におけるシリコンの単結晶を成長させる方
法について図1および図2を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A method for growing a silicon single crystal in one embodiment of the method for pulling a single crystal according to the present invention will be described below with reference to FIGS. 1 and 2.

【0024】〔初期原料融解工程〕まず、多結晶シリコ
ン塊の多結晶原料を所定量だけ外ルツボ11内に入れ、
チャンバ2内を真空ポンプ等で排気し真空状態とする。
また、該チャンバ2内にアルゴン(Ar)等の不活性ガ
スを導入し、シャフト14を軸線を中心として所定の角
速度で水平面上で回転させることで外ルツボ11を所定
の角速度で回転させながら、ヒーター4に通電し外ルツ
ボ11内の多結晶原料を単結晶成長温度以上の温度まで
加熱し、この原料を完全に融解する。すなわち、該半導
体融液21の中央液面23付近の温度を、シリコンの融
点である1420℃に対して、1470℃程度となるよ
うに加熱する。このときの外ルツボ11の径方向におけ
る半導体融液21の温度分布は、図1の実線Aに示すよ
うに、中央液面23付近が低く、外ルツボ11外周近傍
が高い状態となる。
[Initial Raw Material Melting Step] First, a predetermined amount of the polycrystalline raw material of the polycrystalline silicon mass is put into the outer crucible 11,
The inside of the chamber 2 is evacuated by a vacuum pump or the like to be in a vacuum state.
Further, while introducing an inert gas such as argon (Ar) into the chamber 2 and rotating the shaft 14 on a horizontal plane at a predetermined angular velocity about the axis, the outer crucible 11 is rotated at a predetermined angular velocity, The heater 4 is energized to heat the polycrystalline raw material in the outer crucible 11 to a temperature equal to or higher than the single crystal growth temperature to completely melt the raw material. That is, the temperature near the central liquid surface 23 of the semiconductor melt 21 is heated to about 1470 ° C. with respect to 1420 ° C. which is the melting point of silicon. At this time, the temperature distribution of the semiconductor melt 21 in the radial direction of the outer crucible 11 is low near the central liquid level 23 and high near the outer periphery of the outer crucible 11 as shown by the solid line A in FIG.

【0025】〔二重ルツボ形成工程〕原料が完全に融解
した後、外ルツボ11の上方に軸線を同じくして配され
る内ルツボ12を半導体融液21内に載置し、二重ルツ
ボ3を形成する。なお、ヒーター4の出力は変えずに、
前記初期原料融解工程と同じ出力で加熱を行う。このと
き、半導体融液21が原料融解工程後では融点より十分
高い高温状態であるため、内ルツボ12の熱吸収による
半導体融液21の局所的な温度低下が生じても、融点よ
り十分高い温度が維持され、内ルツボ12の下部で結晶
成長が始まることがないとともに、ヒーター4の出力を
さらに上げる必要がなく、炉内部材に過剰な加熱が加わ
らない。
[Double Crucible Forming Step] After the raw material is completely melted, the inner crucible 12 arranged with the same axis line above the outer crucible 11 is placed in the semiconductor melt 21, and the double crucible 3 is formed. To form. In addition, without changing the output of the heater 4,
Heating is performed with the same output as in the initial raw material melting step. At this time, since the semiconductor melt 21 is in a high temperature state sufficiently higher than the melting point after the raw material melting step, even if the temperature of the semiconductor melt 21 is locally lowered due to heat absorption of the inner crucible 12, the temperature is sufficiently higher than the melting point. Is maintained, crystal growth does not start in the lower part of the inner crucible 12, and there is no need to further increase the output of the heater 4, so that excessive heating is not applied to the furnace internal member.

【0026】また、磁場が印加される前であるため、半
導体融液21の熱対流が顕著に生じて、内ルツボ12に
付着したガスが容易に離脱するとともに、半導体融液2
1に含まれるガスの液面からの蒸発が促進される。
Further, since the magnetic field is not yet applied, the thermal convection of the semiconductor melt 21 remarkably occurs, the gas attached to the inner crucible 12 is easily released, and the semiconductor melt 2
The evaporation of the gas contained in 1 from the liquid surface is promoted.

【0027】〔磁場印加工程〕二重ルツボ3を形成した
後、マグネット6に通電し所定の磁界を半導体融液21
に印加し、該半導体融液21の対流を抑制する。このと
き、前記半導体融液21の温度分布は、原料融解工程に
比べて、中央液面23付近がより低く(1450℃)、
外ルツボ11外周近傍はより高い状態となる(図中の一
点鎖線B)。
[Magnetic field applying step] After the double crucible 3 is formed, the magnet 6 is energized to apply a predetermined magnetic field to the semiconductor melt 21.
To suppress convection of the semiconductor melt 21. At this time, the temperature distribution of the semiconductor melt 21 is lower (1450 ° C.) near the central liquid level 23 as compared with the raw material melting step,
The vicinity of the outer periphery of the outer crucible 11 becomes higher (dashed line B in the figure).

【0028】〔温度調整工程〕さらに、磁場印加工程の
後、ヒーター4の出力を若干下げて半導体融液21の中
央液面23付近を単結晶成長温度(1440℃)に調整
する(図中の二点鎖線C)。
[Temperature Adjustment Step] Further, after the magnetic field application step, the output of the heater 4 is slightly lowered to adjust the vicinity of the central liquid surface 23 of the semiconductor melt 21 to the single crystal growth temperature (1440 ° C.) (in the figure). Two-dot chain line C).

【0029】〔単結晶成長工程〕中央液面23付近の融
液温度が単結晶成長温度に安定した後、引上軸24によ
り吊り下げられた種結晶25を半導体融液21になじま
せた後、この種結晶25を核として半導体単結晶26を
成長させる。ここでは、種結晶を無転位化した後にこの
単結晶の径を徐々に大口径化し所定の径の半導体単結晶
26とする。
[Single Crystal Growth Step] After the melt temperature in the vicinity of the central liquid surface 23 is stabilized at the single crystal growth temperature, the seed crystal 25 suspended by the pulling shaft 24 is adapted to the semiconductor melt 21. A semiconductor single crystal 26 is grown using the seed crystal 25 as a nucleus. Here, after the seed crystal is made dislocation-free, the diameter of this single crystal is gradually increased to a semiconductor single crystal 26 having a predetermined diameter.

【0030】この単結晶成長工程においては、半導体単
結晶26の成長量(引上量)に応じてシリコンの粒状の
原料22が連続的に投入され(必要に応じてドーパント
を入れる。)、この投入された原料22は内ルツボ12
の外側で融解し、連通孔13を通って内ルツボ12内に
連続的に供給される。以上により、良質な長尺大口径の
半導体単結晶26を成長することができる。
In this single crystal growing step, the granular silicon raw material 22 is continuously charged (if necessary, a dopant is added) according to the growth amount (pulling amount) of the semiconductor single crystal 26, and this is added. The supplied raw material 22 is the inner crucible 12
Is melted outside and is continuously supplied into the inner crucible 12 through the communication hole 13. As described above, it is possible to grow a good quality long large diameter semiconductor single crystal 26.

【0031】[0031]

【発明の効果】以上説明したように本発明によれば、原
料融解工程の後で、外ルツボ内に内ルツボを載置し、そ
の後に半導体融液に磁場印加を行い、この状態で融液温
度の調整をするので、内ルツボ載置時において、半導体
融液が十分に高温状態であるため、内ルツボの下部で結
晶成長が始まることがなく、不要な結晶成長を防止する
ことができる。また、ヒーターの出力を原料融解工程よ
り上げる必要がないので、加熱による炉内部材の劣化が
抑制されることから、部材の交換時期を長期化でき、設
備費等の低コスト化を図ることができる。さらに、磁場
が印加される前に内ルツボを載置するため、活発な半導
体融液の熱対流により、内ルツボへのガスの付着を抑制
することができる。
As described above, according to the present invention, after the raw material melting step, the inner crucible is placed in the outer crucible, and then the magnetic field is applied to the semiconductor melt. Since the temperature is adjusted, since the semiconductor melt is in a sufficiently high temperature state when the inner crucible is placed, crystal growth does not start at the lower part of the inner crucible, and unnecessary crystal growth can be prevented. In addition, since it is not necessary to increase the output of the heater above the raw material melting step, deterioration of furnace internal members due to heating is suppressed, so that it is possible to prolong the replacement period of the members and reduce costs such as equipment costs. it can. Furthermore, since the inner crucible is placed before the magnetic field is applied, it is possible to suppress the adhesion of gas to the inner crucible due to active thermal convection of the semiconductor melt.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る単結晶引上方法の一形態における
外ルツボ内の径方向における半導体融液の温度分布を示
すグラフである。
FIG. 1 is a graph showing a temperature distribution of a semiconductor melt in a radial direction inside an outer crucible in one mode of a single crystal pulling method according to the present invention.

【図2】本発明に係る単結晶引上方法の一形態に用いる
単結晶引上装置の断面図である。
FIG. 2 is a cross-sectional view of a single crystal pulling apparatus used for one mode of the single crystal pulling method according to the present invention.

【図3】本発明に係る単結晶引上方法の一形態に用いる
単結晶引上装置の内ルツボを示す斜視図である。
FIG. 3 is a perspective view showing an inner crucible of a single crystal pulling apparatus used for one mode of a single crystal pulling method according to the present invention.

【図4】本発明に係る単結晶引上方法の従来例における
外ルツボ内の径方向における半導体融液の温度分布を示
すグラフである。
FIG. 4 is a graph showing a temperature distribution of a semiconductor melt in a radial direction inside an outer crucible in a conventional example of a single crystal pulling method according to the present invention.

【符号の説明】[Explanation of symbols]

1 単結晶引上装置 3 二重ルツボ 4 ヒーター 6 マグネット 11 外ルツボ 12 内ルツボ 21 半導体融液 22 原料 1 Single Crystal Pulling Device 3 Double Crucible 4 Heater 6 Magnet 11 Outer Crucible 12 Inner Crucible 21 Semiconductor Melt 22 Raw Material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 降屋 久 東京都千代田区大手町一丁目5番1号 三 菱マテリアルシリコン株式会社内 (72)発明者 喜田 道夫 埼玉県大宮市北袋町1丁目297番地 三菱 マテリアル株式会社総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hisashi Furuya 1-5-1, Otemachi, Chiyoda-ku, Tokyo Sanritsu Material Silicon Co., Ltd. (72) Inventor Michio Kita 1-297 Kitabukuro-cho, Omiya-shi, Saitama Address Mitsubishi Materials Corporation, Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 気密容器の内部に設けられた外ルツボお
よび該外ルツボ内に配された筒状仕切り体である内ルツ
ボで形成された二重ルツボに半導体融液を貯留し、前記
内ルツボ内の半導体融液より半導体単結晶を引き上げる
単結晶引上方法において、 内ルツボと外ルツボとを分離しておき、該外ルツボに入
れた半導体原料を融解して半導体融液を貯留する原料融
解工程と、 該原料融解工程の後に、前記外ルツボ内に前記内ルツボ
を載置して二重ルツボを形成する二重ルツボ形成工程
と、 該二重ルツボ形成工程の後に、前記外ルツボの外方から
前記半導体融液に磁場を印加して半導体融液の対流を抑
制する磁場印加工程と、 該磁場印加工程により磁場を印加した状態で前記半導体
融液を結晶成長の温度に調整する温度調整工程とを具備
することを特徴とする単結晶引上方法。
1. A semiconductor melt is stored in a double crucible formed by an outer crucible provided inside an airtight container and an inner crucible that is a cylindrical partitioning body arranged in the outer crucible, and the inner crucible is stored. In a single crystal pulling method for pulling a semiconductor single crystal from a semiconductor melt inside, a crucible is separated from an inner crucible, and a semiconductor raw material put in the outer crucible is melted to melt the raw material and melt the raw material. A step of forming a double crucible by placing the inner crucible in the outer crucible after the raw material melting step, and a step of forming a double crucible after the double melting step. A magnetic field applying step of applying a magnetic field to the semiconductor melt from one side to suppress convection of the semiconductor melt, and a temperature adjustment for adjusting the semiconductor melt to a crystal growth temperature while applying a magnetic field in the magnetic field applying step. To have a process Single crystal pulling method comprising.
JP34170095A 1995-12-27 1995-12-27 Single crystal pulling method Expired - Fee Related JP3885245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34170095A JP3885245B2 (en) 1995-12-27 1995-12-27 Single crystal pulling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34170095A JP3885245B2 (en) 1995-12-27 1995-12-27 Single crystal pulling method

Publications (2)

Publication Number Publication Date
JPH09175885A true JPH09175885A (en) 1997-07-08
JP3885245B2 JP3885245B2 (en) 2007-02-21

Family

ID=18348106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34170095A Expired - Fee Related JP3885245B2 (en) 1995-12-27 1995-12-27 Single crystal pulling method

Country Status (1)

Country Link
JP (1) JP3885245B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5997640A (en) * 1997-06-02 1999-12-07 Siemens Aktiengesellschaft Device and method for liquefying and crystallizing substances
WO2003095717A1 (en) * 2002-05-10 2003-11-20 Komatsu Denshi Kinzoku Kabushiki Kaisha Production method and production device for single crystal
JP2004175620A (en) * 2002-11-27 2004-06-24 Shin Etsu Handotai Co Ltd Manufacturing method of single crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5997640A (en) * 1997-06-02 1999-12-07 Siemens Aktiengesellschaft Device and method for liquefying and crystallizing substances
WO2003095717A1 (en) * 2002-05-10 2003-11-20 Komatsu Denshi Kinzoku Kabushiki Kaisha Production method and production device for single crystal
JP2004175620A (en) * 2002-11-27 2004-06-24 Shin Etsu Handotai Co Ltd Manufacturing method of single crystal

Also Published As

Publication number Publication date
JP3885245B2 (en) 2007-02-21

Similar Documents

Publication Publication Date Title
US10544517B2 (en) Growth of a uniformly doped silicon ingot by doping only the initial charge
JPH08333191A (en) Production of single crystal and apparatus therefor
US20090090295A1 (en) Method for growing silicon ingot
JP3533416B2 (en) Single crystal pulling device
JPH076972A (en) Growth method and device of silicon single crystal
JP2001039792A (en) Polyfunctional heater for growing single crystal and device for pulling up the single crystal
JPH09194289A (en) Apparatus for pulling up single crystal
US5840116A (en) Method of growing crystals
JPH09175885A (en) Single crystal pull-up apparatus
JP4013324B2 (en) Single crystal growth method
US5873938A (en) Single crystal pulling apparatus
JP3840683B2 (en) Single crystal pulling method
JP3449096B2 (en) Material input method in single crystal pulling apparatus
JP3342625B2 (en) Single crystal pulling device
JP3470480B2 (en) Single crystal pulling method
JPH09235192A (en) Single crystal ingot low in oxygen concentration and lifting of single crystal
JP3467942B2 (en) Single crystal pulling method
JPH04305091A (en) Method and device for pulling up single crystal
JP3428266B2 (en) Single crystal pulling device
JP3470479B2 (en) Single crystal pulling device
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JPH04198086A (en) Process for growing single crystal
JPH05105585A (en) Method for growing compound semiconductor single crystal and device therefor
JPH0692776A (en) Silicon single crystal pulling up device
JPH08259371A (en) Method for growing single crystal excellent in sr uniformization

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060608

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061113

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees