JPH11292689A - Production of silicon single crystal, seed crystal and seed crystal holding tool - Google Patents

Production of silicon single crystal, seed crystal and seed crystal holding tool

Info

Publication number
JPH11292689A
JPH11292689A JP12285998A JP12285998A JPH11292689A JP H11292689 A JPH11292689 A JP H11292689A JP 12285998 A JP12285998 A JP 12285998A JP 12285998 A JP12285998 A JP 12285998A JP H11292689 A JPH11292689 A JP H11292689A
Authority
JP
Japan
Prior art keywords
seed crystal
crystal
holder
necking
dislocation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12285998A
Other languages
Japanese (ja)
Other versions
JP3402192B2 (en
Inventor
Masaki Kimura
雅規 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP12285998A priority Critical patent/JP3402192B2/en
Priority to TW088104950A priority patent/TW538445B/en
Priority to EP99302479A priority patent/EP0949361A3/en
Priority to US09/287,199 priority patent/US6670036B2/en
Priority to KR1019990012078A priority patent/KR100582238B1/en
Publication of JPH11292689A publication Critical patent/JPH11292689A/en
Application granted granted Critical
Publication of JP3402192B2 publication Critical patent/JP3402192B2/en
Priority to US10/695,609 priority patent/US20040083945A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a seed crystal effective for improving the success ratio of getting a dislocation-free crystal both in a thick constriction seeding method accompanying necking and in a dislocation-free seeding method without accompanying necking and improving the productivity and yield of a single crystal having large diameter and heavy weight, a process for producing a silicon single crystal by the use of the seed crystal and a tool for holding the seed crystal. SOLUTION: This seed crystal 1 to be used in Czochralski method is a crystal free from straight body part. The form of the main body of the crystal is conical form, pyramidal form, truncated conical form, truncated pyramidal form, a combination of a conical form and a truncated conical form, a combination of a conical form and a truncated pyramidal form, a combination of a pyramidal form and a truncated pyramidal form or a combination of a pyramidal form and a truncated conical form. The process for producing the silicon single crystal comprises the pulling of a single crystal by a thick constriction seeding method accompanying necking or a dislocation- free seeding method without accompanying necking using the seed crystal. The seed crystal holding tool 10 safely holds the seed crystal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、チョクラルスキー
法(Czochralski Method、CZ法)による、種結晶を使
用してネッキングを行いあるいはネッキングを行うこと
なくシリコン単結晶棒を成長させるシリコン単結晶の製
造方法および種結晶ならびに種結晶保持具に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Czochralski method (CZ method) for forming a silicon single crystal rod by necking using a seed crystal or growing a silicon single crystal rod without necking. The present invention relates to a production method, a seed crystal, and a seed crystal holder.

【0002】[0002]

【従来の技術】従来、CZ法によるシリコン単結晶の製
造においては、単結晶シリコンを種結晶として用い、こ
れをシリコン融液に接触させた後、回転させながらゆっ
くりと引上げることで単結晶棒を成長させている。この
際、種結晶をシリコン融液に接触させた後に、熱衝撃に
より種結晶に高密度で発生するスリップ転位から伝播し
て生ずる転位を消滅させるために、直径を3mm程度に
一旦細くして絞り部を形成するいわゆる種絞り(ネッキ
ング)を行い、次いで、所望の口径になるまで結晶を太
らせて、無転位のシリコン単結晶棒を引上げている。こ
のような、種絞りはDash Necking法として
広く知られており、CZ法でシリコン単結晶棒を引上げ
る場合の常識とされている。
2. Description of the Related Art Conventionally, in the production of a silicon single crystal by the CZ method, a single crystal silicon is used as a seed crystal, which is brought into contact with a silicon melt and then slowly pulled up while being rotated to thereby obtain a single crystal rod. Growing. At this time, after the seed crystal is brought into contact with the silicon melt, the diameter is reduced once to about 3 mm to reduce dislocations generated from slip dislocations generated at high density in the seed crystal due to thermal shock. A so-called seed drawing (necking) for forming a portion is performed, and then the crystal is thickened to a desired diameter to pull up a dislocation-free silicon single crystal rod. Such seed drawing is widely known as the Dash Necking method, and is a common sense when pulling a silicon single crystal rod by the CZ method.

【0003】すなわち、従来用いられてきた種結晶の形
状は、例えば直径あるいは一辺約8〜20mmの円柱状
や角柱状の単結晶に、種結晶保持具にセットするための
切り欠き部等を設けたもので、最初にシリコン融液に接
触する下方の先端形状は、平坦面となっている。そし
て、高重量の単結晶棒の重量に耐えて安全に引上げるた
めには、種結晶の太さは、素材の強度からして上記以下
に細くすることは難しい。
That is, the shape of a seed crystal that has been conventionally used is, for example, that a notch portion or the like for setting in a seed crystal holder is provided in a cylindrical or prismatic single crystal having a diameter or a side of about 8 to 20 mm. The shape of the lower tip that first contacts the silicon melt is a flat surface. In order to withstand the weight of a heavy single crystal rod and safely pull it up, it is difficult to make the thickness of the seed crystal smaller than the above due to the strength of the material.

【0004】このような形状の種結晶では、融液と接触
する先端の熱容量が大きいために、種結晶が融液に接触
した瞬間に結晶内に急激な温度差を生じ、スリップ転位
を高密度に発生させる。従って、この転位を消滅して単
結晶を育成するために前記ネッキングが必要になるので
ある。
[0004] In the seed crystal having such a shape, since the heat capacity of the tip in contact with the melt is large, a sudden temperature difference occurs in the crystal at the moment when the seed crystal comes into contact with the melt, and slip dislocations are generated at a high density. To be generated. Therefore, the necking is required to eliminate the dislocation and grow a single crystal.

【0005】しかし、このような状態ではネッキング条
件を種々に選択しても、無転位化するためには、最小直
径を3〜5mmまでは絞り込む必要があり、近年のシリ
コン単結晶径の大口径化に伴い、高重量化した単結晶棒
を支持するには強度が不充分であり、単結晶棒引上げ中
に、この細い絞り部が破断して単結晶棒が落下する等の
重大な事故を生じる恐れがあった。
However, in such a state, even if various necking conditions are selected, it is necessary to narrow down the minimum diameter to 3 to 5 mm in order to eliminate dislocations. Due to the increase in strength, the strength of the single crystal rod is not enough to support the heavy weight single crystal rod. There was a possibility.

【0006】このような問題を解決するために、例え
ば、特開平4−104988号公報、特開平9−235
186号公報等に開示されているように、最初に融液に
接触する面積が小さくなるように、種結晶の先端にテー
パを付けて尖った形状にして、無転位で種付けを行うこ
とが提案されている。特に、特開平9−235186号
公報に開示されている発明は、種付け後、尖った先端テ
ーパ部を所望の太さまで溶かし込んだ後、種結晶をゆっ
くりと上昇させ、ネッキングによる絞り部を形成するこ
となく、所望径のシリコン単結晶棒を育成させるという
ものである。
In order to solve such a problem, for example, Japanese Patent Application Laid-Open No. 4-104988 and Japanese Patent Application Laid-Open No. 9-235
As disclosed in Japanese Patent Publication No. 186/186, etc., it is proposed that the tip of the seed crystal be tapered to have a sharp shape so that the area that first comes into contact with the melt is reduced, and seeding is performed without dislocations. Have been. In particular, in the invention disclosed in Japanese Patent Application Laid-Open No. 9-235186, after seeding, a sharp tip tapered portion is melted to a desired thickness, and then the seed crystal is slowly raised to form a narrowed portion by necking. Without growing a silicon single crystal rod having a desired diameter.

【0007】この方法によれば、最初に種結晶の先端を
シリコン融液に接触させた時、接触面積が小さく、先端
テーパ部の熱容量が小さいため、種結晶に熱衝撃又は急
激な温度勾配が生じないので、スリップ転位が導入され
ない。そして、その後、種結晶を低速度で下降させて種
結晶の先端テーパ部が所望の太さとなるまで溶融すれ
ば、急激な温度勾配を生じないので溶融時にもスリップ
転位が種結晶内に導入されない。そして、最後に種結晶
をゆっくりと引上げれば、種結晶は所望の太さで、無転
位であるから、ネッキングを行う必要はなく、強度も十
分あるので、そのまま所望の径まで太らせてシリコン単
結晶棒を育成させることができるのである。
According to this method, when the tip of the seed crystal is first brought into contact with the silicon melt, the contact area is small and the heat capacity of the tapered portion at the tip is small, so that a thermal shock or a sharp temperature gradient is applied to the seed crystal. No slip dislocations are introduced because they do not occur. And then, if the seed crystal is lowered at a low speed and melted until the tip taper portion of the seed crystal becomes a desired thickness, a slip temperature is not generated, so that no slip dislocation is introduced into the seed crystal even during melting. . Finally, if the seed crystal is slowly pulled up, the seed crystal has a desired thickness and has no dislocation, so it is not necessary to perform necking and has sufficient strength. A single crystal rod can be grown.

【0008】しかしながら、この無転位種付け法で問題
となるのは、その無転位化成功率である。すなわち、こ
の方法では、一度種結晶に転位が導入されると、種結晶
を交換しなければ、やり直しができないので、成功率を
向上させることが特に重要である。そしてこの場合、無
転位で種付けしても、所望の太さを得るために種結晶の
先端テーパ部を溶かし込んで行くと、ある太さ(直径約
5mm)以上からスリップ転位が発生し易くなるという
問題があり、無転位化成功率が必ずしも高くなく、十分
な再現性は得られていなかった。
However, what is problematic in this dislocation-free seeding method is the dislocation-free success rate. That is, in this method, once dislocations are introduced into the seed crystal, the process cannot be repeated unless the seed crystal is exchanged. Therefore, it is particularly important to improve the success rate. In this case, even if the seed crystal is seeded without dislocation, slip dislocation is likely to occur from a certain thickness (diameter of about 5 mm) or more if the tip taper portion of the seed crystal is melted to obtain a desired thickness. The dislocation-free success rate is not always high, and sufficient reproducibility has not been obtained.

【0009】また、従来の種結晶保持具は、例えば図4
の(b)に示したように、保持具本体の円筒部に種結晶
1の直胴部2を挿入し円筒部の側面から種結晶直胴部2
の切り欠き部15にテーパピン16をはめ込んで固定す
るような構造になっていた。しかしながら、これでは切
り欠き部15とテーパピン16との接触面積が小さく、
そこに応力が集中して破断する危険性が高い状態であっ
た。
A conventional seed crystal holder is, for example, shown in FIG.
(B), the straight body 2 of the seed crystal 1 is inserted into the cylindrical part of the holder body, and the seed crystal straight body 2 is inserted from the side of the cylindrical part.
The notch 15 has a structure in which a taper pin 16 is fitted and fixed. However, in this case, the contact area between the notch 15 and the tapered pin 16 is small,
There was a high risk of breakage due to stress concentration there.

【0010】さらに、従来の例えば図4の(a)に示し
たようなネッキングを行わない無転位種付け法で使用さ
れる先の尖った種結晶1には、この切り欠き部15を設
けるための直胴部2が存在するため、これが余分な熱容
量を持つものとなっていた。また、直胴部が余分な容積
となって種結晶保持具の中にあるため、種結晶保持具自
体の容積、従って熱容量が大きくなってしまった。これ
では、種結晶を融液表面に近付けた際の昇温速度が遅く
なるばかりでなく、種結晶の融液への溶かし込み中また
は引上げ中における温度勾配が大きくなり、転位が発生
し易いあるいは発生した転位が抜けにくい状態であっ
た。
Further, the notch 15 is provided in the pointed seed crystal 1 used in the conventional dislocation-free seeding method without necking as shown in FIG. Because of the presence of the straight body 2, this had an extra heat capacity. Further, since the straight body portion has an extra volume in the seed crystal holder, the capacity of the seed crystal holder itself, and therefore the heat capacity, has increased. In this case, not only the rate of temperature rise when the seed crystal is brought close to the melt surface becomes slow, but also the temperature gradient during dissolution or pulling of the seed crystal into the melt becomes large, and dislocation is likely to occur. The generated dislocation was in a state where it was difficult to escape.

【0011】[0011]

【発明が解決しようとする課題】そこで、本発明はこの
ような従来の問題点に鑑みてなされたもので、ネッキン
グを行う種付け法、ネッキングを行わない無転位種付け
法のいずれの場合でも、無転位化成功率を向上させるこ
とを目的とし、これによって大口径、高重量の単結晶の
生産性と歩留りを向上させるシリコン種結晶およびこの
種結晶を使用して単結晶棒を成長させるシリコン単結晶
の製造方法ならびにこの種結晶の保持具を提供すること
を主たる目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems. Therefore, the present invention is applied to both the seeding method for necking and the dislocation-free seeding method without necking. The aim is to improve the success rate of dislocations, thereby improving the productivity and yield of large-diameter, high-weight single crystals, and a silicon single crystal in which a single crystal rod is grown using this seed crystal. A main object is to provide a manufacturing method and a holder for the seed crystal.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
本発明の請求項1に記載した発明は、チョクラルスキー
法に用いられる種結晶であって、直胴部を持たないこと
を特徴とする種結晶である。このように、直胴部を持た
ない種結晶とすることによって、実質的に種結晶として
の作用を為す部分のみとなるので、種結晶全体としての
容積が著しく減少し、余分な熱容量も減ることになる。
その結果、種結晶と種結晶保持具を合せた熱容量も小さ
くなり、種結晶を融液表面に近づけた際の昇温速度が速
くなる。さらに種結晶の先端部を融液に接触させた後、
その溶かし込み中や引上げ中における温度勾配を小さく
することができるので転位が発生し難く、あるいは既に
発生していたとしても消滅し易くなる。また、昇温速度
が向上することは操業時間の短縮にもつながるので生産
性や歩留りの向上が期待できる。
According to a first aspect of the present invention, there is provided a seed crystal for use in the Czochralski method, wherein the seed crystal has no straight body. Seed crystal. As described above, since the seed crystal having no straight body portion has only a portion that substantially functions as the seed crystal, the volume of the entire seed crystal is significantly reduced, and the excess heat capacity is also reduced. become.
As a result, the heat capacity of the seed crystal and the seed crystal holder together decreases, and the temperature rise rate when the seed crystal approaches the melt surface increases. After contacting the tip of the seed crystal with the melt,
Since the temperature gradient during melting or pulling can be reduced, dislocations are less likely to occur, or even if they have already occurred, they are more likely to disappear. In addition, an increase in the heating rate leads to a reduction in the operation time, so that an improvement in productivity and yield can be expected.

【0013】この場合、請求項2に記載したように、請
求項1に記載の種結晶であって、種結晶の本体形状が、
円錐形、角錐形、円錐台、角錐台、円錐形と円錐台の組
合せ、円錐形と角錐台の組合せ、角錐形と角錐台の組合
せおよび角錐形と円錐台の組合せの中から選択される1
種であることが好ましい。
[0013] In this case, as described in claim 2, the seed crystal according to claim 1 has a main body shape of:
1 selected from among cone, pyramid, truncated cone, truncated pyramid, combination of cone and truncated cone, combination of cone and truncated pyramid, combination of pyramid and truncated pyramid, and combination of pyramid and truncated cone
Preferably it is a seed.

【0014】このように直胴部を持たない種結晶として
多様な形状を提示することができると共に、その作用効
果として例えば円錐形の場合は、底面に近い一部の側面
または側面全体で種結晶保持具に保持されるので、種結
晶自体の耐荷重性が向上する。また直胴部がないので種
結晶と種結晶保持具を合せた容積および熱容量が減少
し、種結晶を融液の表面に近付けた際の昇温速度が速く
なり、さらに種結晶先端部を融液に接触させた後の溶か
し込み中や引上げ中における温度勾配を小さくすること
ができるので転位が発生しにくく、あるいは既に発生し
ていたとしても抜け易くなる。そして上記円錐形以外の
形状の場合も円錐形とほぼ同等の作用効果を発揮し得る
ことは明らかである。
As described above, various shapes can be presented as a seed crystal having no straight body, and as a function and effect, for example, in the case of a conical shape, the seed crystal is formed on a part of the side surface near the bottom surface or on the entire side surface. Since the seed crystal is held by the holder, the load resistance of the seed crystal itself is improved. In addition, since there is no straight body, the combined volume and heat capacity of the seed crystal and the seed crystal holder are reduced, the rate of temperature rise when the seed crystal is brought close to the surface of the melt is increased, and the tip of the seed crystal is melted. Since the temperature gradient during melting or pulling after contact with the liquid can be reduced, dislocation is less likely to occur, or even if it has already occurred, it will be easier to escape. It is clear that the same shape and effect as those of the conical shape can be obtained also in the case of a shape other than the conical shape.

【0015】さらに請求項3に記載したように、種結晶
の側面の一部または全面が曲面で形成されているものと
することができる。このように、種結晶の側面の一部ま
たは全面が曲面で形成されているものとすると、例えば
先端からシリコン融液に溶かし込む速度を一定とした場
合に、稜線が直線の円錐状先端テーパ部では経過時間に
比例して溶融界面の太さが大きくなるが、側面が曲面で
形成された円錐の領域内においては、稜線の拡径率が直
線の場合よりも緩やかにすることができ、溶融界面の太
さがより太くなる位置での熱応力は大きく緩和されるよ
うになる。従ってスリップ転位の発生確率が抑えられ、
発生し易くなる位置が太い方に移行するので、移行後の
位置から無転位で単結晶引上げ操作に入ることができる
ようになる。これにより無転位化成功率が向上すると共
に、成長単結晶の大直径化、高重量化に十分対応するこ
とができる。
Further, as described in claim 3, a part or the whole of the side surface of the seed crystal can be formed as a curved surface. As described above, if a part or the whole of the side surface of the seed crystal is formed as a curved surface, for example, when the speed of dissolution into the silicon melt from the tip is constant, the ridge line is a straight conical tip taper portion. In this case, the thickness of the molten interface increases in proportion to the elapsed time.However, in the conical region formed by the curved side surface, the expansion rate of the ridge line can be made gentler than in the case of a straight line. The thermal stress at the position where the thickness of the interface becomes larger is greatly reduced. Therefore, the occurrence probability of slip dislocation is suppressed,
Since the position where the generation is likely shifts to the thicker one, the single crystal pulling operation can be started from the position after the shift without dislocation. Thereby, the dislocation-free success rate is improved, and it is possible to sufficiently cope with an increase in the diameter and weight of the grown single crystal.

【0016】そして、本発明の請求項4に記載した発明
は、種結晶の含有酸素濃度が16ppma(JEID
A)以下が好ましいというものである。このように種結
晶の含有酸素濃度を抑えておくと、種結晶を融液に接
触、溶かし込み中に酸素が析出することがなく、析出し
た酸素が核となってスリップ転位が発生することは殆ど
なくなる。この現象は請求項1または請求項2に記載し
た種結晶の形状とすることにより、種結晶と種結晶保持
具を合せた熱容量を小さくすることができるので、固液
界面からある程度の高さの範囲まで融液の高温状態が維
持されており、そのため酸素が析出し難くなるからであ
り、種結晶中の初期酸素濃度を16ppma以下にして
おくとより効果的に作用する。
In the invention according to claim 4 of the present invention, the seed crystal has an oxygen concentration of 16 ppma (JEID
A) The following are preferred. If the concentration of oxygen contained in the seed crystal is suppressed in this way, the seed crystal does not contact with the melt and oxygen does not precipitate during melting, and the precipitated oxygen becomes a nucleus and slip dislocation occurs. Almost gone. This phenomenon can be reduced by setting the shape of the seed crystal according to claim 1 or 2 to reduce the heat capacity of the seed crystal and the seed crystal holder together. This is because the high temperature state of the melt is maintained within the range, which makes it difficult for oxygen to be precipitated. When the initial oxygen concentration in the seed crystal is set to 16 ppma or less, it works more effectively.

【0017】本発明の請求項5に記載した発明は、請求
項1ないし請求項4に記載した種結晶を使用して、該種
結晶の先端部をシリコン融液に溶かし込み、次いでネッ
キングを行わずに拡径して単結晶を引上げることを特徴
とするシリコン単結晶の製造方法である。このように、
本発明の種結晶を使用すれば、容易にネッキングを行わ
ずに無転位で単結晶を成長させることができ、高い無転
位化成功率を安定的に維持して生産性と歩留りの向上を
図ると共に、大直径化、高重量化に十分対応することが
できる。
According to a fifth aspect of the present invention, the tip of the seed crystal is dissolved in a silicon melt using the seed crystal according to the first to fourth aspects, and then necking is performed. A method for producing a silicon single crystal, characterized in that the diameter of the single crystal is increased without increasing the diameter. in this way,
By using the seed crystal of the present invention, it is possible to grow a single crystal without dislocation easily without necking, and to stably maintain a high dislocation-free success rate to improve productivity and yield. It is possible to cope with an increase in diameter and weight.

【0018】そして、本発明の請求項6に記載した発明
は、請求項1ないし請求項4のいずれか1項に記載した
種結晶を使用して、該種結晶の先端部をシリコン融液に
溶かし込み、次いでネッキングを行って絞り込み部と絞
り部を形成した後、拡径して単結晶を引上げることを特
徴とするシリコン単結晶の製造方法である。このよう
に、本発明の種結晶を使用すれば、ネッキングを行う場
合に太い絞り部としても容易に無転位化して単結晶を成
長させることができる。従って、無転位化成功率が大幅
に改善され、生産性と歩留りの向上を図ると共に、大直
径化、高重量化に十分寄与することができる。
According to a sixth aspect of the present invention, there is provided a seed crystal according to any one of the first to fourth aspects, wherein the tip of the seed crystal is applied to a silicon melt. This is a method for producing a silicon single crystal, characterized by melting and then necking to form a narrowed portion and a narrowed portion, and then expanding the diameter to pull up the single crystal. As described above, when the seed crystal of the present invention is used, a single crystal can be easily grown without dislocation even in a thick drawn portion when necking is performed. Therefore, the dislocation-free success rate is greatly improved, and the productivity and yield can be improved, and the diameter and weight can be sufficiently increased.

【0019】この場合、請求項7に記載したように、前
記種結晶の先端部をシリコン融液に溶かし込む操作にお
いて、絞り部の目標直径の1.1倍以上の太さまで、或
は多角形種結晶の内接円の直径が絞り部の目標直径の
1.1倍以上の長さとなるまで種結晶を溶かし込んだ
後、絞り部目標直径まで絞り込むことが望ましく、ま
た、請求項8に記載したように、前記絞り部の長さを少
なくとも5mm以上とすることが好ましい。
In this case, in the operation of dissolving the tip of the seed crystal in the silicon melt, the thickness of the seed crystal may be increased to 1.1 times or more the target diameter of the narrowed portion, or a polygon may be formed. It is desirable to melt the seed crystal until the diameter of the inscribed circle of the seed crystal becomes 1.1 times or more the target diameter of the drawing portion, and then to narrow the seed crystal to the drawing portion target diameter. As described above, it is preferable that the length of the narrowed portion is at least 5 mm or more.

【0020】このように、絞り部の目標直径の1.1倍
以上の太さまでシリコン融液に溶かし込んで熱衝撃を緩
和した後、ネッキングを行い、その初期段階で絞り部の
目標直径まで円錐状に絞り込んで絞り込み部を形成し、
続いて絞り部の長さを少なくとも5mm以上形成し、次
いで拡径して単結晶棒を引上げるようにすれば、スリッ
プ転位の発生の危険性は大巾に減少する。また、例え転
位が発生したとしても、絞り込み部の存在により転位を
効率的に消減させることができるので、無転位化成功率
とその再現性を高めることが可能となる。この場合、絞
り部を太くしても無転位化の再現性は高い。従って、所
望の太さの絞り部を形成することができるので大直径
化、高重量化に対応した生産性の向上、コストダウンを
図ることができる。この場合、絞り部の長さが5mm未
満では、転位を完全に除去できないことがあり、無転位
化成功率が低くなることがあるので、絞り部の長さは5
mm以上を維持することが望ましい。
As described above, after melting into a silicon melt to reduce the thermal shock to a thickness of 1.1 times or more the target diameter of the narrowed portion, necking is performed, and in the initial stage, a cone is formed to the target diameter of the narrowed portion. To form a narrowed part,
Subsequently, if the length of the constricted portion is formed at least 5 mm or more, and then the diameter is increased to pull up the single crystal rod, the risk of occurrence of slip dislocation is greatly reduced. Further, even if dislocations occur, dislocations can be efficiently eliminated by the presence of the narrowed portion, so that the success rate of dislocation-free and the reproducibility thereof can be improved. In this case, the reproducibility of eliminating dislocations is high even if the aperture portion is made thick. Therefore, a narrowed portion having a desired thickness can be formed, so that productivity can be improved and cost can be reduced in response to an increase in diameter and weight. In this case, if the length of the constricted portion is less than 5 mm, dislocations may not be completely removed, and the success rate of dislocation-free may be reduced.
It is desirable to maintain the distance in mm or more.

【0021】さらに、本発明の請求項9に記載した発明
は、請求項1ないし請求項4に記載した種結晶を保持す
る保持具において、内周壁面にメネジを有し、かつ上面
中心部が吊り下げ用ワイヤに連結される種結晶を収容す
る袋ナットと、該種結晶のテーパ部または曲面部に当接
する内周面を有し、かつ外周面にオネジを切った種結晶
を支持するリングから成ることを特徴とする種結晶保持
具である。
Further, according to a ninth aspect of the present invention, in the holder for holding the seed crystal according to the first to fourth aspects, a female screw is provided on an inner peripheral wall surface and a central portion of the upper surface is provided. A cap nut for accommodating a seed crystal connected to a hanging wire, and a ring having an inner peripheral surface in contact with a tapered portion or a curved surface portion of the seed crystal, and supporting the seed crystal having an outer peripheral surface with an external thread. It is a seed crystal holder characterized by comprising.

【0022】そして、本発明の請求項10に記載した発
明は、請求項1ないし請求項4に記載した種結晶を保持
する保持具において、種結晶のテーパ部または曲面部に
当接する内周面を有するリングと、該リングを上面中心
部が吊り下げ用ワイヤに連結されるリング上面治具とリ
ング下面治具との間に挟持して成ることを特徴とする種
結晶保持具である。
According to a tenth aspect of the present invention, there is provided a holder for holding a seed crystal according to any one of the first to fourth aspects, wherein the inner peripheral surface is in contact with a tapered portion or a curved surface portion of the seed crystal. And a ring having a center between the upper surface jig and the lower ring jig whose upper surface is connected to the hanging wire.

【0023】このような構成の種結晶保持具を使用すれ
ば、種結晶のテーパ部または曲面部のほぼ全面を、該保
持具のリングの内周面に多点あるいは面接触で接触させ
ることができるとともに、種結晶に種結晶保持具に係止
するための溝、孔、切り欠き部等を設ける必要がないの
で、種結晶自体の耐荷重性が大きく向上し、成長単結晶
の大直径化、高重量化に充分対応することができる。
By using the seed crystal holder having such a structure, it is possible to bring almost the entire tapered or curved surface portion of the seed crystal into contact with the inner peripheral surface of the ring of the holder by multipoint or surface contact. In addition, since there is no need to provide grooves, holes, notches, etc. in the seed crystal to lock it to the seed crystal holder, the load resistance of the seed crystal itself is greatly improved, and the diameter of the grown single crystal is increased. , And can sufficiently cope with an increase in weight.

【0024】さらに、種結晶に直胴部がないので、保持
具自体を小型化することが可能で、種結晶の小型化と相
まって、種結晶と保持具を合せた容積も熱容量も小さく
なり、種結晶を融液表面に近づけた際の昇温速度が速く
なるとともに、種結晶の先端部を融液に接触させた後、
その溶かしこみ中や引上げ中における温度勾配を小さく
することができるので転位が発生し難く、例え発生した
としても消滅し易くなる。また、昇温速度が向上するこ
とは操業時間の短縮にも繋がるので生産性や歩留りの向
上を図ることができる。
Furthermore, since the seed crystal does not have a straight body, the holder itself can be reduced in size, and in conjunction with the reduction in the size of the seed crystal, the combined volume and heat capacity of the seed crystal and the holder are reduced. The temperature rise rate when the seed crystal was brought closer to the melt surface was increased, and after the tip of the seed crystal was brought into contact with the melt,
Since the temperature gradient during melting and pulling can be reduced, dislocations are hardly generated, and even if generated, they are easily eliminated. In addition, an increase in the heating rate leads to a reduction in operation time, so that productivity and yield can be improved.

【0025】本発明の請求項11に記載した発明は、請
求項9または請求項10に記載した種結晶保持具におい
て、種結晶の表面と保持具の種結晶当接面との間に断熱
材或は耐熱性クッション材を挟み込んで成ることを特徴
とする種結晶保持具である。このように、種結晶の表面
と保持具の種結晶当接面との間に断熱材を挟み込むと、
種結晶を融液表面に近づけた際の昇温速度がより一層速
くなるとともに、種結晶の先端部を融液に接触させた
後、その溶かしこみ中や引上げ中における温度勾配もよ
り一層緩やかにすることができるので転位が発生し難
く、例え発生したとしても消滅し易くなる。また、昇温
速度が向上することは操業時間の短縮にも繋がるので生
産性や歩留りの向上を図ることができる。また、種結晶
の表面とリングの内周面の間に耐熱性クッション材、例
えば炭素繊維製フェルトやセラミックス繊維製フェルト
を介在させて接触面全面を面接触として十分フィットさ
せ、成長単結晶の高重量負荷の一点集中を防止すること
ができる。
According to an eleventh aspect of the present invention, in the seed crystal holder according to the ninth or tenth aspect, a heat insulating material is provided between a surface of the seed crystal and a seed crystal contact surface of the holder. Alternatively, the present invention is a seed crystal holder having a heat-resistant cushion material interposed therebetween. In this way, when the insulating material is sandwiched between the surface of the seed crystal and the seed crystal contact surface of the holder,
The temperature rise rate when the seed crystal is brought closer to the melt surface is further increased, and the temperature gradient during dissolution and pulling up after the tip of the seed crystal is brought into contact with the melt is further reduced. Therefore, dislocations are hardly generated, and even if they are generated, they are easily eliminated. In addition, an increase in the heating rate leads to a reduction in operation time, so that productivity and yield can be improved. In addition, a heat-resistant cushion material such as a felt made of carbon fiber or a felt made of ceramics fiber is interposed between the surface of the seed crystal and the inner peripheral surface of the ring so that the entire contact surface is fully fitted as a surface contact, and the height of the grown single crystal is increased. It is possible to prevent one point concentration of weight load.

【0026】[0026]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明するが、本発明はこれらに限定されるも
のではない。図1および図2は、本発明の直胴部を持た
ない各種形状の種結晶を示している。図3は本発明の種
結晶を本発明の種結晶保持具に組み込んだ状態を示して
いる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings, but the present invention is not limited thereto. 1 and 2 show seed crystals of various shapes without a straight body according to the present invention. FIG. 3 shows a state where the seed crystal of the present invention is incorporated in the seed crystal holder of the present invention.

【0027】本発明者らは、シリコン単結晶棒の成長に
際し、ネッキングを行う種付け法とネッキングを行わな
い無転位種付け法のいずれにおいても、その無転位化成
功率が満足し得る水準に達しない場合があり、その原因
を調査、究明した所、このスリップ転位の発生要因とし
て、種結晶の形状や種結晶の含有酸素濃度あるいは種結
晶先端テーパ部を融液に溶かし込み後の太さ等が深く関
係していることを見出し、詳細に条件を精査して本発明
を完成させた。
The inventors of the present invention have proposed a method for growing a silicon single crystal rod, in which the dislocation-free success rate does not reach a satisfactory level in both the seeding method in which necking is performed and the dislocation-free seeding method in which necking is not performed. After investigating and investigating the cause, the cause of this slip dislocation was that the shape of the seed crystal, the oxygen concentration of the seed crystal, or the thickness after dissolving the seed crystal tip taper into the melt were deep. The present inventors have found out that they are related and scrutinized the conditions in detail to complete the present invention.

【0028】先ず、種結晶の形状について、従来から使
用されてきた形、発明として開示された形を参考に、調
査、試作、実験を繰り返し、形状以外の関連要因も含め
て下記のような無転位化条件を確立した。本発明の種結
晶の形状の例として図1に示したものは、(a)が円錐
形、(b)が角錐形、(c)は側面全面が曲面で形成さ
れた円錐形である。また、図2に示したものは、(a)
が角錐形と円錐台の組合せ、(b)が円錐形と角錐台の
組合せであり、いずれも直胴部を持たない形状とした。
調査した要因は、表1に示したように、種結晶形状
(A)、種結晶含有酸素濃度(B)、種結晶先端部の溶
かし込み後の直径(C)、絞り部直径(D)、ネッキン
グの有無(E)である。
First, with respect to the shape of the seed crystal, the investigation, trial manufacture, and experiment were repeated with reference to the shape conventionally used and the shape disclosed as the invention. The dislocation conditions were established. As an example of the shape of the seed crystal of the present invention shown in FIG. 1, (a) is a conical shape, (b) is a pyramid shape, and (c) is a conical shape in which the entire side surface is formed by a curved surface. FIG. 2 shows (a)
Is a combination of a pyramid and a truncated cone, and (b) is a combination of a cone and a truncated pyramid.
The factors investigated were, as shown in Table 1, the seed crystal shape (A), the oxygen concentration of the seed crystal (B), the diameter of the tip of the seed crystal after melting (C), the diameter of the drawing part (D), The presence or absence of necking (E).

【0029】シリコン種結晶1の形状として、直胴部を
持たないものと持つものを用意した。直胴部を持たない
ものは図1(a)に示したように、底面直径20mm×
長さ80mmで頂角14度の円錐形にテーパ加工したも
ので、混酸により表面を約400μmエッチングしたも
のを使用して、図3に示したような本発明の種結晶保持
具10にセットした。直胴部を持つものは図4(a)に
示したように、直径20mm×長さ40mmの直胴部と
底面直径20mm×長さ80mmで頂角14度の円錐部
から成っており、図4の(b)に示したような通常の種
結晶保持具10の本体円筒部に種結晶1の直胴部2を挿
入し、種結晶1の切り欠き部15にテーパピン16をは
め込んでセットした。
As the shape of the silicon seed crystal 1, one having no straight body portion and one having a straight body portion were prepared. As shown in FIG. 1 (a), those having no straight body portion have a bottom diameter of 20 mm.
A tapered 80 mm long, 14 ° apex cone-shaped one whose surface was etched by about 400 μm with mixed acid was used and set in the seed crystal holder 10 of the present invention as shown in FIG. . As shown in FIG. 4 (a), the one having a straight body portion is composed of a straight body portion having a diameter of 20 mm × length of 40 mm and a conical portion having a bottom diameter of 20 mm × length of 80 mm and a vertex angle of 14 °. The straight body 2 of the seed crystal 1 is inserted into the main body cylindrical portion of the ordinary seed crystal holder 10 as shown in FIG. 4 (b), and the tapered pin 16 is fitted into the notch 15 of the seed crystal 1 and set. .

【0030】種付け操作は、先ずネッキングを行わない
種付け法について述べる。上記シリコン種結晶をシリコ
ン融液上5mmの位置で5分間保温した後、シリコン種
結晶を融液中に2.0mm/minの速度で下降させ、
先端部を溶かし込んだ。所定長さ挿入し、シリコン種結
晶先端部の径を溶かし込み直径(C)[ここでは、ネッ
キングを行う場合の絞り部の目標直径(D)の1.1倍
以上の太さとした]まで種結晶を溶かし込んだ後、ネッ
キング操作を行うことなく、直ちに該種結晶をゆっくり
引上げ、拡径して直径150mm(6インチ)の単結晶
棒を所定の単結晶成長速度で成長させて無転位化成功率
を調査した。
In the seeding operation, a seeding method without necking will be described first. After keeping the silicon seed crystal at a position of 5 mm above the silicon melt for 5 minutes, the silicon seed crystal is lowered into the melt at a speed of 2.0 mm / min.
The tip was melted. A predetermined length is inserted, and the diameter of the silicon seed crystal tip is melted into the diameter (C) [here, the target diameter (D) of the narrowed portion in the case of necking is set to be 1.1 times or more the diameter]. After dissolving the crystal, the seed crystal is slowly pulled up immediately without necking operation, and the diameter is increased to grow a single crystal rod having a diameter of 150 mm (6 inches) at a predetermined single crystal growth rate, thereby forming a dislocation-free crystal. The efficiency was investigated.

【0031】次に、ネッキングを行う種付け法では、上
記シリコン種結晶をシリコン融液上5mmの位置で5分
間保温した後、シリコン種結晶を融液中に2.0mm/
minの速度で下降させ、先端部を溶かし込んだ。所定
長さ挿入し、シリコン種結晶先端部の径が絞り部の目標
直径(D)の1.1倍以上の太さ(C)まで種結晶を溶
かし込んだ後、ネッキング操作に入り、逆円錐形状の絞
り込み部を形成し、目標の絞り部直径(D)まで絞り込
み、その後この直径を維持して所定の長さの絞り部を形
成し、次いで拡径して直径150mm(6インチ)の単
結晶棒を所定の単結晶成長速度で成長させて無転位化成
功率を調査した。
Next, in the seeding method for necking, after keeping the silicon seed crystal at a position of 5 mm above the silicon melt for 5 minutes, the silicon seed crystal is placed in the melt at 2.0 mm / mm.
It was lowered at a speed of min to melt the tip. After inserting the seed crystal to a predetermined length and melting the seed crystal to a diameter (C) of 1.1 times or more the target diameter (D) of the narrowed portion of the silicon seed crystal, the necking operation is started and an inverted cone is formed. A narrowed portion having a shape is formed, the narrowed portion is narrowed to a target narrowed portion diameter (D), and then the diameter is maintained to form a narrowed portion having a predetermined length. The crystal rod was grown at a predetermined single crystal growth rate, and the dislocation-free success rate was investigated.

【0032】このようにして作製されたシリコン単結晶
の成長における結晶の無転位化成功率を表1に示した。
ここで、無転位化成功率(%)[DF化率ともいう]と
は、単結晶棒の引上げ本数に対するスリップ転位の発生
がなかった単結晶棒本数の割合を百分率で表した値であ
る。本試験では単結晶棒の引上げ本数を20本とした。
Table 1 shows the success rate of dislocation-free crystal growth in the growth of the silicon single crystal thus manufactured.
Here, the dislocation-free success rate (%) [also referred to as the DF conversion rate] is a value expressed as a percentage of the number of single crystal rods in which no slip dislocation has occurred with respect to the number of pulled single crystal rods. In this test, the number of pulled single crystal rods was set to 20.

【0033】[0033]

【表1】 [Table 1]

【0034】この表からA〜Eの要因と無転位化成功率
との間には次のような関係があることが明らかになっ
た。 [1]シリコン種結晶の形状(A)は、直胴部を持たな
い円錐形の方が円柱状の直胴部を持つ円錐形よりも無転
位化成功率が高い(試験No. 1と5[絞り部無し]、試
験No. 2と6[絞り部有り]、試験No. 3と7[絞り部
有り]の試験結果の比較)。これは、直胴部を持たない
円錐形の種結晶の方が、種結晶保持具を含めて熱容量が
小さくなるので、種結晶を融液表面に近づけた際の昇温
速度が速くなる。さらには、種結晶の先端部を融液に接
触させ、その溶かしこみ中や引上げ中における温度勾配
を小さくすることができるので転位が発生し難く、ある
いは既に発生していたとしても抜け易くなるからであ
る。また、昇温速度が向上することは操業時間の短縮に
も繋がるので生産性や歩留りの向上が期待できる。
From this table, it became clear that the following relationships exist between the factors A to E and the success rate of dislocation-free. [1] As for the shape (A) of the silicon seed crystal, the dislocation-free success rate is higher in the conical shape without the straight body than in the conical shape with the cylindrical straight body (Test Nos. 1 and 5 [ Comparison of test results of Test Nos. 2 and 6 [with throttle] and Test Nos. 3 and 7 [with throttle]). This is because the heat capacity of the conical seed crystal having no straight body is smaller, including the seed crystal holder, so that the temperature rise rate when the seed crystal is brought closer to the melt surface is higher. Furthermore, the tip of the seed crystal is brought into contact with the melt, and the temperature gradient during melting or pulling can be reduced, so that dislocations are unlikely to occur, or even if they have already occurred, they will easily escape. It is. In addition, an increase in the heating rate leads to a reduction in the operation time, so that improvement in productivity and yield can be expected.

【0035】[2]種結晶中の酸素濃度は、16ppm
a(JEIDA)以下であると無転位化成功率が高い
(試験No. 3と4の試験結果の比較)。このように種結
晶の含有酸素濃度を抑えておくと、種結晶を融液に接
触、溶かし込み中に酸素が析出することがなく、析出し
た酸素が核となってスリップ転位が発生することは殆ど
なくなる。この現象は直胴部を持たない先端の尖った円
錐形の種結晶を使用することにより、種結晶と種結晶保
持具を合せた熱容量を小さくすることができるので、固
液界面からある程度の高さの範囲まで高温状態が維持さ
れており、酸素が析出し難くなるから、種結晶中の初期
酸素濃度を16ppma以下にしておくとより一層効果
的となる。
[2] The oxygen concentration in the seed crystal is 16 ppm
a (JEIDA) or less, the dislocation-free success rate is high (comparison of test results of Test Nos. 3 and 4). If the concentration of oxygen contained in the seed crystal is suppressed in this way, the seed crystal does not contact with the melt and oxygen does not precipitate during melting, and the precipitated oxygen becomes a nucleus and slip dislocation occurs. Almost gone. This phenomenon is caused by the use of a conical seed crystal with a sharp tip without a straight body, which can reduce the heat capacity of the seed crystal and the seed crystal holder together. Since the high temperature state is maintained to the extent of the above range and oxygen is hardly precipitated, it is more effective to set the initial oxygen concentration in the seed crystal to 16 ppma or less.

【0036】[3]ネッキングを行う太絞り種付け法と
ネッキングを行わない無転位種付け法を比較すると、ネ
ッキングを行う太絞り方が無転位化成功率が高い(試験
No.1と1’、2、3[直胴部無し円錐形の種結晶]の
試験結果の比較)。これは、溶かし込み終了後にネッキ
ングを行って逆円錐状の絞り込み部を形成した後絞り部
を形成すると、溶かし込み後に新たにスリップ転位が発
生すること、あるいはスリップ転位が増殖することが殆
どなくなり、無転位化成功率を一層向上させることがで
きるからであると考えられる。但し、試験No. 1のネッ
キングを行わない無転位種付け法による無転位化成功率
85%は実用的には充分利用価値のある値である。ネッ
キングを行わない無転位種付け法の場合も、本発明の直
胴部を持たない種結晶を使用することによって直胴部を
持つ従来の種結晶よりは格段に無転位化成功率が向上し
ている(試験No. 1と5の試験結果の比較)(65%→
85%)。
[3] Comparing the thick drawing seeding method with necking and the dislocation-free seeding method without necking, the thick drawing method with necking has a higher dislocation-free success rate (test
Comparison of test results of No. 1 and 1 ', 2, 3 [conical seed crystal without straight body]. This is because if the necking is performed after the end of the melting to form an inverted conical narrowing portion and then the narrowing portion is formed, slip dislocations are newly generated after the melting, or the slip dislocations hardly grow, This is presumably because the dislocation-free success rate can be further improved. However, in Test No. 1, the dislocation-free success rate of 85% by the dislocation-free seeding method without necking is a value that is practically sufficiently useful. Even in the case of the dislocation-free seeding method without necking, the dislocation-free success rate is remarkably improved as compared with the conventional seed crystal having the straight body by using the seed crystal having no straight body of the present invention. (Comparison of test results of Test Nos. 1 and 5) (65% →
85%).

【0037】[4]ネッキングを行うことによりスリッ
プ転位が発生しにくくなるが、ネッキングを行う場合の
種結晶の溶かし込み直径は、絞り部目標直径の1.1倍
以上が好ましい(試験No. 1’と2と3、試験No. 5’
と6と7の試験結果の比較)。これは、溶かし込み後の
ネッキングの過程で、万が一転位が発生したとしてもス
リップ転位を確実に抜くためには、ネッキングの初期の
段階でテーパ状に直径を小さく絞り込む絞り込み部を形
成することがネッキングを行う無転位化には有効だから
である。ここで絞り込まないで、溶かし込み直径のまま
の円柱状の絞り部を形成するとスリップ転位が減少しな
いことが別の試験で確かめられている。
[4] Slip dislocation is less likely to occur due to necking, but the melting diameter of the seed crystal in necking is preferably 1.1 times or more the target diameter of the narrowed portion (Test No. 1). 'And 2 and 3, Test No. 5'
And comparison of the test results of 6 and 7). This is because in the process of necking after melting, even if dislocations occur, in order to reliably remove slip dislocations, it is necessary to form a narrowing part that narrows the diameter into a tapered shape at the initial stage of necking. Is effective for dislocation-free operation. It has been confirmed by another test that slip dislocation does not decrease when a cylindrical narrowed portion having a melted diameter is formed without being narrowed.

【0038】以上述べた外、ネッキングを行う種付け法
では、絞り部の長さの影響が大きく、少なくとも5mm
以上とすることが望ましい。この場合、絞り部の長さが
5mm未満では、スリップ転位を完全に除去できないこ
とがあり、無転位化成功率が低くなることがあるので、
絞り部の長さは5mm以上を維持することが望ましい。
In addition to the above description, in the seeding method for necking, the influence of the length of the narrowed portion is large, and at least 5 mm
It is desirable to make the above. In this case, if the length of the constricted portion is less than 5 mm, slip dislocations may not be completely removed, and the dislocation-free success rate may be low.
It is desirable that the length of the constricted portion be maintained at 5 mm or more.

【0039】以上詳述したように、本発明の直胴部を持
たない種結晶を用いてネッキングを行う太絞り種付け法
では、少なくとも種結晶中酸素濃度(B)、種結晶先端
部の溶かし込み直径(C)と絞り部長さの三つの要因が
無転位化成功率に深く関わっており、これらを適切な範
囲内に制御すれば、ネッキングにおいて確実にスリップ
転位を除去し、引上げ結晶にスリップ転位が発生するこ
とは殆どなくなり、高い無転位化成功率を再現性よく維
持することができると共に、特に大口径、高重量の単結
晶の成長に寄与するので、生産性、歩留りの向上および
コストダウンを図ることができる。
As described in detail above, in the thick drawing seeding method of the present invention for necking using a seed crystal having no straight body, at least the oxygen concentration in the seed crystal (B) and the dissolution of the tip of the seed crystal The three factors of the diameter (C) and the constriction length are deeply related to the dislocation-free success rate, and if these factors are controlled within an appropriate range, slip dislocations are surely eliminated in necking, and slip dislocations are generated in the pulled crystal. Almost no occurrence occurs, and a high dislocation-free success rate can be maintained with good reproducibility, and in particular, it contributes to the growth of large-diameter and heavy-weight single crystals, so that productivity, yield, and cost are reduced. be able to.

【0040】また、本発明の直胴部を持たない種結晶を
用いてネッキングを行わない無転位種付け法において
も、種結晶中酸素濃度を適切な範囲内に制御すれば、ネ
ッキングを行わないで確実にスリップ転位を除去し、引
上げ結晶にスリップ転位が発生することは殆どなくな
り、高い無転位化成功率を再現性よく維持することがで
きると共に、特に大口径、高重量の単結晶を成長させる
ことができる。
In the dislocation-free seeding method according to the present invention in which necking is not performed using a seed crystal having no straight body portion, necking is not performed if the oxygen concentration in the seed crystal is controlled within an appropriate range. Slip dislocations are reliably removed, slip dislocations hardly occur in the pulled crystal, and a high dislocation-free success rate can be maintained with good reproducibility, and especially, large-diameter, high-weight single crystals are grown. Can be.

【0041】本発明のネッキングを行う太絞り種付け
法、あるいはネッキング行わない無転位種付け法に使用
される種結晶は、直胴部を持たない形状で、具体的には
種結晶の本体形状が、円錐形、角錐形、円錐台、角錐
台、円錐形と円錐台の組合せ、円錐形と角錐台の組合
せ、角錐形と角錐台の組合せおよび角錐形と円錐台の組
合せ等があり、これらの中から選択することができる。
The seed crystal used in the thick drawing seeding method for necking or the dislocation-free seeding method without necking according to the present invention has a shape without a straight body portion. There are cones, pyramids, truncated cones, truncated pyramids, combinations of cones and truncated cones, combinations of cones and truncated pyramids, combinations of pyramids and truncated pyramids, and combinations of pyramids and truncated cones. You can choose from.

【0042】このように直胴部を持たない種結晶として
多様な形状を提示することができると共に、その作用効
果として例えば円錐形の場合は、底面に近い一部の側面
または側面全体で種結晶保持具に保持されるので、種結
晶自体の耐荷重性が向上する。また直胴部がないので種
結晶と種結晶保持具を合せた容積および熱容量が減少
し、種結晶を融液の表面に近付けた際の昇温速度が速く
なり、さらに種結晶先端部を融液に接触させた後の溶か
し込み中や引上げ中における温度勾配を小さくすること
ができるので転位が発生しにくく、あるいは既に発生し
ていたとしても抜け易くなる。そして上記円錐形以外の
形状の場合も円錐形とほぼ同等の作用効果を発揮するこ
とができる。
As described above, various shapes can be presented as a seed crystal having no straight body, and as a function and effect thereof, for example, in the case of a conical shape, the seed crystal is formed on a part of the side surface near the bottom surface or on the entire side surface. Since the seed crystal is held by the holder, the load resistance of the seed crystal itself is improved. In addition, since there is no straight body, the combined volume and heat capacity of the seed crystal and the seed crystal holder are reduced, the rate of temperature rise when the seed crystal is brought close to the surface of the melt is increased, and the tip of the seed crystal is melted. Since the temperature gradient during melting or pulling after contact with the liquid can be reduced, dislocation is less likely to occur, or even if it has already occurred, it will be easier to escape. In the case of a shape other than the above-mentioned conical shape, it is possible to exhibit substantially the same operation and effect as the conical shape.

【0043】さらに、これらの種結晶の側面の一部また
は全面が曲面で形成されているものが好ましく使用され
る。このように、種結晶の側面の一部または全面が曲面
で形成されているものとすれば、例えば先端からシリコ
ン融液に溶かし込む速度を一定とした場合に、稜線が直
線の円錐状先端テーパ部では経過時間に比例して溶融界
面の太さが大きくなるが、側面が曲面で形成された円錐
の領域内においては、稜線の拡径率が直線の場合よりも
緩やかにすることができるので、溶融界面の太さがより
太くなる位置での熱応力は大きく緩和されるようにな
る。従ってスリップ転位の発生確率が抑えられ、発生し
易くなる位置が太い方に移行するので、移行後の位置か
ら無転位で単結晶引上げ操作に入ることができるように
なる。これにより無転位化成功率が向上すると共に、大
直径化、高重量化に十分対応することができる。
Further, those in which part or all of the side surfaces of these seed crystals are formed as curved surfaces are preferably used. Assuming that a part or the entire side surface of the seed crystal is formed as a curved surface as described above, for example, when the rate of dissolution into the silicon melt from the tip is constant, a conical tip taper having a straight ridge line is provided. In the part, the thickness of the molten interface increases in proportion to the elapsed time, but in the area of the cone formed by the curved side surface, the expansion rate of the ridgeline can be made gentler than in the case of a straight line In addition, the thermal stress at the position where the thickness of the molten interface becomes larger is greatly reduced. Therefore, the occurrence probability of slip dislocation is suppressed, and the position where the slip dislocation easily occurs shifts to the thicker one, so that the single crystal pulling operation can be started from the position after the shift without dislocation. As a result, the success rate of dislocation-free operation is improved, and it is possible to sufficiently cope with an increase in diameter and weight.

【0044】曲面の具体的な例としては、円錐形の表面
の稜線が、d2 r/dx2 <0 (ここに、rは種結晶
の溶融境界面における最大半径、xは種結晶を溶かし込
む際に溶融境界面が移動する方向の位置を示す)なる条
件を満たす曲線形状に加工された種結晶を使用するのが
よい。
As a specific example of the curved surface, the ridgeline of the conical surface is d 2 r / dx 2 <0 (where r is the maximum radius at the melting boundary of the seed crystal, and x is the melting point of the seed crystal. It is preferable to use a seed crystal processed into a curved shape that satisfies the following condition:

【0045】このような種結晶において、先端テーパ部
の頂角は28度以下が好ましく、これによって種付け時
の熱応力が緩和され、スリップ転位の発生はなくなる。
さらに溶かし込みの過程でも、円錐形、円錐台または角
錐形、角錐台の緩やかな太さ変化によって転位の発生は
確実に抑制される。また、角錐形、角錐台は、三角錐以
上の多角錐であれば、角数は問わず、いずれでも使用で
きる。
In such a seed crystal, the apex angle of the tapered end portion is preferably 28 degrees or less, whereby the thermal stress at the time of seeding is relieved and the occurrence of slip dislocation is eliminated.
Further, even during the melting process, the generation of dislocations is reliably suppressed by a gradual change in the thickness of the cone, truncated cone or pyramid, or truncated pyramid. The pyramid and the truncated pyramid can be used irrespective of the number of corners as long as they are triangular pyramids or more.

【0046】本発明の種結晶を保持する種結晶保持具
は、その一例として図3の(a)に示したように、内周
壁面にメネジを有し、かつ上面中心部が吊り下げ用ワイ
ヤ14に連結される種結晶1を収容する袋ナット11
と、該種結晶1のテーパ部または曲面部に当接する内周
面を有し、かつ外周面にオネジを切った種結晶1を支持
するリング12から構成されている。
A seed crystal holder for holding a seed crystal according to the present invention has, as an example, a female screw on the inner peripheral wall and a hanging wire at the center of the upper surface as shown in FIG. Cap nut 11 containing seed crystal 1 connected to 14
And a ring 12 having an inner peripheral surface in contact with a tapered portion or a curved surface portion of the seed crystal 1, and supporting the seed crystal 1 having an externally threaded external thread.

【0047】図3の(b)は、種結晶保持具の別の例を
示しており、種結晶1のテーパ部または曲面部に当接す
る内周面を有するリング12を、上面中心部が吊り下げ
用ワイヤ14に連結されるリング上面治具17とリング
下面治具18との間に挟み込みボルト・ナット等で締め
付ける構造になっている。そして図3の(b)では、断
熱材または耐熱性クッション材19を種結晶1の表面と
リング12の内周面の間に挟み込んだ状態を表してい
る。
FIG. 3B shows another example of a seed crystal holder, in which a ring 12 having an inner peripheral surface that abuts on a tapered portion or a curved surface portion of a seed crystal 1 is suspended at the center of the upper surface. It has a structure in which it is sandwiched between a ring upper surface jig 17 connected to the lowering wire 14 and a ring lower surface jig 18 and tightened with bolts and nuts. FIG. 3B shows a state in which a heat insulating material or a heat-resistant cushioning material 19 is sandwiched between the surface of the seed crystal 1 and the inner peripheral surface of the ring 12.

【0048】このような構成の種結晶保持具10を使用
すれば、種結晶1のテーパ部または曲面部のほぼ全面
を、該保持具のリング12の内周面に多点あるいは面接
触で接触させ十分にフィットさせることができるととも
に、種結晶に種結晶保持具に係止するための溝、孔、切
り欠き部等を設ける必要がないので種結晶自体の耐荷重
性が大きく向上し、成長単結晶の大直径化、高重量化に
充分対応することができる。
When the seed crystal holder 10 having such a configuration is used, almost the entire tapered or curved surface of the seed crystal 1 is brought into contact with the inner peripheral surface of the ring 12 of the holder by multipoint or surface contact. And the seed crystal itself does not need to be provided with grooves, holes, notches, etc. for engaging the seed crystal holder, so that the load resistance of the seed crystal itself is greatly improved, and It can sufficiently cope with an increase in diameter and weight of a single crystal.

【0049】さらに、種結晶に直胴部がないので、種結
晶保持具自体を小型化することが可能で、種結晶の小型
化と相まって、種結晶と保持具を合せた容積も熱容量も
小さくなり、種結晶を融液表面に近づけた際の昇温速度
が速くなるとともに、種結晶の先端部を融液に接触させ
た後、その溶かしこみ中や引上げ中における温度勾配を
小さくすることができるので転位が発生し難く、例え発
生したとしても消滅し易くなる。また、昇温速度が向上
することは操業時間の短縮にもつながるので生産性や歩
留りの向上を図ることができる。
Further, since the seed crystal does not have a straight body, the size of the seed crystal holder itself can be reduced, and the combined size and heat capacity of the seed crystal and the holder together with the size reduction of the seed crystal can be reduced. In addition, the temperature rise rate when the seed crystal is brought close to the melt surface is increased, and the temperature gradient during dissolution and pulling up after the tip of the seed crystal is brought into contact with the melt can be reduced. As a result, dislocations are hardly generated, and even if they are generated, they are easily eliminated. In addition, an increase in the heating rate leads to a reduction in the operation time, so that productivity and yield can be improved.

【0050】また、種結晶1の表面とリング12の内周
面の間に耐熱性クッション材、例えば炭素繊維製フェル
トやセラミックス繊維製フェルトを介在させて接触面全
面を面接触とし、成長単結晶の高重量負荷の一点集中を
防止することができる。さらに、断熱材、例えば含気泡
セラミックス、セラミックスファイバ等を種結晶1の表
面とリング12の内周面との間に挟み込めば、種結晶を
融液表面に近づけた際の昇温速度がより一層速くなると
ともに、種結晶の先端部を融液に接触させた後、その溶
かしこみ中や引上げ中における温度勾配もより一層緩や
かにすることができるので転位が発生し難く、例え発生
したとしても消滅し易くなる。また、昇温速度が向上す
ることは操業時間の短縮にも繋がるので生産性や歩留り
の向上を図ることができる。
Further, a heat-resistant cushion material, for example, a felt made of carbon fiber or a felt made of ceramics fiber is interposed between the surface of the seed crystal 1 and the inner peripheral surface of the ring 12 so that the entire contact surface is brought into surface contact, and the grown single crystal is formed. Concentration of a high weight load at one point can be prevented. Furthermore, if a heat insulating material, such as a bubble-containing ceramic or ceramic fiber, is interposed between the surface of the seed crystal 1 and the inner peripheral surface of the ring 12, the rate of temperature rise when the seed crystal is brought closer to the melt surface is increased. As it becomes even faster, after the tip of the seed crystal is brought into contact with the melt, the temperature gradient during melting and pulling can be made more gentle, so that dislocations are less likely to occur, even if it occurs. It is easy to disappear. In addition, an increase in the heating rate leads to a reduction in operation time, so that productivity and yield can be improved.

【0051】なお、本発明は、上記実施形態に限定され
るものではない。上記実施形態は、例示であり、本発明
の特許請求の範囲に記載された技術的思想と実質的に同
一な構成を有し、同様な作用効果を奏するものは、いか
なるものであっても本発明の技術的範囲に包含される。
The present invention is not limited to the above embodiment. The above embodiment is an exemplification, and has substantially the same configuration as the technical idea described in the scope of the claims of the present invention. It is included in the technical scope of the invention.

【0052】例えば、本発明の実施形態では、直径15
0mm(6インチ)のシリコン単結晶棒を成長させてい
るが、近年の200mm(8インチ)〜400mm(1
6インチ)あるいはそれ以上の大直径化にも十分対応す
ることができる。
For example, in the embodiment of the present invention, the diameter 15
Although a 0 mm (6 inch) silicon single crystal rod is grown, recent 200 mm (8 inch) to 400 mm (1 inch)
(6 inches) or more.

【0053】また、本発明は、通常のチョクラルスキー
法のみならず、シリコン単結晶の引上げ時に磁場を印加
するMCZ法(Magnetic field applied Czochralski cr
ystal growth method)にも同様に適用できることは言う
までもなく、本明細書中で使用したチョクラルスキー法
という用語には、通常のチョクラルスキー法だけでな
く、MCZ法も含まれる。
The present invention is not limited to the ordinary Czochralski method, but also to the MCZ method (Magnetic field applied Czochralski crm) in which a magnetic field is applied when pulling a silicon single crystal.
Needless to say, the term Czochralski method as used herein includes not only the usual Czochralski method but also the MCZ method.

【0054】[0054]

【発明の効果】以上説明したように、本発明によれば、
チョクラルスキー法によってシリコン単結晶棒を引上げ
る際に、ネッキングを行う太絞り種付け法、あるいはネ
ッキング行わない無転位種付け法において、高い無転位
化成功率を達成し、その再現性もよく、長期安定化させ
ることができる。従って、今後の単結晶棒の大直径化、
長尺化、高重量化にも十分適応させることが可能であ
り、生産性、歩留りならびにコストを著しく改善するこ
とができる。
As described above, according to the present invention,
When pulling a silicon single crystal rod using the Czochralski method, a high dislocation-free success rate is achieved with a wide drawing seeding method that performs necking or a non-dislocation seeding method that does not perform necking, and its reproducibility is good and long-term stable Can be changed. Therefore, the diameter of the single crystal rod will increase in the future,
It is possible to sufficiently adapt to an increase in length and weight, and productivity, yield, and cost can be significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の種結晶の形状の例を示す斜視図であ
る。 (a)円錐形、(b)角錐形、(c)側面が曲面から成
る円錐形。
FIG. 1 is a perspective view showing an example of the shape of a seed crystal of the present invention. (A) a conical shape, (b) a pyramid shape, (c) a conical shape with curved side surfaces.

【図2】本発明の種結晶の形状の例を示す斜視図であ
る。 (a)円錐台と角錐形、(b)角錐台と円錐形。
FIG. 2 is a perspective view showing an example of the shape of a seed crystal according to the present invention. (A) truncated cone and pyramid, (b) truncated pyramid and cone.

【図3】本発明の種結晶をセットした本発明の種結晶保
持具の例を示す縦断面図である。 (a)袋ナット−リング構造の種結晶保持具、(b)断
熱材を挟み込んだ状態を示す種結晶保持具。
FIG. 3 is a longitudinal sectional view showing an example of a seed crystal holder of the present invention in which a seed crystal of the present invention is set. (A) a seed crystal holder having a cap nut-ring structure, (b) a seed crystal holder showing a state in which a heat insulating material is sandwiched.

【図4】従来の直胴部を持つ種結晶とそれを組み込んだ
種結晶保持具を示す説明図である。 (a)種結晶の形状を示す斜視図、(b)種結晶を組み
込んだ種結晶保持具を示す縦断面図。
FIG. 4 is an explanatory view showing a conventional seed crystal having a straight body portion and a seed crystal holder incorporating the same. (A) A perspective view showing a shape of a seed crystal, and (b) a vertical cross-sectional view showing a seed crystal holding device incorporating a seed crystal.

【符号の説明】[Explanation of symbols]

1…種結晶、2…種結晶直胴部、3…種結晶先端テーパ
部、10…種結晶保持具、11…袋ナット、12…リン
グ、14…ワイヤ、15…切り欠き部、16…テーパピ
ン、17…上面治具、18…下面治具、19…断熱材ま
たはクッション材。
DESCRIPTION OF SYMBOLS 1 ... seed crystal, 2 ... seed crystal straight body part, 3 ... seed crystal tip taper part, 10 ... seed crystal holder, 11 ... cap nut, 12 ... ring, 14 ... wire, 15 ... notch, 16 ... taper pin , 17: upper surface jig, 18: lower surface jig, 19: heat insulating material or cushion material.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 チョクラルスキー法に用いられる種結晶
であって、直胴部を持たないことを特徴とする種結晶。
1. A seed crystal used in the Czochralski method, wherein the seed crystal has no straight body.
【請求項2】 請求項1に記載の種結晶であって、種結
晶の本体形状が、円錐形、角錐形、円錐台、角錐台、円
錐形と円錐台の組合せ、円錐形と角錐台の組合せ、角錐
形と角錐台の組合せおよび角錐形と円錐台の組合せの中
から選択される1種であることを特徴とする種結晶。
2. The seed crystal according to claim 1, wherein the main body shape of the seed crystal is a cone, a pyramid, a truncated cone, a truncated pyramid, a combination of a cone and a truncated cone, or a cone and a truncated pyramid. A seed crystal, wherein the seed crystal is one selected from a combination, a combination of a pyramid and a truncated pyramid, and a combination of a pyramid and a truncated cone.
【請求項3】 前記種結晶の側面の一部または全面が曲
面で形成されていることを特徴とする請求項1または請
求項2に記載した種結晶。
3. The seed crystal according to claim 1, wherein a part or the entire side surface of the seed crystal is formed as a curved surface.
【請求項4】 前記種結晶の含有酸素濃度が16ppm
a(JEIDA)以下であることを特徴とする請求項1
ないし請求項3のいずれか1項に記載した種結晶。
4. The oxygen concentration of the seed crystal is 16 ppm.
a (JEIDA) or less.
A seed crystal according to claim 3.
【請求項5】 請求項1ないし請求項4のいずれか1項
に記載した種結晶を使用して、該種結晶の先端部をシリ
コン融液に溶かし込み、次いでネッキングを行わずに拡
径して単結晶を引上げることを特徴とするシリコン単結
晶の製造方法。
5. A seed crystal according to claim 1, wherein a tip portion of the seed crystal is dissolved in a silicon melt, and then the diameter is expanded without necking. A method for producing a silicon single crystal, comprising:
【請求項6】 請求項1ないし請求項4のいずれか1項
に記載した種結晶を使用して、該種結晶の先端部をシリ
コン融液に溶かし込み、次いでネッキングを行って絞り
込み部と絞り部を形成した後、拡径して単結晶を引上げ
ることを特徴とするシリコン単結晶の製造方法。
6. A seed crystal according to any one of claims 1 to 4, wherein a tip portion of the seed crystal is dissolved in a silicon melt, and necking is performed to form a narrowed portion and a narrowed portion. A method for producing a silicon single crystal, comprising forming a portion, expanding the diameter and pulling the single crystal.
【請求項7】 前記種結晶の先端部をシリコン融液に溶
かし込む操作において、絞り部の目標直径の1.1倍以
上の太さまで、或は多角形種結晶の内接円の直径が絞り
部の目標直径の1.1倍以上の長さとなるまで種結晶を
溶かし込んだ後、絞り部目標直径まで絞り込むことを特
徴とする請求項6に記載したシリコン単結晶の製造方
法。
7. The operation of dissolving the tip of the seed crystal in a silicon melt, the diameter of the inscribed circle of the polygonal seed crystal is reduced to 1.1 times or more the target diameter of the narrowed portion. 7. The method for producing a silicon single crystal according to claim 6, wherein the seed crystal is melted until the length thereof becomes 1.1 times or more the target diameter of the portion, and then narrowed down to the target diameter of the narrowed portion.
【請求項8】 前記絞り部の長さを少なくとも5mm以
上とすることを特徴とする請求項6または請求項7に記
載したシリコン単結晶の製造方法。
8. The method of manufacturing a silicon single crystal according to claim 6, wherein the length of the narrowed portion is at least 5 mm or more.
【請求項9】 請求項1ないし請求項4に記載した種結
晶を保持する保持具において、内周壁面にメネジを有
し、かつ上面中心部が吊り下げ用ワイヤに連結される種
結晶を収容する袋ナットと、該種結晶のテーパ部または
曲面部に当接する内周面を有し、かつ外周面にオネジを
切った種結晶を支持するリングから成ることを特徴とす
る種結晶保持具。
9. A holder for holding a seed crystal according to claim 1, wherein said holder has a female thread on an inner peripheral wall surface and accommodates a seed crystal whose upper surface center portion is connected to a hanging wire. A seed crystal holder comprising: a cap nut having an inner peripheral surface in contact with a tapered portion or a curved surface portion of the seed crystal; and a ring supporting an externally threaded seed crystal on an outer peripheral surface.
【請求項10】 請求項1ないし請求項4に記載した種
結晶を保持する保持具において、該種結晶のテーパ部ま
たは曲面部に当接する内周面を有するリングと、該リン
グを上面中心部が吊り下げ用ワイヤに連結されるリング
上面治具とリング下面治具との間に挟持して成ることを
特徴とする種結晶保持具。
10. A holder for holding a seed crystal according to claim 1, wherein a ring having an inner peripheral surface in contact with a tapered portion or a curved surface portion of the seed crystal, and wherein the ring has a central portion on an upper surface. Characterized by being held between a ring upper surface jig and a ring lower surface jig connected to a suspending wire.
【請求項11】 請求項9または請求項10に記載した
種結晶保持具において、種結晶の表面と保持具の種結晶
当接面との間に断熱材あるいは耐熱性クッション材を挟
み込んで成ることを特徴とする種結晶保持具。
11. The seed crystal holder according to claim 9 or 10, wherein a heat insulating material or a heat-resistant cushion material is interposed between the surface of the seed crystal and the seed crystal contact surface of the holder. A seed crystal holder.
JP12285998A 1998-04-07 1998-04-15 Method for producing silicon single crystal, seed crystal and seed crystal holder Expired - Fee Related JP3402192B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP12285998A JP3402192B2 (en) 1998-04-15 1998-04-15 Method for producing silicon single crystal, seed crystal and seed crystal holder
TW088104950A TW538445B (en) 1998-04-07 1999-03-29 Silicon seed crystal and method for producing silicon single crystal
EP99302479A EP0949361A3 (en) 1998-04-07 1999-03-30 Silicon seed crystal for the Czochralski method and method for producing a silicon single crystal
US09/287,199 US6670036B2 (en) 1998-04-07 1999-04-06 Silicon seed crystal and method for producing silicon single crystal
KR1019990012078A KR100582238B1 (en) 1998-04-07 1999-04-07 Silicon seed crystal and method for producing silicon single crystal
US10/695,609 US20040083945A1 (en) 1998-04-07 2003-10-28 Silicon seed crystal and method for producing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12285998A JP3402192B2 (en) 1998-04-15 1998-04-15 Method for producing silicon single crystal, seed crystal and seed crystal holder

Publications (2)

Publication Number Publication Date
JPH11292689A true JPH11292689A (en) 1999-10-26
JP3402192B2 JP3402192B2 (en) 2003-04-28

Family

ID=14846411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12285998A Expired - Fee Related JP3402192B2 (en) 1998-04-07 1998-04-15 Method for producing silicon single crystal, seed crystal and seed crystal holder

Country Status (1)

Country Link
JP (1) JP3402192B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155115A (en) * 2007-12-25 2009-07-16 Mitsubishi Materials Corp Apparatus for producing single crystal silicon
KR101188080B1 (en) 2011-08-11 2012-10-08 이찬명 Corner chamfer device of seed stick for ingot growing
KR20170130521A (en) 2015-04-09 2017-11-28 가부시키가이샤 사무코 Seed crystal holders for single crystal pulling and manufacturing method of silicon single crystal using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155115A (en) * 2007-12-25 2009-07-16 Mitsubishi Materials Corp Apparatus for producing single crystal silicon
KR101188080B1 (en) 2011-08-11 2012-10-08 이찬명 Corner chamfer device of seed stick for ingot growing
KR20170130521A (en) 2015-04-09 2017-11-28 가부시키가이샤 사무코 Seed crystal holders for single crystal pulling and manufacturing method of silicon single crystal using the same
US10385473B2 (en) 2015-04-09 2019-08-20 Sumco Corporation Seed crystal holder for pulling up single crystal and method of manufacturing silicon single crystal using the same
US10822717B2 (en) 2015-04-09 2020-11-03 Sumco Corporation Seed crystal holder for pulling up single crystal and method of manufacturing silicon single crystal using the same
US11371160B2 (en) 2015-04-09 2022-06-28 Sumco Corporation Seed crystal holder for pulling up single crystal and method of manufacturing silicon single crystal using the same

Also Published As

Publication number Publication date
JP3402192B2 (en) 2003-04-28

Similar Documents

Publication Publication Date Title
US5911822A (en) Method of manufacturing silicon monocrystal, and seed crystal used in the method
JP4165068B2 (en) Method for producing silicon single crystal
US6197108B1 (en) Silicon seed crystal, method of manufacturing the same, and method of manufacturing silicon monocrystal through use of the seed crystal
US6670036B2 (en) Silicon seed crystal and method for producing silicon single crystal
JPH09255485A (en) Production of single crystal and seed crystal
JP5660020B2 (en) Method for producing silicon single crystal
JPH11292689A (en) Production of silicon single crystal, seed crystal and seed crystal holding tool
JP3440802B2 (en) Method for producing silicon single crystal
JP3440819B2 (en) Method for producing silicon single crystal
JP3402210B2 (en) Method for producing silicon single crystal
JPH09235186A (en) Seed crystal for lifting single crystal and lifting of single crystal with the seed crystal
JP3387364B2 (en) Silicon seed crystal, method for producing the same, and method for producing silicon single crystal using these seed crystals
JP2000128691A (en) Silicon seed crystal and production of silicon single crystal
JP2000154091A (en) Production of silicon single crystal and seed holder therefor
JPH11209197A (en) Production of silicon single crystal
JP3927314B2 (en) Method for producing silicon seed crystal and silicon single crystal
JP3395626B2 (en) Method for producing silicon single crystal and seed crystal
JPH09249489A (en) Seed crystal holder and method for pulling up single crystal using the same
JPH11349398A (en) Production of silicon single crystal

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080229

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080229

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080229

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees