JP4640796B2 - Method for producing silicon single crystal - Google Patents

Method for producing silicon single crystal Download PDF

Info

Publication number
JP4640796B2
JP4640796B2 JP2005154093A JP2005154093A JP4640796B2 JP 4640796 B2 JP4640796 B2 JP 4640796B2 JP 2005154093 A JP2005154093 A JP 2005154093A JP 2005154093 A JP2005154093 A JP 2005154093A JP 4640796 B2 JP4640796 B2 JP 4640796B2
Authority
JP
Japan
Prior art keywords
magnetic field
melt
single crystal
gauss
silicon single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005154093A
Other languages
Japanese (ja)
Other versions
JP2006327874A (en
Inventor
吉亮 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2005154093A priority Critical patent/JP4640796B2/en
Publication of JP2006327874A publication Critical patent/JP2006327874A/en
Application granted granted Critical
Publication of JP4640796B2 publication Critical patent/JP4640796B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はシリコン単結晶の製造方法に係り、特にシリコン単結晶育成時、育成工程に応じて融液にかける磁場強度を変化させるシリコン単結晶の製造方法に関する。   The present invention relates to a method for manufacturing a silicon single crystal, and more particularly, to a method for manufacturing a silicon single crystal in which the strength of a magnetic field applied to a melt is changed according to the growth process when growing the silicon single crystal.

チョクラルスキー法(以下、CZ法という)を用いたシリコン単結晶の育成にあっては、ルツボ内に融液原料を充填し、加熱溶融して融液とし、種結晶を融液に接触させて、種結晶を引き上げて、シリコン単結晶を育成する。   In growing a silicon single crystal using the Czochralski method (hereinafter referred to as CZ method), a crucible is filled with a melt raw material, heated and melted to form a melt, and a seed crystal is brought into contact with the melt. The seed crystal is pulled up to grow a silicon single crystal.

CZ法によりシリコン単結晶を育成する場合、ルツボから融液に溶け出した酸素が育成したシリコン単結晶中に取り込まれる。この酸素を取り込んだシリコン単結晶は、機械的強度が向上するため、熱処理時のスリップや反り等が発生し難くなる傾向があり、またゲッタリング作用をもたらすBMD(Bulk Micro Defect)の形成にも役に立つことが知られている。   When a silicon single crystal is grown by the CZ method, oxygen dissolved in the melt from the crucible is taken into the grown silicon single crystal. Since the silicon single crystal incorporating oxygen has improved mechanical strength, there is a tendency that slip, warpage, etc. during heat treatment are less likely to occur, and also for the formation of BMD (Bulk Micro Defect) that provides gettering action. Known to be useful.

しかしながら、シリコン単結晶中の酸素濃度が面内径方向で均一に制御されていないと、面内においてゲッタリング効果にバラツキが生じる。従って、半導体デバイス用のシリコン単結晶を成長させる場合には、結晶中の酸素濃度分布を面内径方向で均一にすることが重要な課題となる。   However, if the oxygen concentration in the silicon single crystal is not uniformly controlled in the surface inner diameter direction, the gettering effect varies within the surface. Therefore, when growing a silicon single crystal for a semiconductor device, it is an important issue to make the oxygen concentration distribution in the crystal uniform in the surface inner diameter direction.

このような濃度制御、及び、濃度分布の面内均一化を図るため、融液に磁場を印加するチョクラルスキー法(以下、MCZという)が広く採用されている。   In order to achieve such concentration control and in-plane uniformity of concentration distribution, the Czochralski method (hereinafter referred to as MCZ) in which a magnetic field is applied to the melt is widely employed.

例えば、特許文献1には、結晶育成方向のみならず半径方向においても酸素濃度の均一性の向上を図るために、ルツボ内の下部位域はシリコンの固体層と上部位域は溶融層とし、この溶融層に100Oe(エルステッド)〜500Oeの磁場を印加するMCZが提案されている。   For example, in Patent Document 1, in order to improve the uniformity of the oxygen concentration not only in the crystal growth direction but also in the radial direction, the lower part region in the crucible is a silicon solid layer and the upper part region is a molten layer, MCZ has been proposed in which a magnetic field of 100 Oe (Oersted) to 500 Oe is applied to the molten layer.

また、特許文献2は、単結晶化率を向上させるために、半導体単結晶の引き上げ開始時には、上下方向の磁場中心を半導体単結晶と前記半導体融液との固液界面から下方にずらして500ガウス以上の磁場強度で磁場を印加し、さらに、半導体融液の減少に応じて前記上下方向の磁場中心を、予め求めておいた半導体融液表面の温度振動が最小になる位置に移動させる引上方法が提案されている。   In Patent Document 2, in order to improve the single crystallization rate, at the start of pulling of the semiconductor single crystal, the vertical magnetic field center is shifted downward from the solid-liquid interface between the semiconductor single crystal and the semiconductor melt. A magnetic field is applied with a magnetic field strength of Gauss or higher, and the magnetic field center in the vertical direction is moved to a position where the temperature oscillation of the surface of the semiconductor melt obtained in advance is minimized as the semiconductor melt decreases. The above method has been proposed.

しかしながら、CZ法及びMCZ法では、種結晶を融液に接触させる際、その熱衝撃により熱ショック転位が発生する。ここで発生した転位が、ウェーハ部分となる直胴部まで伝播してしまうと単結晶化率が低下してしまう。そのため、近年ではダッシュネック法によりネック部を直径3mm以下に縮径するダッシュネック部を育成することで、熱ショック転位の伝播を防止している。近年の育成単結晶の大口径化に伴い、ダッシュネック部の存在は、その破断等によりシリコン単結晶の落下事故を引き起こすおそれがある。
特開平7−267776号公報 特開2001−89289号公報
However, in the CZ method and the MCZ method, when the seed crystal is brought into contact with the melt, heat shock dislocation occurs due to the thermal shock. If the dislocations generated here propagate to the straight body portion which becomes the wafer portion, the single crystallization rate is lowered. Therefore, in recent years, propagation of heat shock dislocation has been prevented by growing a dash neck portion whose diameter is reduced to 3 mm or less by the dash neck method. With the recent increase in the diameter of grown single crystals, the presence of the dash neck portion may cause a fall accident of the silicon single crystal due to breakage or the like.
JP-A-7-277776 JP 2001-89289 A

本発明は上述した事情を考慮してなされたもので、シリコン単結晶中の酸素濃度分布を面内均一に形成することができ、かつ、容易に熱ショック転位を排除して育成したシリコン単結晶の単結晶率化を上げることができるシリコン単結晶の製造方法を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and is capable of forming an oxygen concentration distribution in a silicon single crystal uniformly in a plane and is easily grown by eliminating heat shock dislocations. An object of the present invention is to provide a method for producing a silicon single crystal capable of increasing the single crystal ratio.

上述した目的を達成するため、本発明に係るシリコン単結晶の製造方法は、ルツボ内の融液に磁場を印加するチョクラルスキー法によるシリコン単結晶の製造方法であって、前記融液に種結晶を接触させてネック部を育成する工程と、前記ネック部を育成後、所望の直径まで拡径して拡径部を育成する工程と、前記拡径部を育成後、所望の直径を保持しながら直胴部を育成する工程と、前記直胴部を前記融液から切り離す工程を有し、前記ネック部育成時から前記直胴部育成前までは、磁場強度200〜1000ガウスの範囲で融液に磁場を印加し、直胴部育成直後から直胴部長さ150〜250mmまでは、磁場強度200〜400ガウスまで徐々に磁場強度を低下させ、さらに、直胴部長さ150〜250mm以降では、磁場強度350〜500ガウスの範囲で融液に磁場を印加することを特徴とする。 In order to achieve the above-described object, a method for producing a silicon single crystal according to the present invention is a method for producing a silicon single crystal by the Czochralski method in which a magnetic field is applied to a melt in a crucible, A step of growing a neck portion by bringing a crystal into contact, a step of growing the neck portion after expanding the neck portion to a desired diameter, and a step of growing the enlarged portion, and maintaining the desired diameter after growing the enlarged portion. While the step of growing the straight body part and the step of separating the straight body part from the melt, the magnetic field strength is in the range of 200 to 1000 Gauss from the time of growing the neck part to before the growth of the straight body part. A magnetic field is applied to the melt, and the magnetic field strength is gradually reduced from 200 to 400 gauss immediately after the straight body part is grown to immediately after the straight body part length is 150 to 250 mm. , Magnetic field strength 350 A magnetic field is applied to the melt in a range of ˜500 gauss.

本発明に係るシリコン単結晶引き上げ方法によれば、シリコン単結晶中の酸素濃度を、最適な濃度で、かつ、濃度分布を面内均一に形成することができる。   According to the silicon single crystal pulling method according to the present invention, the oxygen concentration in the silicon single crystal can be formed at an optimum concentration and the concentration distribution can be uniformly formed in the plane.

以下、本発明に係るシリコン単結晶の製造方法の一実施形態について添付図面を参照して説明する。   Hereinafter, an embodiment of a method for producing a silicon single crystal according to the present invention will be described with reference to the accompanying drawings.

図1は、本発明に係るシリコン単結晶の製造方法に用いられるシリコン単結晶引上装置の概念図である。   FIG. 1 is a conceptual diagram of a silicon single crystal pulling apparatus used in the method for producing a silicon single crystal according to the present invention.

シリコン単結晶引上装置1は、石英ルツボ2に融液原料を充填し、石英ガラスルツボ2の周囲に配置されたヒータ3により融液原料を加熱、溶融して融液Mとする。   The silicon single crystal pulling apparatus 1 fills a quartz crucible 2 with a melt raw material, and heats and melts the melt raw material with a heater 3 arranged around the quartz glass crucible 2 to obtain a melt M.

その後、この状態でチャンバCの外側に存在する2個のコイルの中心を結ぶ磁場中心Lがシリコン融液Mの液面S近傍の高さにコイルが配置された超伝導磁石4により、500ガウス〜1000ガウスの磁場を印加しながら石英ガラスルツボ2を回転させ、ワイヤー5に設けられたチャック6に取付けられた種結晶sを降下させて、シリコン溶融Mに接触させ、引上げネック部Inの育成を行い、引き続き拡径部Icの育成を行う。 Thereafter, the magnetic field center L connecting the centers of the two coils existing outside the chamber C in this state is 500 gauss by the superconducting magnet 4 in which the coil is disposed at a height near the liquid surface S of the silicon melt M. The quartz glass crucible 2 is rotated while applying a magnetic field of ˜1000 gauss, the seed crystal s attached to the chuck 6 provided on the wire 5 is lowered and brought into contact with the silicon melt M, and the pulling neck portion In is grown. Then, the expanded diameter portion Ic is continuously grown.

シリコン融液Mに磁場を印加すると、ルツボ壁での流れが抑制され、自然対流が弱まる。なお、比較的直径が小さいネック部In及び拡径部Icの育成時には、磁場強度が500ガウス未満だと融液内の流れが安定せず、単結晶化率が著しく低下する。また、磁場強度が1000ガウスを超える場合は、融液の対流に乱れを生じるという問題が生じる。このため、ネック部In及びクラウン部Icの育成時には磁場強度を500ガウス〜1000ガウスの範囲内で設定することが好ましい。 When a magnetic field is applied to the silicon melt M, the flow at the crucible wall is suppressed and natural convection is weakened. When growing the neck portion In and the enlarged portion Ic having relatively small diameters, if the magnetic field strength is less than 500 gauss, the flow in the melt is not stable, and the single crystallization rate is significantly reduced. Further, when the magnetic field strength exceeds 1000 gauss, there arises a problem that the convection of the melt is disturbed. For this reason, it is preferable to set the magnetic field strength within a range of 500 gauss to 1000 gauss when growing the neck portion In and the crown portion Ic.

クラウン部Icの育成後、引き続いて、石英ルツボ2の回転数、単結晶の引上速度、ヒータ3等を用いて直径を所望の径に制御しながら直胴部Isの育成を行う。この直胴部育成工程において、直胴部Isの育成直後、すなわち0mmから150〜250mm(以下、直胴部前段という)までの間は、融液Mが多量に存在するため強制対流が大きくなり、強磁場を印加すると融液に対流が生じ乱れるため、磁場を200〜400ガウスの範囲まで磁場を変化させて低磁場を印加させ、直胴部Isの育成を行う。これにより融液が安定し、直胴部Isの、酸素濃度分布を径方向面内均一に形成することができる。   After the growth of the crown portion Ic, the straight body portion Is is subsequently grown while controlling the diameter to a desired diameter using the rotation speed of the quartz crucible 2, the pulling speed of the single crystal, the heater 3 and the like. In this straight body part growing process, forced convection becomes large immediately after the straight body part Is is grown, that is, from 0 mm to 150 to 250 mm (hereinafter referred to as the front part of the straight body part), because a large amount of the melt M exists. When a strong magnetic field is applied, convection is generated and disturbed in the melt, so that the magnetic field is changed to a range of 200 to 400 gauss, a low magnetic field is applied, and the straight body part Is is grown. As a result, the melt is stabilized, and the oxygen concentration distribution of the straight body portion Is can be uniformly formed in the radial direction plane.

なお、直胴部Is育成直後から150〜250mmまでの範囲での磁場強度が200ガウス未満では、石英ガラスルツボから結晶に向かう融液の対流が強くなりすぎて、単結晶の変形につながり、安定した引き上げが望めない。また、前記磁場強度が400ガウスを超えると、前述したように強制対流が大きくなり融液に対流が生じ乱れるため酸素濃度分布を面内均一に形成することができない。   If the magnetic field strength in the range from 150 to 250 mm immediately after the straight body portion Is growth is less than 200 gauss, the convection of the melt from the quartz glass crucible to the crystal becomes too strong, leading to deformation of the single crystal and being stable. I can't hope to raise. If the magnetic field intensity exceeds 400 gauss, forced convection increases as described above, and convection is generated and disturbed, so that the oxygen concentration distribution cannot be uniformly formed in the plane.

直胴部において長さ150〜250mmまでの育成が終わり、直胴部後段になり、融液の残量が少なくなったら、ここまで印加していた200〜400ガウスの低磁場から若干磁場を上げて磁場を印加する。   When the growth to 150-250 mm in length is finished in the straight body part, it becomes the latter part of the straight body part, and when the remaining amount of the melt is reduced, the magnetic field is slightly increased from the low magnetic field of 200-400 gauss applied so far. Apply a magnetic field.

再び磁場を上げる理由としては、直胴部後段になり残融液量が少なくなると、融液表面の低温部面積が広くなるため、通常ルツボ壁から自由表面を伝わって結晶に向かう流れが、逆に融液内部から結晶に向かう流れに変化してしまう。このため、融液内部の流れが複雑になり、また結晶回転によるルツボ壁側への流れと、内部からの結晶へ向かう流れとが干渉し合い結晶外周部と自由表面との境界付近で渦が生じる。この付近での酸素が自由表面で必要以上に蒸発することになり、結果的に結晶外周部の酸素濃度低下につながるため、このような融液の乱れをなくすには磁場を上げる必要がある。   The reason for raising the magnetic field again is that if the amount of residual melt decreases after the straight body part, the area of the low temperature part of the melt surface increases, so the flow from the crucible wall to the crystal through the free surface is reversed. The flow changes from the inside of the melt toward the crystal. This complicates the flow inside the melt, and the flow toward the crucible wall due to crystal rotation interferes with the flow from the inside toward the crystal, causing vortices near the boundary between the crystal periphery and the free surface. Arise. Since oxygen in this vicinity evaporates more than necessary on the free surface, resulting in a decrease in the oxygen concentration at the outer periphery of the crystal, it is necessary to increase the magnetic field to eliminate such disturbance of the melt.

従って、ネック育成時から直胴部育成前すなわち融液残量が多い状態では、強磁場を印加し、直胴部育成の前段すなわち結晶長0から150〜250mmの間は、磁場強度を徐々に低下させて弱くして、低磁場を印加し、さらに、直胴部育成の後段では若干磁場を上げることにより、酸素濃度が面内径方向で均一なシリコン単結晶を育成することが可能となる。 Accordingly, a strong magnetic field is applied from the time of neck growth to before the straight body part is grown , that is, in a state where the remaining amount of the melt is large. It is possible to grow a silicon single crystal having a uniform oxygen concentration in the direction of the inner diameter of the surface by applying a low magnetic field by lowering and weakening it, and further raising the magnetic field slightly after the growth of the straight body portion.

更に、発明者は上述したように、ネック部In及び拡径部Icの育成時には強磁場を、直胴部Is育成直後から150〜250mmまでの範囲で、強磁場から低磁場に徐々に磁場を低下させることで、前述した熱ショック転位の伝播が抑制され、単結晶化率が向上するという副次的な効果を見出した。これは、磁場強度の変化により融液の対流が変化し、拡径部Icまで伝播した熱ショック転位がそこで消滅するためと推測される。   Further, as described above, the inventor gradually applies a strong magnetic field when growing the neck portion In and the enlarged diameter portion Ic, and gradually increases the magnetic field from a strong magnetic field to a low magnetic field within a range of 150 to 250 mm immediately after the straight body portion Is is grown. As a result of the reduction, the above-mentioned secondary effect that the propagation of the heat shock dislocation was suppressed and the single crystallization rate was improved was found. This is presumably because the convection of the melt changes due to the change in the magnetic field strength, and the heat shock dislocation propagated to the enlarged diameter portion Ic disappears there.

上述実施形態によれば、シリコン単結晶中の酸素濃度分布を面内均一に形成することができ、かつ、容易に熱ショック転位を排除して育成したシリコン単結晶の単結晶率化を上げることができるシリコン単結晶の製造方法が実現される。   According to the above-described embodiment, the oxygen concentration distribution in the silicon single crystal can be uniformly formed in the plane, and the single crystal ratio of the grown silicon single crystal can be easily increased by eliminating the heat shock dislocation. A method for producing a silicon single crystal that can be realized is realized.

図1に示す単結晶引上装置を用いて試験を行った。最初にルツボ内に融液原料を充填し、ヒータにより加熱、溶融させて融液とした。融液形成後、800ガウスの磁場を印加し、2個のコイルの中心を結ぶ磁場中心がシリコン融液Mの液面Sから深さ30mmの高さに随時来るように設定した。次に、融液に種結晶を接触させて引上げ、最小径5mmのネック部を長さ200mm育成させた後、直径315mmまで拡径して拡径部を形成した。   The test was conducted using the single crystal pulling apparatus shown in FIG. First, a melt raw material was filled in a crucible, and heated and melted with a heater to obtain a melt. After the melt was formed, a magnetic field of 800 gauss was applied, and the center of the magnetic field connecting the centers of the two coils was set at a height of 30 mm from the liquid surface S of the silicon melt M as needed. Next, the seed crystal was brought into contact with the melt and pulled up to grow a neck portion having a minimum diameter of 5 mm to a length of 200 mm, and then expanded to a diameter of 315 mm to form an enlarged portion.

拡径部形成後、直胴部育成開始直後から直胴部の直径を制御すると共に、800ガウス磁場強度を200ガウスまで徐々に変化させて、直胴部育成開始直後から直胴部を長さ200mm育成する部分まで、磁場強度を200ガウス低下させた。直胴部の育成が長さ200mmを超えた時点で、磁場強度を400ガウスまで変化させて、直胴部を長さ1400mmまで育成させた。その後、融液より育成したシリコン単結晶を切り離した。   After forming the enlarged diameter part, the diameter of the straight body part is controlled immediately after the start of straight body part growth, and the length of the straight body part is increased immediately after the start of straight body part growth by gradually changing the 800 gauss magnetic field strength to 200 gauss. The magnetic field strength was reduced by 200 gauss to the part to grow 200 mm. When the growth of the straight body part exceeded 200 mm in length, the magnetic field intensity was changed to 400 gauss, and the straight body part was grown to a length of 1400 mm. Thereafter, the silicon single crystal grown from the melt was cut off.

試験1: ネック部育成時の磁場強度と単結晶化率の関係を調べ、結果を図2に示す。200ガウス以上では単結晶化率70%以上を示すが、200ガウス未満では70%を割り、100ガウスでは60%まで低下する。 Test 1: The relationship between the magnetic field strength and the single crystallization rate during neck portion growth was examined, and the results are shown in FIG. When it is 200 gauss or more , the single crystallization rate is 70% or more, but when it is less than 200 gauss, it is divided by 70%, and when it is 100 gauss, it decreases to 60%.

試験2: 直胴部(結晶長50mm以降)育成時点で、磁場強度を変化させ、酸素濃度面内ばらつきを調べた。結果を図3に示す。200〜400ガウスでは単結晶化率が良好であるが、800ガウスでは不良となり、100ガウスでは面内分布は良好であるが、試験1からもわかるように、単結晶化率が低下する。   Test 2: At the time of growing the straight body portion (after the crystal length of 50 mm), the magnetic field strength was changed and the in-plane variation of the oxygen concentration was examined. The results are shown in FIG. The single crystallization rate is good at 200 to 400 gauss, but poor at 800 gauss, and the in-plane distribution is good at 100 gauss, but as can be seen from Test 1, the single crystallization rate decreases.

参考例1: 結晶直胴部長200mm引き上げた時点で、磁場強度を変化させ、酸素濃度面内ばらつきを調べた。結果を図4に示す。200ガウスでは酸素濃度が一定して面内均一であるのに対して、800ガウスでは酸素濃度が不安定で面内不均一である。 Reference Example 1 : When the length of the crystal body was raised by 200 mm, the magnetic field strength was changed and the in-plane variation of the oxygen concentration was examined. The results are shown in FIG. At 200 gauss, the oxygen concentration is constant and uniform in the plane, while at 800 gauss, the oxygen concentration is unstable and non-uniform in the plane.

試験: 磁場をかけて単結晶の引上げを行う場合、結晶固化率0.42付近で単結晶に変形が発生する場合があり、磁場強度を変化させて、結晶変形発生度を調べた。結果を図5に示す。結晶変形発生数を考慮すると磁場強度は350ガウス以上であるのが好ましく、また、酸素面内分布を考慮すると500ガウス以下であるのが好ましい。 Test 3 : When pulling up a single crystal by applying a magnetic field, deformation may occur in the single crystal near a crystal solidification rate of 0.42, and the degree of crystal deformation was examined by changing the magnetic field strength. The results are shown in FIG. Considering the number of occurrences of crystal deformation, the magnetic field strength is preferably 350 gauss or more, and considering the oxygen in-plane distribution, it is preferably 500 gauss or less.

参考例2 : 本発明に係るシリコン単結晶引き上げ方法を用い、直径300mmのシリコン単結晶の引き上げを行い、ネック部、クラウン部育成工程では磁場強度を800ガウス一定、直胴部育成工程では0〜50mmで800から200ガウスに変更し、さらに、直胴部長さ200mm以降では、再び磁場強度800ガウスの範囲に変更してシリコン単結晶を20本引き上げた結果、単結晶化率が従来の70%から95%へと向上した。また、直胴部育成工程において200〜400ガウスの範囲で一定に磁場を印加した場合は酸素濃度の面内バラツキ率が1.5%以下となり、良好な結果が得られた。 Reference Example 2 : Using a silicon single crystal pulling method according to the present invention, a silicon single crystal having a diameter of 300 mm is pulled, the magnetic field strength is constant at 800 gauss in the neck and crown growing step, and 0 to 0 in the straight barrel growing step. As a result of changing from 800 to 200 gauss at 50 mm, and further changing the range of the magnetic field strength to 800 gauss again after the straight body length of 200 mm, the single crystal crystallization rate was 70% of the conventional value. Improved to 95%. In addition, when a magnetic field was applied constantly within the range of 200 to 400 gauss in the straight body part growing step, the in-plane variation rate of the oxygen concentration was 1.5% or less, and good results were obtained.

本発明に係るシリコン単結晶の製造方法に用いられる引上装置の概念図。The conceptual diagram of the pulling-up apparatus used for the manufacturing method of the silicon single crystal which concerns on this invention. 単結晶引上におけるネック部育成時の磁場強度と単結晶化率の関係を示す試験結果図。The test result figure which shows the relationship between the magnetic field intensity at the time of the neck part growth in single crystal pulling, and a single crystallization rate. 磁場強度と酸素濃度面内ばらつきの関係を示す試験結果図。The test result figure which shows the relationship between magnetic field intensity and oxygen concentration in-plane dispersion | variation. 本発明の参考例1に係るシリコン単結晶引き上げ方法を用いた結晶径と酸素濃度の関係を示す試験結果図。The test result figure which shows the relationship between the crystal diameter and oxygen concentration using the silicon single crystal pulling method which concerns on the reference example 1 of this invention. 磁場強度と結晶変形発生度の関係を示す試験結果図。The test result figure which shows the relationship between magnetic field strength and a crystal deformation generation | occurrence | production degree.

1 シリコン単結晶引き上げ装置
2 石英ガラスルツボ
3 ヒータ
4 超伝導磁石
5 ワイヤー
6 チャック
In ネック部
Ic クラウン部
Is 直胴部
M シリコン融液
DESCRIPTION OF SYMBOLS 1 Silicon single crystal pulling apparatus 2 Quartz glass crucible 3 Heater 4 Superconducting magnet 5 Wire 6 Chuck In Neck part Ic Crown part Is Straight trunk part M Silicon melt

Claims (1)

ルツボ内の融液に磁場を印加するチョクラルスキー法によるシリコン単結晶の製造方法であって、前記融液に種結晶を接触させてネック部を育成する工程と、前記ネック部を育成後、所望の直径まで拡径して拡径部を育成する工程と、前記拡径部を育成後、所望の直径を保持しながら直胴部を育成する工程と、前記直胴部を前記融液から切り離す工程を有し、前記ネック部育成時から前記直胴部育成前までは、磁場強度500〜1000ガウスの範囲で融液に磁場を印加し、直胴部育成直後から直胴部長さ150〜250mmまでは、磁場強度200〜400ガウスまで徐々に磁場強度を低下させ、さらに、直胴部長さ150〜250mm以降では、磁場強度350〜500ガウスの範囲で融液に磁場を印加することを特徴とするシリコン単結晶の製造方法。 A method for producing a silicon single crystal by the Czochralski method in which a magnetic field is applied to a melt in a crucible, a step of bringing a seed crystal into contact with the melt to grow a neck portion, and after growing the neck portion, Expanding the diameter-enlarged portion by expanding to a desired diameter, growing the straight-body portion while maintaining the desired diameter after growing the expanded-diameter portion, and removing the straight-body portion from the melt A step of separating, from the time of growing the neck portion to before growing the straight body portion, a magnetic field is applied to the melt in a magnetic field strength range of 500 to 1000 gauss, and the length of the straight body portion is 150 to immediately after the straight body portion is grown. Up to 250 mm, the magnetic field strength is gradually reduced to a magnetic field strength of 200 to 400 gauss, and further, a magnetic field is applied to the melt in a range of a magnetic field strength of 350 to 500 gauss after a straight body length of 150 to 250 mm. Silicon single Crystal production method.
JP2005154093A 2005-05-26 2005-05-26 Method for producing silicon single crystal Active JP4640796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005154093A JP4640796B2 (en) 2005-05-26 2005-05-26 Method for producing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005154093A JP4640796B2 (en) 2005-05-26 2005-05-26 Method for producing silicon single crystal

Publications (2)

Publication Number Publication Date
JP2006327874A JP2006327874A (en) 2006-12-07
JP4640796B2 true JP4640796B2 (en) 2011-03-02

Family

ID=37549957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005154093A Active JP4640796B2 (en) 2005-05-26 2005-05-26 Method for producing silicon single crystal

Country Status (1)

Country Link
JP (1) JP4640796B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100954291B1 (en) 2008-01-21 2010-04-26 주식회사 실트론 Apparatus for manufacturing high-quality semiconductor single crystal ingot and Method using the same
JP4990194B2 (en) * 2008-03-07 2012-08-01 株式会社神戸製鋼所 Magnet position measurement method
JP6930435B2 (en) * 2018-01-17 2021-09-01 株式会社Sumco Raw material supply method and silicon single crystal manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083320A (en) * 2002-08-26 2004-03-18 Sumitomo Mitsubishi Silicon Corp Silicon single crystal growth method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2546736B2 (en) * 1990-06-21 1996-10-23 信越半導体株式会社 Silicon single crystal pulling method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083320A (en) * 2002-08-26 2004-03-18 Sumitomo Mitsubishi Silicon Corp Silicon single crystal growth method

Also Published As

Publication number Publication date
JP2006327874A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
JP4919343B2 (en) Single crystal pulling device
JP4483729B2 (en) Silicon single crystal manufacturing method
JP4151580B2 (en) Method for producing silicon single crystal and silicon single crystal and silicon wafer
JP2009114054A (en) Method for producing semiconductor single crystal having improved oxygen concentration characteristics
JP3841863B2 (en) Method of pulling silicon single crystal
JP3969460B2 (en) Manufacturing method of semiconductor single crystal by applying magnetic field
JP4640796B2 (en) Method for producing silicon single crystal
JP2009057270A (en) Method of raising silicon single crystal
JP2973917B2 (en) Single crystal pulling method
US20090038537A1 (en) Method of pulling up silicon single crystal
US6755910B2 (en) Method for pulling single crystal
JP4013324B2 (en) Single crystal growth method
WO2023051616A1 (en) Crystal pulling furnace for pulling monocrystalline silicon rod
JP3016126B2 (en) Single crystal pulling method
JP2009292662A (en) Method for forming shoulder in growing silicon single crystal
JP2007254200A (en) Method for manufacturing single crystal
JP4187998B2 (en) Single crystal manufacturing method and manufacturing apparatus
JP4407192B2 (en) Single crystal manufacturing method
TWI751028B (en) Method for manufacturing single crystal silicon
KR20100071507A (en) Apparatus, method of manufacturing silicon single crystal and method of controlling oxygen density of silicon single crystal
JP3721977B2 (en) Single crystal pulling method
JP4341379B2 (en) Single crystal manufacturing method
JP2001139398A (en) Method of growing single crystal
JP5136252B2 (en) Method for growing silicon single crystal
JPH11349398A (en) Production of silicon single crystal

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101124

R150 Certificate of patent or registration of utility model

Ref document number: 4640796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250