JP3467942B2 - Single crystal pulling method - Google Patents

Single crystal pulling method

Info

Publication number
JP3467942B2
JP3467942B2 JP34170195A JP34170195A JP3467942B2 JP 3467942 B2 JP3467942 B2 JP 3467942B2 JP 34170195 A JP34170195 A JP 34170195A JP 34170195 A JP34170195 A JP 34170195A JP 3467942 B2 JP3467942 B2 JP 3467942B2
Authority
JP
Japan
Prior art keywords
single crystal
crucible
semiconductor
amount
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34170195A
Other languages
Japanese (ja)
Other versions
JPH09175891A (en
Inventor
貴 熱海
裕章 田口
久 降屋
道夫 喜田
Original Assignee
三菱住友シリコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱住友シリコン株式会社 filed Critical 三菱住友シリコン株式会社
Priority to JP34170195A priority Critical patent/JP3467942B2/en
Publication of JPH09175891A publication Critical patent/JPH09175891A/en
Application granted granted Critical
Publication of JP3467942B2 publication Critical patent/JP3467942B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、ルツボ内に貯留さ
れた半導体融液に連続的に固定原料を投入しつつ、前記
半導体融液から半導体単結晶を引き上げる単結晶引上
に関する。 【0002】 【従来の技術】従来、シリコン(Si)やガリウムヒ素
(GaAs)等の半導体単結晶を成長する方法の一つと
して、CZ法が知られている。このCZ法は、大口径、
高純度の単結晶が無転位あるいは格子欠陥の極めて少な
い状態で容易に得られること等の特徴を有することか
ら、様々な半導体結晶の成長に用いられている方法であ
る。 【0003】バッチ式のCZ法においては、単結晶成長
に伴いルツボ内の半導体融液の量が減少するため、単結
晶品質(酸素濃度、結晶成長界面、不純物濃度等)がそ
の成長軸方向で変化してしまい、得られた単結晶の一部
分しか所望の品質にならず、生産性が低いという問題が
あった。 【0004】この問題を解決するものとして、原料をル
ツボに連続的に供給しながら同時に単結晶を成長する連
続チャージ型CZ法(CCZ法)が従来から知られてい
る。このCCZ法によれば、単結晶の成長量(引上量)
に応じてシリコン等の粒状の原料を連続的に投入するの
で、成長過程の終始に亙って半導体融液の量を一定に保
つことができ、品質の均一化を図ることができる。 【0005】ところで、上記CCZ法においても、成長
する単結晶の径制御が重要な課題であり、単結晶の径の
変動を低減するために様々な検討が行われている。この
単結晶径の制御手段として、例えば、特開平4−243
996号に次のA〜Cの技術が提示されている。 【0006】Aの技術は、ルツボ内の半導体融液を加熱
するヒーターの出力を変えて融液温度を調整することに
より径方向の成長速度を増減し、単結晶径を制御するも
のである。Bの技術は、単結晶を引き上げる引上速度を
変えることによって、単結晶径を制御するものである。
Cの技術は、ルツボ内への固体原料の投入量を増減させ
て半導体融液の温度を調整することにより、単結晶径を
制御するものである。また、これらA〜Cの技術を組み
合わせて適用することにより成長する単結晶の径を制御
するものである。 【0007】 【発明が解決しようとする課題】しかしながら、上記の
単結晶引上方法における単結晶径の制御手段には、以下
のような課題が残されている。すなわち、Aの技術で
は、ヒーターの出力を変化させた場合、半導体融液が所
望の温度に変わり安定するまでの応答時間が遅く、実際
には径寸法を正確かつ細かく制御することは困難である 【0008】Bの技術では、Aの技術に対して応答性に
優れているが、引上速度を変えると軸方向において実際
に単結晶が成長する速度、すなわち有効成長速度が大き
く変動し、成長した単結晶の電気特性や欠陥密度等が変
動し、品質に悪影響を及ぼす場合がある。Cの技術で
は、Bの技術と同様に応答性に優れているが、結晶成長
量と半導体融液の変動量とが一致しないことにより、引
上速度を一定とした場合、半導体融液の液位が固体原料
の投入量の増減によって変動することとなり、この場合
も有効成長速度が変動する。 【0009】また、固体原料の投入量の増減に伴う半導
体融液の液位の変動に対応させて引上速度を調整する場
合、有効成長速度の変動を抑えることも可能であるが、
ヒーターの位置に対する半導体融液の相対的な液位が変
動するため、半導体融液の液面近傍における温度および
その温度分布が設定からずれてしまい径制御が困難とな
ってしまう。 【0010】本発明は、前述の課題に鑑みてなされたも
ので、有効成長速度を一定に保ちつつ、成長する単結晶
の径制御を行ってその変動を抑制するとともに品質の均
一化を図り、大口径長尺の単結晶を安定して引き上げる
方法を提供することを目的とする。 【0011】 【課題を解決するための手段】本発明は、前記課題を解
決するために以下の構成を採用した。すなわち、本発明
の単結晶引上方法では、気密容器の内部に設けられたル
ツボにヒーターの加熱により融解された半導体融液を貯
留し、このルツボ内に固体原料を投入しながら、前記ル
ツボ内の半導体融液より長尺状の半導体単結晶を引き上
げる単結晶引上方法において、前記半導体単結晶が設定
された径より大きくなったときは、前記固体原料の投入
量を減らし、逆に半導体単結晶が設定された径より小さ
くなったときは、固体原料の投入量を増やすとともに、
前記固体原料の投入量の増減と半導体単結晶の成長量か
ら算出される半導体融液の液位変化量に対して、これを
是正する二重ルツボの昇降量を予め設定し、前記固体原
料の投入量の増減に連動して、ルツボ昇降機構により
記ルツボを昇降させヒーターの位置に対する半導体融液
相対的な液位を一定に保つ。 【0012】この単結晶引上方法では、単結晶径が設定
より大きくなったときに、固体原料の投入量を減らすこ
とによって、投入された固体原料による半導体融液の冷
却効果を低下させて融液温度を上昇させ、単結晶の径方
向の成長速度を下げる。逆に、単結晶径が設定より小さ
くなったときに、固体原料の投入量を増やすことによっ
て、投入された固体原料による半導体融液の冷却効果を
上げて融液温度を下降させ、単結晶の径方向の成長速度
を上げる。なお、上記半導体融液の温度は、固体原料が
半導体融液に直接投入されることから、投入量の増減に
対し早いレスポンスで変化する。そして、固体原料の投
入量の増減によって半導体融液の貯留量は変動し、その
液位の絶対値は変化するが、前記投入量の増減に対応し
て、ルツボを昇降させ、ヒーターの位置に対する半導体
融液の相対的な液位を一定にすることにより、半導体融
液の液面温度およびその温度分布が設定の状態に保たれ
る。 【0013】 【発明の実施の形態】以下、本発明の実施の一形態を図
1を参照しながら説明する。これらの図にあって、符号
1はシリコンの単結晶引上装置、2はチャンバ、3は二
重ルツボ、4はヒーター、5は原料供給装置、6はマグ
ネットを示している。 【0014】図1は、前述したCZ法の改良型の一つで
あるいわゆる二重ルツボを用いた連続チャージ型磁界印
加CZ法(以下、CMCZ法と略称する)を採用した単
結晶引上装置1である。前記CMCZ法は、外部からル
ツボ内の半導体融液に磁界を印加することにより前記半
導体融液内の対流を抑制し極めて酸素濃度の制御性が良
く単結晶化率が良い単結晶を成長することができ、外側
のルツボと内側のルツボとの間に原料を連続供給し長尺
の半導体単結晶を容易に得ることができる等の特徴を有
する。したがって、大口径かつ長尺の半導体単結晶を得
るには最も優れた方法の一つであると言われている。 【0015】前記単結晶引上装置1は、図1に示すよう
に、中空の気密容器であるチャンバ2内に、二重ルツボ
3、ヒーター4、原料供給装置5がそれぞれ配置され、
該チャンバ2の外部にマグネット6が配置されている。 【0016】二重ルツボ3は、略半球状の石英(SiO
2)製の外ルツボ11と、該外ルツボ11内に設けられ
た円筒状の仕切り体である石英(SiO2)製の内ルツ
ボ12とから形成され、該内ルツボ12の側壁には、内
ルツボ12と外ルツボ11との間(原料融解領域)と内
ルツボ12の内側(結晶成長領域)とを連通する連通孔
13が複数個形成されている。 【0017】この二重ルツボ3は、チャンバ2の中央下
部に垂直に立設されたシャフト14上のサセプタ15に
載置されており、前記シャフト14の軸線を中心として
水平面上で所定の角速度で回転する構成になっている。
そして、この二重ルツボ3内には半導体融液(加熱融解
された半導体単結晶の原料)21が貯留されている。前
記シャフト14の下部には、該シャフト14、サセプタ
15とともに二重ルツボ3を任意の高さに昇降すること
ができるルツボ昇降機構Rが設けられている。 【0018】ヒーター4は、半導体の原料をルツボ内で
加熱・融解するとともに生じた半導体融液21を保温す
るもので、通常、抵抗加熱が用いられる。原料供給装置
5は、所定量の半導体の原料22を外ルツボ11と内ル
ツボ12との間の半導体融液21面上に連続的に投入す
るものである。さらに、原料供給装置5は、原料22の
投入量を任意に調整することができる投入量調整機構T
を有している。 【0019】マグネット6は、二重ルツボ3の外方から
二重ルツボ3内の半導体融液21に磁界を印加すること
で、半導体融液21内で発生するローレンツ力により該
半導体融液21の対流の制御および酸素濃度の制御、液
面振動の抑制等を行うものである。 【0020】上記原料供給装置5から供給される原料2
2としては、例えば、多結晶シリコンのインゴットを破
砕機等で破砕してフレーク状にしたもの、あるいは、気
体原料から熱分解法により粒状に析出させた多結晶シリ
コンの顆粒が好適に用いられ、必要に応じてホウ素
(B)(p型シリコン単結晶を作る場合)やリン(P)
(n型シリコン単結晶を作る場合)等のドーパントと呼
ばれる添加元素がさらに供給される。また、ガリウムヒ
素(GaAs)の場合も同様で、この場合、添加元素は
亜鉛(Zn)もしくはシリコン(Si)等となる。 【0021】次に、本発明に係る単結晶引上方法の一形
態における半導体単結晶を成長させる方法について説明
する。 【0022】〔初期原料融解工程〕まず、多結晶シリコ
ン塊等の多結晶原料を所定量だけ外ルツボ11内に入
れ、チャンバ2内を真空ポンプ等で排気し真空状態とす
る。また、該チャンバ2内にアルゴン(Ar)等の不活
性ガスを導入し、シャフト14を軸線を中心として所定
の角速度で水平面上で回転させることで外ルツボ11を
所定の角速度で回転させながら、ヒーター4に通電し外
ルツボ11内の多結晶原料を単結晶成長温度以上の温度
まで加熱し、この原料を完全に融解する。 【0023】〔二重ルツボ形成工程〕原料が完全に融解
した後、ヒーター4による加熱を若干弱めるとともに、
外ルツボ11の上方に軸線を同じくして配される内ルツ
ボ12を半導体融液21内に載置し、二重ルツボ3を形
成する。 【0024】〔単結晶成長工程〕二重ルツボ3を形成し
た後、マグネット6に通電し所定の磁界を印加し、ヒー
ター4の電力を調整して半導体融液21の中央液面23
付近を単結晶成長温度に保ち、引上軸24により吊り下
げられた種結晶25を半導体融液21になじませた後、
この種結晶25を核として半導体単結晶26を成長させ
る。ここでは、種結晶を無転位化した後にこの単結晶の
径を徐々に大口径化し所定の径の半導体単結晶26とす
る。該半導体単結晶26が所定の径となった状態で、前
記ヒーター4の出力および半導体単結晶26の引上速度
を一定として、定径部分(円柱状の部分)を成長する。 【0025】この単結晶成長工程において、半導体単結
晶26の定型部分における径制御は次のように行われ
る。半導体単結晶26の径が設定より大きくなったとき
は、投入量調整機構Tにより原料22の投入量を減らす
ことによって、投入された原料22による半導体融液2
1の冷却効果を低下させて融液温度を上昇させ、半導体
単結晶26の径方向の成長速度を下げる。逆に、半導体
単結晶26の径が設定より小さくなったときは、原料2
2の投入量を増やすことによって、投入された原料22
による半導体融液21の冷却効果を上げて融液温度を下
降させ、半導体単結晶26の径方向の成長速度を上げ
る。 【0026】このとき、原料22の投入量が増減される
ので、該投入量と半導体単結晶26の成長量とが一致し
なくなり、半導体融液21の貯留量が変わって、その液
位Lが変動する。一定の引上速度において液位Lが変わ
ると、半導体単結晶の26の有効成長速度が変動してし
まうとともに、ヒーター4の位置に対する相対的な液位
Lも変化するため、半導体融液21の液面近傍における
温度およびその温度分布が設定からずれてしまう不都合
が生じる。 【0027】上記の不都合を解消するために、前記投入
量の増減と半導体単結晶26の成長量から算出される液
位Lの変化量に対して、これを是正する二重ルツボ3の
昇降量を予め設定しておく。すなわち、原料22の投入
量の増減に連動して、ルツボ昇降機構Rにより二重ルツ
ボ3を昇降させ、ヒーター4の位置に対する半導体融液
21の相対的な液位Lを一定にする。したがって、半導
体単結晶26の径を高い応答性で制御することができる
とともに、有効成長速度が変動せず、かつ半導体融液2
1の液面近傍における温度およびその温度分布を設定の
状態に保つことができる。 【0028】以上により、径変動が少なく、均一な品質
の定径部分を有する半導体単結晶26を成長させること
ができる。 【0029】なお、本形態では、CMCZ法を採用した
が、連続的に固体原料をルツボ内に投入するものなら磁
場印加を行わない通常のCCZ法に適用しても構わな
い。また、ヒーターの出力および半導体単結晶の引上速
度を一定として単結晶を成長したが、これらを変化させ
た場合でも、単結晶径の制御の応答性を高め、かつ有効
成長速度の変動を抑制することができる。 【0030】 【発明の効果】本発明の単結晶引上方法によれば、固体
原料の投入量を変えることにより単結晶径を制御し、こ
れに伴ってルツボを昇降させて、半導体融液の液位を熱
源であるヒーターの位置に対して相対的に一定に保つよ
うに設定するので、有効成長速度を一定に維持した状態
で、応答性に優れた単結晶径の制御ができるとともに、
半導体融液の液面近傍における温度およびその温度分布
を設定の状態に維持することができる。したがって、高
精度な径制御を実現するとともに、均一な品質が得られ
る良好な単結晶成長を行うことができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously feeding a fixed raw material into a semiconductor melt stored in a crucible while producing a semiconductor single crystal from the semiconductor melt. single crystal pulling how to raise
About the law . 2. Description of the Related Art Conventionally, the CZ method has been known as one of the methods for growing a semiconductor single crystal such as silicon (Si) or gallium arsenide (GaAs). This CZ method has a large diameter,
This method is used for growing various semiconductor crystals because it has features such as that a high-purity single crystal can be easily obtained without dislocations or with very few lattice defects. In the batch type CZ method, since the amount of the semiconductor melt in the crucible decreases as the single crystal grows, the quality of the single crystal (oxygen concentration, crystal growth interface, impurity concentration, etc.) is reduced in the direction of the growth axis. However, there was a problem that the quality was changed, and only a part of the obtained single crystal became a desired quality, resulting in low productivity. As a solution to this problem, a continuous charge type CZ method (CCZ method) for continuously growing a single crystal while continuously supplying a raw material to a crucible has been known. According to this CCZ method, the growth amount (pulling amount) of a single crystal
Therefore, the amount of semiconductor melt can be kept constant throughout the growth process, and the quality can be made uniform. In the CCZ method, control of the diameter of a growing single crystal is an important issue, and various studies have been made to reduce the fluctuation of the diameter of the single crystal. As means for controlling the diameter of the single crystal, for example, JP-A-4-243
No. 996 discloses the following techniques A to C. In the technique A, the growth rate in the radial direction is increased or decreased by changing the output of a heater for heating the semiconductor melt in the crucible to adjust the melt temperature, thereby controlling the diameter of the single crystal. The technique B controls the diameter of the single crystal by changing the pulling speed at which the single crystal is pulled.
The technique C controls the diameter of the single crystal by adjusting the temperature of the semiconductor melt by increasing or decreasing the amount of the solid raw material charged into the crucible. Further, the diameter of a single crystal to be grown is controlled by applying these techniques A to C in combination. [0007] However, the following problems remain in the means for controlling the diameter of a single crystal in the above-mentioned method for pulling a single crystal. That is, in the technique A, when the output of the heater is changed, the response time until the semiconductor melt changes to a desired temperature and stabilizes is slow, and it is actually difficult to accurately and finely control the diameter. [0008] The technique B is excellent in response to the technique A, but when the pulling speed is changed, the speed at which the single crystal actually grows in the axial direction, ie, the effective growth speed greatly fluctuates. In some cases, the electrical characteristics, defect density, and the like of the resulting single crystal fluctuate, thereby adversely affecting the quality. In the technique C, the responsiveness is excellent as in the technique B. However, since the amount of crystal growth does not coincide with the fluctuation amount of the semiconductor melt, when the pulling speed is constant, the liquid of the semiconductor melt is The position changes with an increase or decrease of the input amount of the solid raw material, and also in this case, the effective growth rate also changes. When the pulling rate is adjusted in response to a change in the liquid level of the semiconductor melt due to an increase or a decrease in the amount of the input of the solid raw material, a change in the effective growth rate can be suppressed.
Since the relative liquid level of the semiconductor melt with respect to the position of the heater fluctuates, the temperature near the liquid surface of the semiconductor melt and its temperature distribution deviate from the setting, and the diameter control becomes difficult. The present invention has been made in view of the above-mentioned problems, and while controlling the diameter of a single crystal to be grown while keeping the effective growth rate constant, suppresses the fluctuation and achieves uniform quality. It is an object of the present invention to provide a method for stably pulling a large-diameter long single crystal. The present invention has the following features to attain the object mentioned above. That is, in the single crystal pulling method of the present invention, a semiconductor melt melted by heating of a heater is stored in a crucible provided inside an airtight container, and while the solid raw material is charged into the crucible, the inside of the crucible is charged. In the single crystal pulling method for pulling a long semiconductor single crystal from the semiconductor melt, when the diameter of the semiconductor single crystal is larger than a set diameter, the amount of the solid raw material is reduced, and When the crystal becomes smaller than the set diameter, increase the input amount of the solid raw material,
Increase or decrease of the input amount of the solid material and the growth amount of the semiconductor single crystal
This is applied to the change in the liquid level of the semiconductor melt calculated from
Set the amount of lifting and lowering of the double crucible to be corrected in advance, and
The crucible is moved up and down by the crucible elevating mechanism in conjunction with the increase and decrease of the charge amount, and the liquid level of the semiconductor melt relative to the position of the heater is kept constant. In this single crystal pulling method, when the diameter of the single crystal becomes larger than the set value, the amount of the solid material to be charged is reduced to reduce the cooling effect of the semiconductor material by the charged solid material and to reduce the melting temperature. The liquid temperature is increased, and the growth rate of the single crystal in the radial direction is decreased. Conversely, when the diameter of the single crystal becomes smaller than the set value, by increasing the input amount of the solid source, the cooling effect of the semiconductor melt by the input solid source is increased, the melt temperature is lowered, and the single crystal is cooled. Increase the radial growth rate. Note that the temperature of the semiconductor melt changes with a quick response to an increase or decrease in the amount of injection since the solid raw material is directly injected into the semiconductor melt. The storage amount of the semiconductor melt fluctuates due to the increase or decrease in the input amount of the solid raw material, and the absolute value of the liquid level changes, but in response to the increase or decrease in the input amount, the crucible is raised and lowered, and the position of the heater with respect to the position of the heater is changed. By keeping the relative liquid level of the semiconductor melt constant, the liquid surface temperature of the semiconductor melt and its temperature distribution are maintained in the set state. An embodiment of the present invention will be described below with reference to FIG. In these figures, reference numeral 1 denotes a silicon single crystal pulling apparatus, 2 denotes a chamber, 3 denotes a double crucible, 4 denotes a heater, 5 denotes a raw material supply apparatus, and 6 denotes a magnet. FIG. 1 shows a single crystal pulling apparatus employing a continuous charge type magnetic field applying CZ method using a so-called double crucible (hereinafter abbreviated as CMCZ method) which is one of the improved types of the above-mentioned CZ method. It is one. In the CMCZ method, by applying a magnetic field to a semiconductor melt in a crucible from the outside, convection in the semiconductor melt is suppressed, and control of oxygen concentration is excellent and a single crystal having a good single crystallization rate is grown. And a feature that the raw material can be continuously supplied between the outer crucible and the inner crucible to easily obtain a long semiconductor single crystal. Therefore, it is said to be one of the most excellent methods for obtaining a large-diameter and long semiconductor single crystal. In the single crystal pulling apparatus 1, as shown in FIG. 1, a double crucible 3, a heater 4, and a raw material supply device 5 are arranged in a chamber 2 which is a hollow airtight container.
A magnet 6 is arranged outside the chamber 2. The double crucible 3 is made of substantially hemispherical quartz (SiO 2).
2 ) An outer crucible 11 made of quartz and an inner crucible 12 made of quartz (SiO 2 ) which is a cylindrical partition member provided in the outer crucible 11. A plurality of communication holes 13 communicating between the crucible 12 and the outer crucible 11 (raw material melting region) and the inside of the inner crucible 12 (crystal growth region) are formed. The double crucible 3 is mounted on a susceptor 15 on a shaft 14 vertically provided vertically below the center of the chamber 2 and has a predetermined angular velocity on a horizontal plane about the axis of the shaft 14. It is configured to rotate.
In the double crucible 3, a semiconductor melt (a raw material of a semiconductor single crystal melted by heating) 21 is stored. At the lower part of the shaft 14, a crucible elevating mechanism R capable of elevating the double crucible 3 to an arbitrary height together with the shaft 14 and the susceptor 15 is provided. The heater 4 heats and melts a semiconductor raw material in a crucible and keeps the semiconductor melt 21 generated. Usually, resistance heating is used. The raw material supply device 5 continuously feeds a predetermined amount of the semiconductor raw material 22 onto the surface of the semiconductor melt 21 between the outer crucible 11 and the inner crucible 12. Further, the raw material supply device 5 is provided with a charging amount adjusting mechanism T capable of arbitrarily adjusting the charging amount of the raw material 22.
have. The magnet 6 applies a magnetic field to the semiconductor melt 21 in the double crucible 3 from outside the double crucible 3, and the Lorentz force generated in the semiconductor melt 21 causes the semiconductor 6 to melt. It controls convection, controls oxygen concentration, suppresses liquid level vibration, and the like. The raw material 2 supplied from the raw material supply device 5
As 2, for example, those obtained by crushing an ingot of polycrystalline silicon with a crusher or the like to form flakes, or granules of polycrystalline silicon obtained by depositing particles from a gaseous material by a pyrolysis method are suitably used, Boron (B) (for making p-type silicon single crystal) or phosphorus (P) as necessary
An additional element called a dopant such as (for forming an n-type silicon single crystal) is further supplied. The same applies to gallium arsenide (GaAs). In this case, the additive element is zinc (Zn) or silicon (Si). Next, a method for growing a semiconductor single crystal in one embodiment of the single crystal pulling method according to the present invention will be described. [Initial Material Melting Step] First, a predetermined amount of a polycrystalline material such as a polycrystalline silicon lump is put into the outer crucible 11, and the inside of the chamber 2 is evacuated by a vacuum pump or the like to be in a vacuum state. In addition, an inert gas such as argon (Ar) is introduced into the chamber 2, and the outer crucible 11 is rotated at a predetermined angular velocity by rotating the shaft 14 on a horizontal plane at a predetermined angular velocity about the axis. The heater 4 is energized to heat the polycrystalline raw material in the outer crucible 11 to a temperature equal to or higher than the single crystal growth temperature, and the raw material is completely melted. [Double crucible forming step] After the raw materials are completely melted, the heating by the heater 4 is slightly weakened.
An inner crucible 12 arranged on the same axis as the outer crucible 11 is placed in the semiconductor melt 21 to form the double crucible 3. [Single Crystal Growth Step] After forming the double crucible 3, the magnet 6 is energized to apply a predetermined magnetic field, the power of the heater 4 is adjusted, and the central liquid level 23 of the semiconductor melt 21 is adjusted.
After keeping the vicinity at the single crystal growth temperature and allowing the seed crystal 25 suspended by the pulling shaft 24 to adapt to the semiconductor melt 21,
Using this seed crystal 25 as a nucleus, a semiconductor single crystal 26 is grown. Here, after the seed crystal is dislocation-free, the diameter of the single crystal is gradually increased to a semiconductor single crystal 26 having a predetermined diameter. With the semiconductor single crystal 26 having a predetermined diameter, a constant diameter portion (a columnar portion) is grown with the output of the heater 4 and the pulling speed of the semiconductor single crystal 26 kept constant. In this single crystal growing step, the diameter of the fixed portion of the semiconductor single crystal 26 is controlled as follows. When the diameter of the semiconductor single crystal 26 becomes larger than the set value, the amount of the raw material 22 is reduced by the charging amount adjusting mechanism T, so that the semiconductor melt 2 by the charged raw material 22 is reduced.
The cooling effect of (1) is reduced to increase the temperature of the melt, and the growth rate of the semiconductor single crystal 26 in the radial direction is reduced. Conversely, when the diameter of the semiconductor single crystal 26 becomes smaller than the set value,
2 by increasing the input amount of the raw material 22
The cooling effect of the semiconductor melt 21 by the above is increased, the melt temperature is lowered, and the growth rate of the semiconductor single crystal 26 in the radial direction is increased. At this time, since the input amount of the raw material 22 is increased or decreased, the input amount does not coincide with the growth amount of the semiconductor single crystal 26, the storage amount of the semiconductor melt 21 changes, and the liquid level L is changed. fluctuate. If the liquid level L changes at a constant pulling speed, the effective growth rate of the semiconductor single crystal 26 changes, and the liquid level L relative to the position of the heater 4 also changes. There is a disadvantage that the temperature near the liquid surface and the temperature distribution deviate from the setting. In order to solve the above-mentioned inconvenience, the amount of rise and fall of the double crucible 3 for correcting the change in the liquid level L calculated from the increase and decrease of the input amount and the growth amount of the semiconductor single crystal 26 is described. Is set in advance. That is, the double crucible 3 is moved up and down by the crucible elevating mechanism R in conjunction with the increase and decrease of the input amount of the raw material 22, and the relative liquid level L of the semiconductor melt 21 with respect to the position of the heater 4 is made constant. Therefore, the diameter of the semiconductor single crystal 26 can be controlled with high responsiveness, the effective growth rate does not fluctuate, and the semiconductor melt 2
The temperature and its temperature distribution in the vicinity of the liquid level 1 can be kept in the set state. As described above, it is possible to grow the semiconductor single crystal 26 having a constant diameter portion with small diameter fluctuation and uniform quality. In this embodiment, the CMCZ method is employed. However, as long as the solid raw material is continuously charged into the crucible, it may be applied to the normal CCZ method without applying a magnetic field. In addition, although the single crystal was grown with the heater output and the pulling speed of the semiconductor single crystal kept constant, even when these were changed, the responsiveness of controlling the single crystal diameter was increased, and the fluctuation of the effective growth rate was suppressed. can do. According to the single crystal pulling method of the present invention, the diameter of the single crystal is controlled by changing the input amount of the solid raw material, and the crucible is moved up and down accordingly, whereby the semiconductor melt is removed. Since the liquid level is set so as to be relatively constant with respect to the position of the heater as a heat source, it is possible to control the single crystal diameter with excellent responsiveness while maintaining the effective growth rate constant,
The temperature and the temperature distribution in the vicinity of the liquid surface of the semiconductor melt can be maintained at the set state. Therefore, high-precision diameter control can be realized, and good single crystal growth with uniform quality can be achieved.

【図面の簡単な説明】 【図1】本発明に係る単結晶引上方法を採用した単結晶
引上装置の一形態を示す断面図である。 【符号の説明】 1 単結晶引上装置 2 チャンバ(気密容器) 3 二重ルツボ 4 ヒーター 5 原料供給装置 6 マグネット 11 外ルツボ 12 内ルツボ 21 半導体融液 22 原料 26 半導体単結晶 T 投入量調整機構 R ルツボ昇降機構
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing one embodiment of a single crystal pulling apparatus employing a single crystal pulling method according to the present invention. [Description of Signs] 1 Single crystal pulling device 2 Chamber (airtight container) 3 Double crucible 4 Heater 5 Raw material supply device 6 Magnet 11 Outer crucible 12 Inner crucible 21 Semiconductor melt 22 Raw material 26 Semiconductor single crystal T Input adjustment mechanism R Crucible lifting mechanism

フロントページの続き (72)発明者 喜田 道夫 埼玉県大宮市北袋町1丁目297番地 三 菱マテリアル株式会社 総合研究所内 (56)参考文献 特開 平4−243996(JP,A) 特開 平1−122988(JP,A) 特開 平3−54188(JP,A) 特開 平7−133186(JP,A) 特開 平7−133187(JP,A) 実開 平2−10468(JP,U) (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 Continuation of the front page (72) Michio Kida, Inventor Michio Kita 1-297 Kitabukurocho, Omiya City, Saitama Prefecture Mitsubishi Materials Co., Ltd. (56) References JP-A-4-243996 (JP, A) JP-A-1- 122988 (JP, A) JP-A-3-54188 (JP, A) JP-A-7-133186 (JP, A) JP-A-7-133187 (JP, A) JP-A-2-10468 (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) C30B 1/00-35/00

Claims (1)

(57)【特許請求の範囲】 【請求項1】 気密容器の内部に設けられたルツボにヒ
ーターの加熱により融解された半導体融液を貯留し、こ
のルツボ内に固体原料を投入しながら、前記ルツボ内の
半導体融液より長尺状の半導体単結晶を引き上げる単結
晶引上方法において、 前記半導体単結晶が設定された径より大きくなったとき
は、前記固体原料の投入量を減らし、逆に半導体単結晶
が設定された径より小さくなったときは、固体原料の投
入量を増やすとともに、 前記固体原料の投入量の増減と半導体単結晶の成長量か
ら算出される半導体融液の液位変化量に対して、これを
是正する二重ルツボの昇降量を予め設定し、前記固体原
料の投入量の増減に連動して、ルツボ昇降機構により
記ルツボを昇降させヒーターの位置に対する半導体融液
相対的な液位を一定に保つことを特徴とする単結晶引
上方法。
(57) [Claim 1] A semiconductor melt melted by heating of a heater is stored in a crucible provided inside an airtight container, and while the solid raw material is charged into the crucible, In the single crystal pulling method for pulling a long semiconductor single crystal from a semiconductor melt in a crucible, when the semiconductor single crystal is larger than a set diameter, reduce the input amount of the solid raw material, conversely When the diameter of the semiconductor single crystal becomes smaller than the set diameter, the input amount of the solid material is increased, and the increase or decrease of the input amount of the solid material and the growth amount of the semiconductor single crystal are increased.
This is applied to the change in the liquid level of the semiconductor melt calculated from
Set the amount of double crucible lifting to be corrected in advance, and
A single crystal pulling device which raises and lowers the crucible by a crucible raising / lowering mechanism in conjunction with the increase and decrease of the charging amount of the material to keep the relative level of the semiconductor melt relative to the position of the heater constant. Top method.
JP34170195A 1995-12-27 1995-12-27 Single crystal pulling method Expired - Fee Related JP3467942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34170195A JP3467942B2 (en) 1995-12-27 1995-12-27 Single crystal pulling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34170195A JP3467942B2 (en) 1995-12-27 1995-12-27 Single crystal pulling method

Publications (2)

Publication Number Publication Date
JPH09175891A JPH09175891A (en) 1997-07-08
JP3467942B2 true JP3467942B2 (en) 2003-11-17

Family

ID=18348115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34170195A Expired - Fee Related JP3467942B2 (en) 1995-12-27 1995-12-27 Single crystal pulling method

Country Status (1)

Country Link
JP (1) JP3467942B2 (en)

Also Published As

Publication number Publication date
JPH09175891A (en) 1997-07-08

Similar Documents

Publication Publication Date Title
CA1261715A (en) Apparatus and process for growing monocrystals of semiconductor materials from shallow crucibles by czochralski technique
EP2705178B1 (en) Growth of a uniformly doped silicon ingot by doping only the initial charge
KR101997565B1 (en) Method for producing monocrystalline silicon
JP3467942B2 (en) Single crystal pulling method
JP4013324B2 (en) Single crystal growth method
US20090293802A1 (en) Method of growing silicon single crystals
JP3840683B2 (en) Single crystal pulling method
JP3470480B2 (en) Single crystal pulling method
JP3885245B2 (en) Single crystal pulling method
KR20140018671A (en) Method for manufacturing silicon single crystal ingot
JP3528888B2 (en) Apparatus and method for producing silicon single crystal
JP3449096B2 (en) Material input method in single crystal pulling apparatus
JP2003246695A (en) Method for producing highly doped silicon single crystal
JPH04305091A (en) Method and device for pulling up single crystal
KR101193653B1 (en) Method for Manufacturing Single Crystal
KR100831052B1 (en) Method for controlling oxygen content in silicon single crystalline ingot, ingot produced thereby
JP3470479B2 (en) Single crystal pulling device
JP2813150B2 (en) Single crystal manufacturing method
JPH09309791A (en) Method for producing semiconducting single crystal
JPH08259371A (en) Method for growing single crystal excellent in sr uniformization
JPH06263583A (en) Crystal growing method
JPH06239693A (en) Method for growing single crystal
TW202305198A (en) Method for producing silicon monocrystal
JP2973908B2 (en) Single crystal growth method
JP2007210865A (en) Silicon single crystal pulling device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030805

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees