JP2009057270A - Method of raising silicon single crystal - Google Patents

Method of raising silicon single crystal Download PDF

Info

Publication number
JP2009057270A
JP2009057270A JP2008153677A JP2008153677A JP2009057270A JP 2009057270 A JP2009057270 A JP 2009057270A JP 2008153677 A JP2008153677 A JP 2008153677A JP 2008153677 A JP2008153677 A JP 2008153677A JP 2009057270 A JP2009057270 A JP 2009057270A
Authority
JP
Japan
Prior art keywords
neck
diameter
single crystal
crystal
rpm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008153677A
Other languages
Japanese (ja)
Inventor
Toshiro Minami
俊郎 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2008153677A priority Critical patent/JP2009057270A/en
Priority to KR1020080072958A priority patent/KR20090014957A/en
Priority to US12/186,063 priority patent/US20090038537A1/en
Priority to DE102008036615A priority patent/DE102008036615A1/en
Priority to TW097129779A priority patent/TW200916614A/en
Publication of JP2009057270A publication Critical patent/JP2009057270A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • C30B15/24Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal using mechanical means, e.g. shaping guides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of raising silicon single crystal in which a rate of variability of a neck diameter is controlled within a predetermined range, and translocation in the neck can be eliminated at an early stage in cultivation of silicon single crystal by a Czochralski method. <P>SOLUTION: The method of raising silicon single crystal comprises: dipping seed crystal into a raw material silicon melt and pulling up; cultivating a neck; and sequentially increasing the diameter to cultivate single crystal of a predetermined crystal diameter, and is characterized in that the neck diameter is made to increase and decrease and neck cultivation is performed, in that case when a value which divides a neck diameter difference (A-B) between adjoining inflection points P<SB>1</SB>and P<SB>2</SB>of the fluctuating neck diameter by a neck length L between the inflection points is made a neck diameter variation rate, the neck diameter variation rate is made 0.05 or more and less than 0.5. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、磁場を印加したチョクラルスキー法(Magnetic field applied Czochralski Method 法;以下、MCZ法という)によるシリコン単結晶の引上方法に関する。   The present invention relates to a silicon single crystal pulling method by a magnetic field applied Czochralski method (hereinafter referred to as MCZ method).

シリコン単結晶の製造方法としては、無転位または結晶欠陥が極めて少ない単結晶を大口径かつ高純度で比較的容易に得ることができることから、CZ法および磁場を印加したMCZ法が広く用いられている。
CZ法によるシリコン単結晶の製造においては、例えば、図2に示すような単結晶引上装置において、シリコン単結晶からなる種結晶1を、チャンバ9内でヒータ7および保温体8により加熱保温されたホットゾーンにおいて、石英ルツボ6内に充填された原料シリコン融液5に着液させた後、回転させながらゆっくりと引き上げてゆき、ネック2を形成した後、結晶径を徐々に増径させたショルダー部3、次いで、定径の直胴部を形成し、これらの形成工程を経て、シリコン単結晶4を育成する。
As a method for producing a silicon single crystal, a CZ method and a MCZ method to which a magnetic field is applied are widely used because a single crystal having no dislocations or extremely few crystal defects can be obtained relatively easily with a large diameter and high purity. Yes.
In the production of a silicon single crystal by the CZ method, for example, in a single crystal pulling apparatus as shown in FIG. 2, the seed crystal 1 made of a silicon single crystal is heated and kept in a chamber 9 by a heater 7 and a heat insulator 8. In the hot zone, after landing on the raw material silicon melt 5 filled in the quartz crucible 6, it was slowly pulled up while rotating to form the neck 2, and then the crystal diameter was gradually increased. A shoulder portion 3 and then a straight body portion having a constant diameter are formed, and a silicon single crystal 4 is grown through these forming steps.

上記CZ法において、従来、ネックは、種結晶に起因する転位や着液時の熱衝撃により導入される転位を排除するために、直径約3mm程度で細く絞って形成されていた。
しかしながら、近年、半導体デバイスの高集積化、コスト低下、生産効率の向上に伴い、大口径のウエハを得るための高重量のシリコン単結晶の製造が求められ、従来のような径の小さいネックでは、単結晶インゴットの高重量には耐えられず、破断し、単結晶インゴットが落下する等の重大な事故を生じるおそれがあった。
In the CZ method, conventionally, the neck has been formed with a diameter of about 3 mm and narrowed to eliminate the dislocation caused by the seed crystal and the dislocation introduced by the thermal shock at the time of landing.
However, in recent years, with the high integration of semiconductor devices, cost reduction, and improvement in production efficiency, it has been required to manufacture a heavy silicon single crystal to obtain a large-diameter wafer. The single crystal ingot could not withstand the high weight, and could cause a serious accident such as breaking and dropping of the single crystal ingot.

これに対しては、例えば、特許文献1に、ネック形成時の種結晶の回転速度を直胴部形成時よりも低い1〜12rpmとすることにより、種結晶の回転に伴う自然対流が抑制され、結晶の成長界面の形状をより下に凸とすることができ、ネック径をあまり絞らなくても、転位を排除することができることが記載されている。
また、特許文献2には、ネック形成工程でのルツボ回転速度を1rpm以下にするとともに、水平方向に0.1テスラ以下の磁場を印加し、増径工程に移行する段階でその磁場を停止することにより、有転位化を防止することができることが記載されている。
さらに、特許文献3には、種結晶に続くテーパー状の絞込み部の長さを種結晶の太さ寸法の2.5〜15倍とし、これに続く略定径の絞り部の直径を種結晶の太さの0.09〜0.9倍、変動幅を1mm以下、該絞り部の長さを200〜600mmとし、水平磁場を1000〜5000ガウス印加することが記載されている。
さらにまた、特許文献4には、ネック径を増減させたいわゆる括れ形状のネックとして、単位長さ当りのネック径の変化量を0.5mm/mm以上と大きくすることにより、転位発生を抑制できるとしていることが記載されている。
For this, for example, in Patent Document 1, the natural convection associated with the rotation of the seed crystal is suppressed by setting the rotation speed of the seed crystal at the time of neck formation to 1 to 12 rpm lower than that at the time of forming the straight body portion. Further, it is described that the shape of the crystal growth interface can be made convex downward, and dislocation can be eliminated even if the neck diameter is not reduced so much.
In Patent Document 2, the crucible rotation speed in the neck formation process is set to 1 rpm or less, a magnetic field of 0.1 Tesla or less is applied in the horizontal direction, and the magnetic field is stopped at the stage of shifting to the diameter increasing process. It is described that dislocation can be prevented.
Furthermore, in Patent Document 3, the length of the tapered narrowed portion following the seed crystal is set to 2.5 to 15 times the thickness of the seed crystal, and the diameter of the narrowed portion having a substantially constant diameter is set as the seed crystal. The thickness is 0.09 to 0.9 times, the fluctuation width is 1 mm or less, the length of the aperture is 200 to 600 mm, and a horizontal magnetic field of 1000 to 5000 gauss is applied.
Further, in Patent Document 4, as a so-called constricted neck with the neck diameter increased or decreased, the amount of change in the neck diameter per unit length is increased to 0.5 mm / mm or more, so that the occurrence of dislocation can be suppressed. It is described that.

特開平9−249482号公報JP-A-9-249482 特開2004−83320号公報JP 2004-83320 A 特開平7−300388号公報JP-A-7-300388 特願平11−199384公報Japanese Patent Application No. 11-199384

しかしながら、上記特許文献1に記載されているように、直径3〜6mm程度の結晶径の小さいネック形成の際に、結晶回転を変化させた場合であっても、結晶成長界面における下への凸の程度は大きく変化することはない。むしろ、引上速度を変化させる方が、転位排除効果があると言えるが、上記のような径の細いネック形成においては、下への凸の程度の制御によって転位を排除する効果は小さい。   However, as described in the above-mentioned Patent Document 1, even when the crystal rotation is changed when forming a neck having a small crystal diameter of about 3 to 6 mm, the downward projection at the crystal growth interface. The degree of will not change significantly. Rather, it can be said that changing the pulling speed has an effect of eliminating dislocations, but in forming a neck having a narrow diameter as described above, the effect of eliminating dislocations by controlling the degree of convex downward is small.

また、上記特許文献2記載の方法のように、水平磁場の磁場強度を0.1テスラ以下とすると、原料シリコン融液量が多い場合、自然対流およびそれに伴う融液温度変動を十分に抑制することはできない。   Further, as in the method described in Patent Document 2, when the magnetic field strength of the horizontal magnetic field is 0.1 Tesla or less, when the amount of raw material silicon melt is large, natural convection and the associated melt temperature fluctuation are sufficiently suppressed. It is not possible.

また、上記特許文献3記載の方法では、絞り部を設けることが転位抑制に効果的であるとしているが、上述したような長いネック部を形成することは、操業時間が長くなり、実用上好ましくない。なお、絞り部の直径の変動幅は、該表面の凹凸幅を意味しており、応力集中による塑性変形を防止し、十分な強度を得る観点で示されているにすぎない。   Further, in the method described in Patent Document 3, it is said that providing the throttle portion is effective for suppressing dislocation, but forming the long neck portion as described above is preferable for practical use because the operation time becomes long. Absent. The fluctuation width of the diameter of the narrowed portion means the uneven width of the surface, and is merely shown from the viewpoint of preventing plastic deformation due to stress concentration and obtaining sufficient strength.

また、上記特許文献4記載の方法では、ネック径の変化量を大きくすると、縮径時にネック外表面の温度勾配が大きくなり、転位密度が増加し、逆に、転位が消滅しにくくなる場合がある。特に、MCZ法においては、融液対流が抑制された場合、スポークパターンと呼ばれる融液表面温度の定期的な変動が顕著に現れ、ネック径の変化量が大きくなりすぎ、無転位化しにくくなる。   Further, in the method described in Patent Document 4, when the amount of change in the neck diameter is increased, the temperature gradient on the outer surface of the neck increases at the time of diameter reduction, the dislocation density increases, and conversely, dislocations may not easily disappear. is there. In particular, in the MCZ method, when melt convection is suppressed, periodic fluctuations in the melt surface temperature, called a spoke pattern, remarkably appear, and the amount of change in the neck diameter becomes too large, making it difficult to eliminate dislocations.

これに対して、本発明は、ネックにおける転位を早期に除去するためには、引き上げられる単結晶の固液界面を下に凸とするだけでなく、ネック径の変動を特定の条件の範囲内としてネック育成することが効果的であることを見出したことによるものである。
すなわち、本発明は、MCZ法によるシリコン単結晶の育成において、ネック径の変動率を所定の範囲内に抑制し、ネックにおける転位を早期に排除することができるシリコン単結晶の引上方法を提供することを目的とするものである。
On the other hand, in the present invention, in order to remove dislocations at the neck early, not only the solid-liquid interface of the single crystal to be pulled up is convex downward, but also the fluctuation of the neck diameter is within the range of specific conditions. This is because it has been found that raising the neck is effective.
That is, the present invention provides a silicon single crystal pulling method capable of suppressing the fluctuation rate of the neck diameter within a predetermined range and eliminating the dislocation at the neck early in the growth of the silicon single crystal by the MCZ method. It is intended to do.

本発明に係るシリコン単結晶の引上方法は、種結晶を原料シリコン融液に着液して引き上げていき、ネックを育成した後、増径して所定の結晶径の単結晶を育成するシリコン単結晶引上げにおいて、前記ネック径を増減させてネック育成を行い、その際、増減する前記ネック径の隣接する変曲点間のネック径差を前記変曲点間のネック長さで割った値をネック径変動率とした場合、前記ネック径変動率を0.05以上0.5未満とすることを特徴とする。
ネック径の変動を上記のように抑制してネックを育成することにより、転位を早期に排除することができる。
The silicon single crystal pulling method according to the present invention is a method in which a seed crystal is poured into a raw material silicon melt and pulled up, and after growing a neck, the diameter is increased to grow a single crystal having a predetermined crystal diameter. In single crystal pulling, neck growth is performed by increasing or decreasing the neck diameter, and at that time, the value obtained by dividing the neck diameter difference between adjacent inflection points of the neck diameter to be increased or decreased by the neck length between the inflection points. Is a neck diameter variation rate, the neck diameter variation rate is 0.05 or more and less than 0.5.
Dislocation can be eliminated at an early stage by growing the neck while suppressing the fluctuation of the neck diameter as described above.

前記ネック育成の際、ルツボ壁面にて100ガウス以上のカスプ磁場を印加し、結晶回転速度を1rpm以上15rpm以下、前記結晶と反対方向に回転するルツボ回転速度を8rpmより大きく15rpm以下とすることが好ましい。
あるいはまた、前記ネック育成の際、2000ガウス以上の水平磁場を印加し、結晶回転速度を1rpm以上15rpm以下、前記結晶と反対方向に回転するルツボ回転速度を0.5rpm以上3rpm以下とすることが好ましい。
このような磁場印加条件にてネックを育成することにより、ネック径に影響を及ぼす長周期での温度変動を抑制することができ、ネック径の変動を効率的に抑制することができる。
When growing the neck, a cusp magnetic field of 100 gauss or more is applied to the crucible wall surface, the crystal rotation speed is 1 rpm to 15 rpm, and the crucible rotation speed rotating in the opposite direction to the crystal is greater than 8 rpm and 15 rpm or less. preferable.
Alternatively, when the neck is grown, a horizontal magnetic field of 2000 gauss or more is applied, the crystal rotation speed is 1 rpm or more and 15 rpm or less, and the crucible rotation speed rotating in the direction opposite to the crystal is 0.5 rpm or more and 3 rpm or less. preferable.
By growing the neck under such a magnetic field application condition, it is possible to suppress the long-term temperature fluctuation that affects the neck diameter, and to efficiently suppress the neck diameter fluctuation.

上述したとおり、本発明に係るシリコン単結晶の引上方法によれば、CZ法によるシリコン単結晶の育成において、ネック径の変動率を抑制し、ネックにおける転位を早期に排除することができる。
したがって、本発明に係る引上方法によれば、ネック工程の短縮化を図ることができ、ネック不良によるやり直しを行った場合であっても、生産時間ロスの低減化を図ることができる。
As described above, according to the silicon single crystal pulling method according to the present invention, the growth rate of the silicon single crystal by the CZ method can suppress the fluctuation rate of the neck diameter and eliminate the dislocation at the neck at an early stage.
Therefore, according to the pulling-up method according to the present invention, it is possible to shorten the neck process, and it is possible to reduce the production time loss even when redoing due to a neck defect.

以下、本発明について、より詳細に説明する。
本発明に係るシリコン単結晶の引上方法は、種結晶を原料シリコン融液に着液して引き上げていき、ネックを育成した後、増径して所定の結晶径の単結晶を育成するシリコン単結晶引上げにおいて、前記ネック径を増減させてネック育成を行い、その際、ネック径変動率を0.05以上0.5未満とすることを特徴とするものである。
本発明でいうネック径変動率は、図1に示すような増減するネック径において、このネック径の隣接する変曲点P1,P2間の増大ネック径Aと、縮小ネック径Bとのネック径差(A−B)を前記変曲点P1,P2間のネック長さで割った値である。
Hereinafter, the present invention will be described in more detail.
The silicon single crystal pulling method according to the present invention is a method in which a seed crystal is poured into a raw material silicon melt and pulled up, and after growing a neck, the diameter is increased to grow a single crystal having a predetermined crystal diameter. In the single crystal pulling, neck growth is performed by increasing or decreasing the neck diameter, and at this time, the neck diameter variation rate is set to 0.05 or more and less than 0.5.
In the neck diameter variation rate referred to in the present invention, in the neck diameter that increases and decreases as shown in FIG. 1, the increased neck diameter A between the inflection points P 1 and P 2 adjacent to the neck diameter and the reduced neck diameter B This is a value obtained by dividing the neck diameter difference (A−B) by the neck length between the inflection points P 1 and P 2 .

ネック径は、増加または減少する際、最大応力がネック外周に発生し、これが転位抑制の限界を超えた場合、転位密度が増加し、ネックにおいて、転位を排除することが困難となる。
このため、ネック径は一定にすることが好ましいが、実際には、原料シリコン融液の温度変動により、ネック径の変動を完全に抑制することはできない。
これに対して、本発明においては、前記ネック径変動率を0.05以上0.5未満となるように、ネックを育成することにより、転位を早期に排除し、短時間での無転位化を可能とすることができる。
When the neck diameter increases or decreases, a maximum stress is generated on the outer periphery of the neck, and when this exceeds the limit of dislocation suppression, the dislocation density increases, and it becomes difficult to eliminate the dislocation at the neck.
For this reason, it is preferable to make the neck diameter constant, but in practice, the fluctuation of the neck diameter cannot be completely suppressed due to the temperature fluctuation of the raw material silicon melt.
On the other hand, in the present invention, by growing the neck so that the fluctuation rate of the neck diameter is 0.05 or more and less than 0.5, dislocation is eliminated at an early stage, and dislocation is eliminated in a short time. Can be made possible.

前記ネック径変動率を0.05以上0.5未満に抑制するためには、ネックが着液している原料シリコン融液表面の温度変動、特に、ネック径に影響する比較的長周期の温度変動を抑制することが有効であり、磁場を印加しないCZ法やカスプ磁場における単結晶引上げにおいては、ルツボ回転速度を、単結晶を安定に引き上げることが可能な範囲内で大きくすることが効果的である。
なお、融液量が100kgを超えるMCZ法では、一定のネック長さの間、前記ネック径変動率を0.05未満に制御することは事実上困難である。
In order to suppress the neck diameter fluctuation rate to 0.05 or more and less than 0.5, temperature fluctuations on the surface of the raw material silicon melt on which the neck is deposited, in particular, a relatively long cycle temperature that affects the neck diameter. It is effective to suppress fluctuations, and it is effective to increase the crucible rotation speed within a range where the single crystal can be pulled up stably in the CZ method without applying a magnetic field or pulling a single crystal in a cusp magnetic field. It is.
Note that, in the MCZ method in which the amount of melt exceeds 100 kg, it is practically difficult to control the neck diameter variation rate to less than 0.05 during a certain neck length.

上記のように、ネック径に影響する比較的長周期の温度変動を抑制する観点から、原料シリコン融液の熱対流の制御のため、前記ネック育成の際には、ルツボ壁におけるカスプ磁場を100ガウス以上となるように印加することが好ましく、この場合、ルツボ回転速度を8rpmより大きく15rpm以下とすることが好ましい。
前記ルツボ壁におけるカスプ磁場が100ガウス未満の場合、融液対流を抑制する効果が十分に得られない。
As described above, from the viewpoint of suppressing a relatively long-period temperature fluctuation that affects the neck diameter, the cusp magnetic field on the crucible wall is set to 100 for the neck growth for controlling the thermal convection of the raw material silicon melt. It is preferable to apply so that it becomes more than Gauss. In this case, it is preferable that the crucible rotation speed is greater than 8 rpm and not greater than 15 rpm.
When the cusp magnetic field in the crucible wall is less than 100 gauss, the effect of suppressing melt convection cannot be sufficiently obtained.

また、前記ルツボ回転速度が8rpm以下である場合、原料シリコン融液表面の低温部分、いわゆるスポークパターンと呼ばれる帯状の低温領域が顕著となる。この低温部分が、シリコン原料融液表面の中心であるネック育成部分を横切ると、ネック径が変動し、前記ネック径変動率を0.5以下に維持することが困難となり、ネックが太すぎたり、逆に、細すぎて断裂したりすることがある。
一方、ネック育成時のルツボ回転速度が15rpmを超える場合、ネック育成後のショルダー部および直胴部の育成の際に、酸素濃度を制御するために、通常、ルツボ回転速度を10rpm以下に低下させるが、この急激な回転速度の変化により、対流の乱れを生じ、結晶が有転位化しやすくなる。
Further, when the crucible rotation speed is 8 rpm or less, a low temperature portion on the surface of the raw material silicon melt, that is, a band-shaped low temperature region called a so-called spoke pattern becomes remarkable. When this low temperature part crosses the neck growth part which is the center of the silicon raw material melt surface, the neck diameter fluctuates, and it becomes difficult to maintain the neck diameter fluctuation rate below 0.5, and the neck is too thick. Conversely, it may be too thin and tear.
On the other hand, when the crucible rotation speed at the time of neck growth exceeds 15 rpm, the crucible rotation speed is usually decreased to 10 rpm or less in order to control the oxygen concentration during the growth of the shoulder portion and the straight body portion after the neck growth. However, this sudden change in rotational speed causes turbulence in the convection, and the crystal tends to dislocation.

あるいはまた、前記ネック育成の際に印加する磁場方式は、水平磁場でもよく、この場合、ネック径を安定させ、原料シリコン融液の長周期での温度変動を抑制するためには、磁場強度は2000ガウス以上とし、かつ、ルツボ回転速度を0.5rpm以上3rpm以下とすることが好ましい。   Alternatively, the magnetic field method applied when growing the neck may be a horizontal magnetic field. In this case, in order to stabilize the neck diameter and suppress temperature fluctuations in the long period of the raw material silicon melt, the magnetic field strength is It is preferable to set it to 2000 gauss or more and the crucible rotation speed to 0.5 rpm or more and 3 rpm or less.

前記磁場強度が2000ガウス未満である場合、磁場による原料シリコン融液対流の抑制が不十分となり、磁場方向と平行に生じる低温部分がネック育成部分を横切ることがあり、ネック径が変動し、変動率を1.0以下に抑制することが困難となる。
また、水平磁場の場合は、ルツボ回転速度が3rpmを超える場合、原料シリコン融液の温度変動が大きくなり、ネック径が安定せず、定径部(直胴部)での育成も安定しない。このため、ルツボ回転速度は小さい方が好ましいが、単結晶の育成効率の観点から、0.5rpm以上であることが好ましい。
When the magnetic field strength is less than 2,000 gauss, suppression of the raw material silicon melt convection by the magnetic field becomes insufficient, and a low temperature portion generated in parallel with the magnetic field direction may cross the neck growing portion, and the neck diameter varies and varies. It becomes difficult to suppress the rate to 1.0 or less.
In the case of a horizontal magnetic field, when the crucible rotation speed exceeds 3 rpm, the temperature fluctuation of the raw material silicon melt becomes large, the neck diameter is not stable, and the growth at the constant diameter part (straight body part) is not stable. For this reason, although the one where a crucible rotational speed is smaller is preferable, it is preferable that it is 0.5 rpm or more from a viewpoint of the growth efficiency of a single crystal.

また、前記ルツボと反対方向に回転する結晶の回転速度は、カスプ磁場または水平磁場のいずれの磁場印加の場合においても、ネック径を安定維持する観点から、1rpm以上であればよい。ただし、ネック育成工程後のショルダー部、直胴部の育成において変形を抑えるために結晶回転を下げる必要があり、前記回転速度が15rpmを超える場合は、急激な条件変更を伴い、有転位化する可能性が大きくなるため好ましくない。   Further, the rotation speed of the crystal rotating in the direction opposite to the crucible may be 1 rpm or more from the viewpoint of stably maintaining the neck diameter in either case of applying a cusp magnetic field or a horizontal magnetic field. However, it is necessary to lower the crystal rotation in order to suppress deformation in the growth of the shoulder part and the straight body part after the neck growing process, and when the rotation speed exceeds 15 rpm, it undergoes a sudden change in conditions and causes dislocation. Since possibility becomes large, it is not preferable.

以下、本発明を実施例に基づきさらに具体的に説明するが、本発明は下記実施例により制限されるものではない。
[実施例1〜6,比較例1〜5]
直径24インチの石英ルツボ内に、原料シリコン融液100kgを充填し、CZ法単結晶引上装置を用いて、平均ネック径4.5mmとなるようにネックを育成して、シリコン単結晶を育成した。
ネック育成の際、表1の実施例1〜6および比較例1〜5にそれぞれ示すような磁場印加およびルツボ回転速度、結晶回転速度、単結晶引上速度とした。
それぞれについて、最大ネック径変動率と育成開始位置から転位が排除された位置までの長さを測定した。
表1に、これらの結果をまとめて示す。
なお、磁場強度の測定値は、カスプ磁場の場合はルツボ壁面、水平磁場の場合は中心である。ネック径は、ノギスにより測定した。また、育成開始位置から転位が排除された位置までの長さは、選択エッチング液によるエッチング評価(JIS H 0609準拠)による転位の目視測定により判定した。
EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not restrict | limited by the following Example.
[Examples 1-6, Comparative Examples 1-5]
A quartz crucible with a diameter of 24 inches is filled with 100 kg of raw material silicon melt, and a silicon single crystal is grown by growing the neck to an average neck diameter of 4.5 mm using a CZ method single crystal pulling apparatus. did.
During neck growth, magnetic field application, crucible rotation speed, crystal rotation speed, and single crystal pulling speed as shown in Examples 1 to 6 and Comparative Examples 1 to 5 in Table 1 were used.
For each, the maximum neck diameter variation rate and the length from the growth start position to the position where dislocation was excluded were measured.
Table 1 summarizes these results.
The measured value of the magnetic field strength is the crucible wall surface in the case of a cusp magnetic field and the center in the case of a horizontal magnetic field. The neck diameter was measured with calipers. Further, the length from the growth start position to the position where the dislocation was excluded was determined by visual measurement of dislocation by etching evaluation (based on JIS H 0609) using a selective etching solution.

Figure 2009057270
Figure 2009057270

表1から分かるように、カスプ磁場または水平磁場のいずれを印加した場合においても、所定の条件下で引き上げることにより、ネック径変動率を0.05以上0.5未満に抑制することができ、この場合に、転位を早期に排除することができることが認められた。   As can be seen from Table 1, even when either a cusp magnetic field or a horizontal magnetic field is applied, the neck diameter fluctuation rate can be suppressed to 0.05 or more and less than 0.5 by pulling up under a predetermined condition. In this case, it has been observed that dislocations can be eliminated early.

ネック径変動率を説明するための模式図である。It is a schematic diagram for demonstrating a neck diameter fluctuation rate. 単結晶引上装置におけるシリコン単結晶の育成を説明するための概略図である。It is the schematic for demonstrating the growth of the silicon single crystal in a single crystal pulling apparatus.

符号の説明Explanation of symbols

1 種結晶
2 ネック
3 ショルダー部
4 シリコン単結晶
5 原料シリコン融液
6 石英ルツボ
7 ヒータ
8 保温体
9 チャンバ
1 seed crystal 2 neck 3 shoulder portion 4 silicon single crystal 5 raw material silicon melt 6 quartz crucible 7 heater 8 heat insulator 9 chamber

Claims (3)

種結晶を原料シリコン融液に着液して引き上げていき、ネックを育成した後、増径して所定の結晶径の単結晶を育成するシリコン単結晶引上げにおいて、前記ネック径を増減させてネック育成を行い、その際、増減する前記ネック径の隣接する変曲点間のネック径差を前記変曲点間のネック長さで割った値をネック径変動率とした場合、前記ネック径変動率を0.05以上0.5未満とすることを特徴とするシリコン単結晶引上方法。   In the pulling of a silicon single crystal in which a seed crystal is poured into a raw material silicon melt and pulled up to grow a neck, and then a single crystal having a predetermined crystal diameter is grown by increasing the diameter, the neck diameter is increased or decreased. When the neck diameter variation rate is a value obtained by dividing the neck diameter difference between adjacent inflection points of the neck diameter to be increased or decreased by the neck length between the inflection points, the neck diameter fluctuation A silicon single crystal pulling method, wherein the rate is 0.05 or more and less than 0.5. 前記ネック育成の際、ルツボ壁面にて100ガウス以上のカスプ磁場を印加し、結晶回転速度を1rpm以上15rpm以下、前記結晶と反対方向に回転するルツボ回転速度を8rpmより大きく15rpm以下とすることを特徴とする請求項1記載のシリコン単結晶の引上方法。   When growing the neck, a cusp magnetic field of 100 gauss or more is applied on the crucible wall surface, the crystal rotation speed is 1 rpm to 15 rpm, and the crucible rotation speed rotating in the opposite direction to the crystal is greater than 8 rpm and 15 rpm or less. 2. The method for pulling up a silicon single crystal according to claim 1, wherein 前記ネック育成の際、2000ガウス以上の水平磁場を印加し、結晶回転速度を1rpm以上15rpm以下、前記結晶と反対方向に回転するルツボ回転速度を0.5rpm以上3rpm以下とすることを特徴とする請求項1記載のシリコン単結晶の引上方法。   When growing the neck, a horizontal magnetic field of 2000 gauss or more is applied, the crystal rotation speed is 1 rpm or more and 15 rpm or less, and the crucible rotation speed rotating in the opposite direction to the crystal is 0.5 rpm or more and 3 rpm or less. The method for pulling a silicon single crystal according to claim 1.
JP2008153677A 2007-08-07 2008-06-12 Method of raising silicon single crystal Pending JP2009057270A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008153677A JP2009057270A (en) 2007-08-07 2008-06-12 Method of raising silicon single crystal
KR1020080072958A KR20090014957A (en) 2007-08-07 2008-07-25 Method of pulling up silicon single crystal
US12/186,063 US20090038537A1 (en) 2007-08-07 2008-08-05 Method of pulling up silicon single crystal
DE102008036615A DE102008036615A1 (en) 2007-08-07 2008-08-06 Pulling up a silicon single crystal by Magnetic field applied Czochralski method comprises increasing and decreasing neck diameter to grow the neck, and controlling neck diameter variation rate within predetermined range
TW097129779A TW200916614A (en) 2007-08-07 2008-08-06 Method of pulling up silicon single crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007204845 2007-08-07
JP2008153677A JP2009057270A (en) 2007-08-07 2008-06-12 Method of raising silicon single crystal

Publications (1)

Publication Number Publication Date
JP2009057270A true JP2009057270A (en) 2009-03-19

Family

ID=40389726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008153677A Pending JP2009057270A (en) 2007-08-07 2008-06-12 Method of raising silicon single crystal

Country Status (4)

Country Link
JP (1) JP2009057270A (en)
KR (1) KR20090014957A (en)
CN (1) CN101363132A (en)
TW (1) TW200916614A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101458037B1 (en) * 2013-01-14 2014-11-04 주식회사 엘지실트론 Method and apparatus for manufacturing ingot having single crystals

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102220632B (en) * 2011-06-23 2012-12-12 英利能源(中国)有限公司 Technical method of N-type Czochralski silicon monocrystal
CN103290470B (en) * 2013-05-21 2016-06-29 杭州海纳半导体有限公司 The pulling of silicon single crystal growing method of diameter transitions
JP2015205793A (en) * 2014-04-21 2015-11-19 グローバルウェーハズ・ジャパン株式会社 Method for drawing up single crystal
CN108866621A (en) * 2017-05-16 2018-11-23 上海新昇半导体科技有限公司 A kind of silicon single crystal seeding structure and technique
KR102104072B1 (en) 2018-01-19 2020-04-23 에스케이실트론 주식회사 Method and apparatus for silicon single crystal growth
DE102019210254A1 (en) * 2019-07-11 2021-01-14 Siltronic Ag Method for pulling a single crystal from silicon according to the Czochralski method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH092898A (en) * 1995-06-07 1997-01-07 Memc Electron Materials Inc Method for removing dislocation at neck of silicone single crystal
JP2002187796A (en) * 2000-12-20 2002-07-05 Sumitomo Metal Ind Ltd Method of manufacturing silicon single crystal
US20020104475A1 (en) * 2001-02-07 2002-08-08 Seh America, Inc. Method of growing large-diameter dislocation-free<110> crystalline ingots
JP2007022864A (en) * 2005-07-19 2007-02-01 Sumco Corp Method for manufacturing silicon single crystal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH092898A (en) * 1995-06-07 1997-01-07 Memc Electron Materials Inc Method for removing dislocation at neck of silicone single crystal
JP2002187796A (en) * 2000-12-20 2002-07-05 Sumitomo Metal Ind Ltd Method of manufacturing silicon single crystal
US20020104475A1 (en) * 2001-02-07 2002-08-08 Seh America, Inc. Method of growing large-diameter dislocation-free<110> crystalline ingots
JP2007022864A (en) * 2005-07-19 2007-02-01 Sumco Corp Method for manufacturing silicon single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101458037B1 (en) * 2013-01-14 2014-11-04 주식회사 엘지실트론 Method and apparatus for manufacturing ingot having single crystals

Also Published As

Publication number Publication date
KR20090014957A (en) 2009-02-11
TW200916614A (en) 2009-04-16
CN101363132A (en) 2009-02-11

Similar Documents

Publication Publication Date Title
JP2009057270A (en) Method of raising silicon single crystal
JP4483729B2 (en) Silicon single crystal manufacturing method
TW201800625A (en) Single crystal silicon manufacturing method
JP6759020B2 (en) Silicon single crystal manufacturing method and quartz crucible for silicon single crystal manufacturing after modification treatment
JP2010024120A (en) Silicon single crystal and its growing method
US20090038537A1 (en) Method of pulling up silicon single crystal
US20120279438A1 (en) Methods for producing single crystal silicon ingots with reduced incidence of dislocations
JP2011093770A (en) Resistivity calculation program and method for producing single crystal
TWI635199B (en) Manufacturing method of single crystal silicon
JP3867476B2 (en) Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus
JP2009018984A (en) Low oxygen concentration silicon single crystal and its manufacturing method
JP2002137988A (en) Method of pull up single crystal
JP5034247B2 (en) Method for producing silicon single crystal
JP4640796B2 (en) Method for producing silicon single crystal
JP2009292662A (en) Method for forming shoulder in growing silicon single crystal
JP5375636B2 (en) Method for producing silicon single crystal
JP2010275137A (en) Method for producing silicon single crystal
JP2018002490A (en) Production method of silicon single crystal
WO2022254885A1 (en) Method for producing silicon monocrystal
JP2005067927A (en) Silicone seed crystal and production method for silicon single crystal
TWI751028B (en) Method for manufacturing single crystal silicon
KR20100071507A (en) Apparatus, method of manufacturing silicon single crystal and method of controlling oxygen density of silicon single crystal
JP5136252B2 (en) Method for growing silicon single crystal
JP6488975B2 (en) Pulling method of silicon single crystal
KR101339151B1 (en) Apparatus and method for growing monocrystalline silicon ingots

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121019