JP2009155115A - Apparatus for producing single crystal silicon - Google Patents

Apparatus for producing single crystal silicon Download PDF

Info

Publication number
JP2009155115A
JP2009155115A JP2007331547A JP2007331547A JP2009155115A JP 2009155115 A JP2009155115 A JP 2009155115A JP 2007331547 A JP2007331547 A JP 2007331547A JP 2007331547 A JP2007331547 A JP 2007331547A JP 2009155115 A JP2009155115 A JP 2009155115A
Authority
JP
Japan
Prior art keywords
seed crystal
holder
single crystal
polycrystalline silicon
silicon rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007331547A
Other languages
Japanese (ja)
Other versions
JP4894749B2 (en
Inventor
Noboru Chigusa
昇 千種
Kunitake Ito
匡毅 伊藤
Takanori Ito
孝則 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007331547A priority Critical patent/JP4894749B2/en
Publication of JP2009155115A publication Critical patent/JP2009155115A/en
Application granted granted Critical
Publication of JP4894749B2 publication Critical patent/JP4894749B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for producing single crystal silicon by which a seed crystal can simply be held in such a state that the seed crystal is exactly aligned with a polycrystalline silicon rod. <P>SOLUTION: In the apparatus for producing single crystal silicon, the seed crystal 6 held by a seed crystal holder 7 and a polycrystalline silicon rod S1 held by a polycrystal holder 5 are arranged oppositely to each other in a housing, and the polycrystalline silicon rod is fusion-bonded to the seed crystal 6 while being heated and melted and grown into a single crystal. In the seed crystal holder 7, a housing hole 22 for holding one end part of the seed crystal 6 in an upright posture is formed, a fixing screw 26 for fixing one end part of the seed crystal 6 housed in the housing hole 22 is arranged orthogonally to the axis line of the housing hole 22, and the inner peripheral surface of the housing hole 22 is formed into a tapered face 22a having the gradually increasing diameter toward its opening 21. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は単結晶シリコン製造装置に係り、特にFZ法により多結晶シリコン棒を溶融しながら単結晶に成長させる単結晶シリコン製造装置に関する。   The present invention relates to a single crystal silicon manufacturing apparatus, and more particularly to a single crystal silicon manufacturing apparatus that grows a polycrystalline silicon rod into a single crystal by FZ method.

従来、この種のFZ(フロートゾーン)法を利用した単結晶シリコン製造装置として、特許文献1に示されるものが知られている。この単結晶シリコン製造装置は、不活性ガス雰囲気とされるハウジングと、ハウジング内の上部駆動軸(位置決めロッド)に設置されてその下端部に試料となる多結晶シリコン棒が保持される多結晶ホルダー(素材ホルダー)と、下部駆動軸(位置決めロッド)に設置されてその上端部にシリコン単結晶の種結晶が保持される種結晶ホルダーと、ハウジング内の中間部分に設けられた高周波誘導加熱コイルとを有するものであって、上側の多結晶ホルダーに原料となる多結晶シリコン棒を保持し、かつ種結晶ホルダーにシリコン単結晶の種結晶を保持した状態で、高周波誘導加熱コイルにより多結晶シリコンの一端を溶融して種結晶に融着した後、多結晶シリコン棒を高周波誘導加熱コイルに対して相対回転させながら軸線方向に相対移動させ、多結晶シリコン棒を軸方向に順次帯域溶融しながら、単結晶シリコンの棒を製造するものである。   Conventionally, what is shown by patent document 1 is known as a single crystal silicon manufacturing apparatus using this kind of FZ (float zone) method. This single crystal silicon manufacturing apparatus includes a housing in an inert gas atmosphere, and a polycrystalline holder installed on an upper drive shaft (positioning rod) in the housing and holding a polycrystalline silicon rod as a sample at the lower end thereof (Material holder), a seed crystal holder installed on the lower drive shaft (positioning rod) and holding a silicon single crystal seed crystal at the upper end thereof, and a high frequency induction heating coil provided in an intermediate portion of the housing, The polycrystalline silicon rod as a raw material is held in the upper polycrystalline holder, and the seed crystal holder is held with the seed crystal of the silicon single crystal. After melting one end and fusing it to the seed crystal, the polycrystalline silicon rod is relatively moved in the axial direction while rotating relative to the high frequency induction heating coil. , While sequentially zone melting the polycrystalline silicon rod in the axial direction, is to produce a rod of single crystal silicon.

また、多結晶ホルダーは、多結晶シリコン棒を吊り下げ状態に保持する下端部と、上部駆動軸に連結された上端部とを有しているとともに、種結晶ホルダーは、種結晶を上向き姿勢に保持する上端部と、下部駆動軸に連結された下端部とを有しており、これら両ホルダーは、種結晶ホルダーにより保持した種結晶の鉛直上方に多結晶シリコン棒が配置されるように同一軸線上に配置されている。そして、これら上部駆動軸及び下部駆動軸はそれぞれ昇降駆動及び回転駆動されるようになっている。
特開平7−10681号公報
In addition, the polycrystalline holder has a lower end for holding the polycrystalline silicon rod in a suspended state and an upper end connected to the upper drive shaft, and the seed crystal holder has the seed crystal in an upward posture. It has an upper end portion to be held and a lower end portion connected to the lower drive shaft. These both holders are the same so that the polycrystalline silicon rod is arranged vertically above the seed crystal held by the seed crystal holder. It is arranged on the axis. The upper drive shaft and the lower drive shaft are driven up and down and rotated, respectively.
Japanese Patent Laid-Open No. 7-10681

ところで、これら多結晶シリコン棒と種結晶とは正確に同一軸線上に配置する必要があるが、種結晶は、溶融状態の多結晶シリコン棒の下端部に融着する際に高速で回転させられ、そのときに種結晶ホルダーとの間でスリップ等が生じないように、止めネジによって強固に固定される。この場合、止めネジは種結晶ホルダーの軸線と直交する方向に設けられるため、種結晶を径方向に押圧することになり、その際に種結晶が収納孔の軸線からずれ易く、このため、この種結晶の固定と多結晶シリコン棒との芯合わせとの微妙な調整作業が必要になる。   By the way, the polycrystalline silicon rod and the seed crystal need to be arranged on the same axis exactly, but the seed crystal is rotated at a high speed when fused to the lower end portion of the molten polycrystalline silicon rod. At that time, it is firmly fixed by a set screw so that no slip or the like occurs with the seed crystal holder. In this case, since the set screw is provided in a direction orthogonal to the axis of the seed crystal holder, the seed crystal is pressed in the radial direction. At this time, the seed crystal is easily displaced from the axis of the storage hole. Subtle adjustment work is required between fixing the seed crystal and aligning the core with the polycrystalline silicon rod.

本発明は、このような事情に鑑みてなされたもので、種結晶を多結晶シリコン棒と正確に芯合わせした状態に簡単に保持することができる単結晶シリコン製造装置の提供を目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a single crystal silicon manufacturing apparatus that can easily hold a seed crystal in a state where it is accurately aligned with a polycrystalline silicon rod.

本発明の単結晶シリコン製造装置は、ハウジング内に、種結晶ホルダーに保持した種結晶と、多結晶ホルダーに保持した多結晶シリコン棒とを対向して配置し、その多結晶シリコン棒を加熱溶融しながら種結晶に融着させて単結晶に成長させる単結晶シリコン製造装置であって、前記種結晶ホルダーは、種結晶の一端部を直立姿勢で保持する収納孔が形成されるとともに、該収納孔に収納した種結晶の一端部を固定する止めネジが収納孔の軸線に直交して設けられ、前記収納孔の内周面は、その開口に向けて漸次拡径するテーパ面とされていることを特徴とする。   In the single crystal silicon production apparatus of the present invention, a seed crystal held in a seed crystal holder and a polycrystalline silicon rod held in the polycrystalline holder are arranged opposite to each other in a housing, and the polycrystalline silicon rod is heated and melted. An apparatus for producing single crystal silicon that is fused to a seed crystal to grow into a single crystal while the seed crystal holder is formed with a storage hole that holds one end of the seed crystal in an upright posture, and the storage A set screw for fixing one end of the seed crystal accommodated in the hole is provided orthogonal to the axis of the accommodation hole, and the inner peripheral surface of the accommodation hole is a tapered surface that gradually increases in diameter toward the opening. It is characterized by that.

すなわち、種結晶ホルダーの収納孔の内周面をテーパ面として、そのテーパ面で種結晶を保持するようにしたものである。ストレートの収納孔であると、種結晶を収納して止めネジで止めると、そのクリアランスの範囲で種結晶が左右方向に移動し易いが、収納孔をテーパ面としたことにより、種結晶の全周がテーパ面に接触して左右方向に移動し難く、したがって、多結晶シリコン棒との芯合わせ作業が容易になる。また、種結晶を回転させる際にも、種結晶が全周でテーパ面に保持されるのでスリップし難くなる。   That is, the inner peripheral surface of the accommodation hole of the seed crystal holder is a tapered surface, and the seed crystal is held by the tapered surface. If the storage hole is straight, when the seed crystal is stored and fastened with a set screw, the seed crystal can easily move in the horizontal direction within the clearance range. It is difficult for the circumference to contact the tapered surface and move in the left-right direction, and therefore, the centering operation with the polycrystalline silicon rod is facilitated. In addition, when the seed crystal is rotated, the seed crystal is held on the tapered surface all around, so that it is difficult to slip.

本発明の単結晶シリコン製造装置において、前記テーパ面は、収納孔の軸線となす角度が10〜25°に設定されていることを特徴とする。テーパ面をこの角度範囲に形成することにより、種結晶を直立姿勢に安定して保持することができるとともに、回転時にも適度な摩擦力を付与することができる。   In the single crystal silicon manufacturing apparatus of the present invention, the tapered surface has an angle formed with the axis of the storage hole set to 10 to 25 °. By forming the tapered surface within this angular range, the seed crystal can be stably held in an upright posture and an appropriate frictional force can be applied even during rotation.

また、本発明の単結晶シリコン製造装置において、前記テーパ面の面粗さは、平均粗さ(Ra)で10〜200μmとされていることを特徴とする。つまり、面粗さをこの範囲に設定しておくことにより、収納孔のテーパ面と種結晶との摩擦力が大きくなり、回転時のスリップを確実に防止することができる。   Moreover, the single crystal silicon manufacturing apparatus of this invention WHEREIN: The surface roughness of the said taper surface is 10-200 micrometers in average roughness (Ra), It is characterized by the above-mentioned. That is, by setting the surface roughness within this range, the frictional force between the tapered surface of the storage hole and the seed crystal increases, and slipping during rotation can be reliably prevented.

本発明の単結晶シリコン製造装置によれば、種結晶ホルダーの収納孔をテーパ面としたことにより、種結晶の全周がテーパ面に接触して左右方向に移動し難く、多結晶シリコン棒との芯合わせ作業が容易になる。また、種結晶を回転させる際にも、種結晶の全周でテーパ面に保持されるのでスリップし難くなる。したがって、種結晶を直立姿勢に安定して保持することができ、高品質の単結晶シリコンを製造することができる。   According to the single crystal silicon manufacturing apparatus of the present invention, by making the accommodation hole of the seed crystal holder into a tapered surface, the entire circumference of the seed crystal is in contact with the tapered surface and hardly moves in the left-right direction. The centering work becomes easier. Further, when the seed crystal is rotated, it is difficult to slip because the tape is held on the entire circumference of the seed crystal. Therefore, the seed crystal can be stably held in an upright posture, and high-quality single crystal silicon can be manufactured.

以下、本発明に係る単結晶シリコン製造装置の一実施形態を図面を参照しながら説明する。   Hereinafter, an embodiment of a single crystal silicon manufacturing apparatus according to the present invention will be described with reference to the drawings.

図1は一実施形態の単結晶製造装置100の概略構成図であって、この図において符号1は、不活性ガス(アルゴンガス)が充填されるハウジングである。このハウジング1の上壁1Aの中心部には回転駆動かつ上下方向に昇降駆動される上部駆動軸2が設けられ、また、ハウジング1の底部1Bには、上部駆動軸2と軸線を同じくして対向するように、回転駆動かつ上下方向に昇降駆動される下部駆動軸3が設けられている。上部駆動軸2の下端部には、モリブデン線からなる吊り具4を介して試料となる多結晶シリコン棒S1が保持される多結晶ホルダー5が設けられ、また、下部駆動軸3の上端部には、シリコン単結晶の種結晶6が保持される種結晶ホルダー7が設けられている。   FIG. 1 is a schematic configuration diagram of a single crystal manufacturing apparatus 100 according to an embodiment. In this figure, reference numeral 1 denotes a housing filled with an inert gas (argon gas). An upper drive shaft 2 that is rotationally driven and driven up and down in the vertical direction is provided at the center of the upper wall 1A of the housing 1, and the bottom 1B of the housing 1 has the same axis as the upper drive shaft 2. A lower drive shaft 3 that is rotationally driven and driven up and down in the vertical direction is provided so as to face each other. At the lower end of the upper drive shaft 2 is provided a polycrystalline holder 5 for holding a polycrystalline silicon rod S1 as a sample via a suspension 4 made of molybdenum wire, and at the upper end of the lower drive shaft 3 Is provided with a seed crystal holder 7 for holding a seed crystal 6 of silicon single crystal.

ハウジング1内の多結晶ホルダー5と種結晶ホルダー7との間には、高周波誘導加熱コイル8及び石英によって被覆された発熱リング9が設けられている。高周波誘導加熱コイル8は全体としてリング盤状に形成されており、ハウジング1の側壁1Cに支持された支持棒10によって水平に保持されている。発熱リング9は、図2に示すように全体としてリング状に形成されており、ハウジング1の上壁1Aから垂下された支持シャフト11によって高周波誘導加熱コイル8の上方位置に水平に保持されている。   Between the polycrystalline holder 5 and the seed crystal holder 7 in the housing 1, a high frequency induction heating coil 8 and a heat generating ring 9 covered with quartz are provided. The high frequency induction heating coil 8 is formed in a ring disk shape as a whole, and is held horizontally by a support bar 10 supported on the side wall 1 </ b> C of the housing 1. As shown in FIG. 2, the heat generating ring 9 is formed in a ring shape as a whole, and is horizontally held at a position above the high frequency induction heating coil 8 by a support shaft 11 suspended from the upper wall 1 </ b> A of the housing 1. .

この支持シャフト11は、ハウジング1の上壁1Aに回転及び昇降可能に支持されているとともに、その上端部にレバー等の操作手段11Aが設けられており、この操作手段11Aを操作することにより、その下端部に保持した発熱リング9を若干上下移動させるとともに、多結晶ホルダー5と種結晶ホルダー7との間に配置される加熱位置と、その間から側方に離間した退避位置との間で往復移動させることができるようになっている。   The support shaft 11 is supported on the upper wall 1A of the housing 1 so as to be able to rotate and move up and down, and an operation means 11A such as a lever is provided at an upper end portion thereof. By operating the operation means 11A, The heating ring 9 held at its lower end is slightly moved up and down, and reciprocates between a heating position disposed between the polycrystalline holder 5 and the seed crystal holder 7 and a retreating position spaced laterally from the heating position. It can be moved.

一方、種結晶ホルダー7は、タンタル(Ta)により、図2及び図3に示すように全体として筒状に形成され、その下端部を除く大部分に、上端の開口21に向けて漸次拡径する円錐形状の上部収納孔22が形成され、その下端部には、ストレートの円柱状の下部収納孔23が形成されている。これら収納孔22,23は、同一軸線C1上に配置され、その上部収納孔22に種結晶6が収納され、下部収納孔23には、下部駆動軸3の先端に固定された石英からなる棒状の支持部材24が収納されるようになっている。 On the other hand, the seed crystal holder 7 is formed of tantalum (Ta) in a tubular shape as a whole as shown in FIGS. 2 and 3, and gradually increases in diameter toward the upper end opening 21 in most parts except the lower end portion thereof. A conical upper storage hole 22 is formed, and a straight cylindrical lower storage hole 23 is formed at the lower end thereof. These storage holes 22 and 23 are arranged on the same axis C 1 , the seed crystal 6 is stored in the upper storage hole 22, and the lower storage hole 23 is made of quartz fixed to the tip of the lower drive shaft 3. A rod-like support member 24 is accommodated.

この種結晶ホルダー7に保持される種結晶6は、全体としては棒状に形成されるが、長さ方向の中央部から上端部6aと下端部6bとでそれぞれ端部を先細りとした円錐形状に形成されている。また、支持部材24はストレートの円柱状に形成されている。そして、この種結晶ホルダー7を支持部材24の上に取り付け、上部収納孔22に種結晶6の下端部6bを収納した状態とすることにより、この種結晶6の軸線Cをその上方の多結晶ホルダー5によって保持される多結晶シリコン棒S1の軸線Cと同一線上に配置することができるようになっている。 The seed crystal 6 held by the seed crystal holder 7 is formed in a rod shape as a whole, but has a conical shape with tapered ends at the upper end 6a and the lower end 6b from the center in the length direction. Is formed. The support member 24 is formed in a straight cylindrical shape. Then, attach the seed crystal holder 7 on the support member 24, by a state of accommodating the lower end 6b of the seed crystal 6 into the upper receiving hole 22, the axis C 2 of the seed crystal 6 thereabove multi so that the can be placed on the axis C 3 and collinear polycrystalline silicon rod S1, held by the crystal holder 5.

また、この種結晶ホルダー7の両端部には、半径方向に沿うネジ孔25が周方向に90°ずつ間隔をあけて4個ずつ設けられている。これらネジ孔25は、それぞれ種結晶ホルダー7の壁を貫通していることにより、内部の上部収納孔22及び下部収納孔23に連通している。そして、上部収納孔22に収納した種結晶6を上部のネジ孔25から止めネジ26をねじ込むことによって固定し、下部収納孔23に収納した支持部材24を下部のネジ孔25に止めネジ26をねじ込むことによって固定する構成である。   Further, four screw holes 25 along the radial direction are provided at both ends of the seed crystal holder 7 at intervals of 90 ° in the circumferential direction. These screw holes 25 respectively penetrate the wall of the seed crystal holder 7 so as to communicate with the internal upper storage hole 22 and lower storage hole 23. Then, the seed crystal 6 stored in the upper storage hole 22 is fixed by screwing a set screw 26 from the upper screw hole 25, and the support member 24 stored in the lower storage hole 23 is fixed to the lower screw hole 25. It is the structure fixed by screwing.

そして、種結晶ホルダー7の上部収納孔22の内周面を形成しているテーパ面22aは、この上部収納孔22の軸線Cとなす角度θが10〜25°に設定されているとともに、その面粗さが、平均粗さ(Ra)で10〜200μmとされている。テーパ面22aの角度が25°より大きいと、種結晶6の姿勢が安定せずに、いわゆる「座りが悪い」状態となるともに、回転時に種結晶6が滑り易く、また、10°より小さいと、芯ずれが生じ易い。より好ましくは17〜18°の角度とされる。また、面粗さが10〜200μmとされていることにより、回転時に適度の摩擦力で種結晶6を保持することができ、その姿勢を正確に維持することができる。 The tapered surface 22a which forms the inner peripheral surface of the upper receiving hole 22 of the seed crystal holder 7, together with the angle θ formed between the axis C 1 of the upper housing bore 22 is set to 10 to 25 °, The surface roughness is 10 to 200 μm in terms of average roughness (Ra). If the angle of the taper surface 22a is larger than 25 °, the posture of the seed crystal 6 is not stabilized, so that the so-called “sitting is bad” state, the seed crystal 6 is easily slipped during rotation, and is smaller than 10 °. Misalignment is likely to occur. More preferably, the angle is 17 to 18 °. Further, when the surface roughness is 10 to 200 μm, the seed crystal 6 can be held with an appropriate frictional force during rotation, and the posture can be accurately maintained.

また、種結晶ホルダー7の長さ方向中央部の外周部には、周方向に180°離間する対称位置にそれぞれ凹部27が形成されている。これら凹部27は、種結晶ホルダー7を支持部材24に固定したり収納孔22内に種結晶6を保持したりする際に、ペンチ等の工具の先端部を配置させるものであり、断面が矩形の溝状に形成され、工具先端部が当接可能な平面27aが径方向と平行に形成されている。   Further, in the outer peripheral portion of the center portion in the length direction of the seed crystal holder 7, concave portions 27 are respectively formed at symmetrical positions separated by 180 ° in the circumferential direction. These concave portions 27 are used to place the tip of a tool such as pliers when the seed crystal holder 7 is fixed to the support member 24 or the seed crystal 6 is held in the accommodation hole 22, and the cross section is rectangular. A flat surface 27a is formed in parallel with the radial direction so that the tip of the tool can come into contact therewith.

このように構成した単結晶製造装置100を使用して単結晶シリコンを製造する方法について、以下、その順序に従って説明する。
(1)種結晶ホルダー7に種結晶6を取り付けるとともに、吊り具4を試料となる多結晶シリコン棒S1に取り付けることにより、該多結晶シリコン棒S1を多結晶ホルダー5に支持させる。このとき、種結晶ホルダー7には、その上部収納孔22に種結晶6の下端部6bを挿し込むことにより、この上部収納孔22のテーパ面22aが種結晶6の外周面に接触して、自動的に芯合わせされ、その収納状態で止めネジ26によって固定することにより、その芯合わせ状態に保持される。
(2)このようにして同軸状に配置された種結晶6と多結晶シリコン棒S1との間の位置(加熱位置)に発熱リング9を配置する。
(3)上部駆動軸2を降下させて、試料となる多結晶シリコン棒S1を発熱リング9内に通し、試料の下端が、高周波誘導加熱コイル8の上方に近接するように多結晶シリコン棒S1を位置させる。
(4)ハウジング1のドア(図示略)を閉めて内部を密閉状態にし、不活性ガスを充満させる。
A method of manufacturing single crystal silicon using the single crystal manufacturing apparatus 100 configured as described above will be described below in the order.
(1) The seed crystal 6 is attached to the seed crystal holder 7 and the hanging tool 4 is attached to the polycrystalline silicon rod S1 as a sample so that the polycrystalline silicon rod S1 is supported by the polycrystalline holder 5. At this time, by inserting the lower end portion 6 b of the seed crystal 6 into the upper accommodation hole 22 of the seed crystal holder 7, the tapered surface 22 a of the upper accommodation hole 22 comes into contact with the outer peripheral surface of the seed crystal 6. By automatically aligning the core and fixing it with the set screw 26 in the housed state, the center is maintained.
(2) The heat generating ring 9 is arranged at a position (heating position) between the seed crystal 6 and the polycrystalline silicon rod S1 arranged coaxially in this way.
(3) Lower the upper drive shaft 2 to pass the polycrystalline silicon rod S1 as a sample through the heating ring 9, and the polycrystalline silicon rod S1 so that the lower end of the sample is close to the upper side of the high frequency induction heating coil 8 Position.
(4) The door (not shown) of the housing 1 is closed to make the inside hermetically sealed and filled with an inert gas.

(5)高周波誘導加熱コイル8を駆動することで、発熱リング9を発熱させ、その輻射熱によって多結晶シリコン棒の予熱を行う。この予熱は発熱リング9が赤くなるのを確認するまで行う。
(6)上部駆動軸2を上昇して、多結晶シリコン棒S1を種結晶6から離間させ、これにより多結晶シリコン棒S1と種結晶6との間にできた隙間から発熱リング9を移動させて、ハウジング1の側壁1Cの近傍位置(退避位置)に退避させる。その後、上部駆動軸2を降下し、多結晶シリコン棒S1を高周波誘導加熱コイル8の付近まで降下させる。
(5) By driving the high frequency induction heating coil 8, the heat generating ring 9 is heated, and the polycrystalline silicon rod is preheated by the radiant heat. This preheating is performed until it is confirmed that the heating ring 9 is red.
(6) The upper drive shaft 2 is raised to separate the polycrystalline silicon rod S1 from the seed crystal 6 and thereby move the heating ring 9 from the gap formed between the polycrystalline silicon rod S1 and the seed crystal 6. Thus, the housing 1 is retracted to a position near the side wall 1C (retracted position). Thereafter, the upper drive shaft 2 is lowered, and the polycrystalline silicon rod S1 is lowered to the vicinity of the high frequency induction heating coil 8.

(7) 高周波誘導加熱コイル8の出力を上げて多結晶シリコン棒S1の先端部を溶融させる。
(8)下部駆動軸3を上昇して、種結晶6を多結晶シリコン棒S1に近づける。多結晶シリコン棒S1の先端部が完全に溶けたら、種結晶6と多結晶シリコン棒S1とを接触させることにより、多結晶シリコン棒S1の熱を種結晶6に伝達して種結晶6を溶融する。
(9)下部駆動軸3を回転駆動して種結晶6を高速で回転させる。
(10)多結晶シリコン棒S1の下端の溶融部の形状を整えながら溶融部と種結晶6を十分なじませる。
(11)上部駆動軸2と下部駆動軸3とを軸線方向に沿って同期移動させることにより、多結晶シリコン棒S1の溶融部分を、高周波誘導加熱コイル8に対して上下方向に相対移動させ、これにより下部駆動軸3上に単結晶シリコンS2を育成する。
(12)単結晶シリコンS2が十分に形成されたら、上部駆動軸2、下部駆動軸3、高周波誘導加熱コイル8の駆動を停止する。その後、形成された単結晶シリコンを取り出し、急速冷却装置で冷却する。
(7) Increase the output of the high frequency induction heating coil 8 to melt the tip of the polycrystalline silicon rod S1.
(8) The lower drive shaft 3 is raised to bring the seed crystal 6 closer to the polycrystalline silicon rod S1. When the tip of the polycrystalline silicon rod S1 is completely melted, the seed crystal 6 and the polycrystalline silicon rod S1 are brought into contact with each other to transfer the heat of the polycrystalline silicon rod S1 to the seed crystal 6 and melt the seed crystal 6 To do.
(9) The lower drive shaft 3 is rotationally driven to rotate the seed crystal 6 at a high speed.
(10) The molten part and the seed crystal 6 are sufficiently blended while adjusting the shape of the molten part at the lower end of the polycrystalline silicon rod S1.
(11) By moving the upper drive shaft 2 and the lower drive shaft 3 synchronously along the axial direction, the molten portion of the polycrystalline silicon rod S1 is moved relative to the high-frequency induction heating coil 8 in the vertical direction, Thereby, the single crystal silicon S2 is grown on the lower drive shaft 3.
(12) When the single crystal silicon S2 is sufficiently formed, the driving of the upper drive shaft 2, the lower drive shaft 3, and the high frequency induction heating coil 8 is stopped. Thereafter, the formed single crystal silicon is taken out and cooled by a rapid cooling device.

以上のような単結晶製造装置100によれば、両端部6a,6bを円錐形状とした種結晶6を種結晶ホルダー7の上部収納孔22に挿し込むことにより、種結晶6の円錐状外周面が収納孔22のテーパ面22aに全周にわたって接触して両者の軸線C,Cを正確に一致させることができ、これにより、種結晶6の軸線Cと、その上方に配置される多結晶シリコン棒の軸線Cとが正確に一致させられる。つまり、種結晶6を収納孔22に挿し込むだけで、これらの軸線C,Cが一致した状態に収納され、その上方の多結晶シリコン棒S1との軸線Cとも一致するように芯合わせを行うことができ、種結晶6を取り付ける際の作業時間を大幅に短縮することができる。そして、この収納状態で止めネジ26を固定することにより、種結晶6はテーパ面22aによって全周を保持されているので、止めネジ26の押圧力によって左右に動くことがなく、その芯合わせ状態に確実に固定することができる。 According to the single crystal manufacturing apparatus 100 as described above, the conical outer peripheral surface of the seed crystal 6 is inserted by inserting the seed crystal 6 having both ends 6a and 6b into a conical shape into the upper storage hole 22 of the seed crystal holder 7. Can contact the taper surface 22a of the storage hole 22 over the entire circumference so that the axes C 1 and C 2 of both can be made to coincide with each other accurately, so that the axis C 2 of the seed crystal 6 is arranged above the axis C 2. the axis C 3 of the polycrystalline silicon rods are matched exactly. That is, by inserting the seed crystal 6 into the storage hole 22, the axes C 1 and C 2 are stored in a state where they coincide with each other, and the core C 3 is aligned with the axis C 3 with the polycrystalline silicon rod S 1 thereabove. As a result, the working time for attaching the seed crystal 6 can be greatly shortened. Then, by fixing the set screw 26 in this stored state, the entire circumference of the seed crystal 6 is held by the taper surface 22a. Can be securely fixed.

そして、単結晶シリコンの育成作業中に種結晶6を回転させることがあるが、その際も収納孔22のテーパ面22aにより種結晶6を全周で保持しているので、スリップを生じさせることなく、その芯合わせ状態を確実に維持することができ、したがって、高品質の単結晶シリコンを製造することができるものである。   The seed crystal 6 may be rotated during the single crystal silicon growing operation. However, since the seed crystal 6 is held by the taper surface 22a of the accommodation hole 22 all around, the slip is generated. Therefore, the center alignment state can be reliably maintained, and therefore, high quality single crystal silicon can be manufactured.

なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば、一実施形態の種結晶ホルダー7では、上部収納孔22を開口まで連続するテーパ面22aに形成したが、種結晶の外周の全周に接触可能なテーパ面が少なくとも一部に形成されていればよく、開口付近はストレートの円筒状としてもよい。また、この収納孔に挿入した種結晶を4本の止めネジで固定する構造としたが、3本の止めネジによって固定するものでもよい。   In addition, this invention is not limited to the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention. For example, in the seed crystal holder 7 of one embodiment, the upper housing hole 22 is formed on the tapered surface 22a that continues to the opening, but at least a portion of the tapered surface that can contact the entire circumference of the seed crystal is formed. The vicinity of the opening may be a straight cylindrical shape. In addition, the seed crystal inserted into the storage hole is fixed with four set screws, but may be fixed with three set screws.

本発明の一実施形態における単結晶製造装置の全体を示す概略断面図である。It is a schematic sectional drawing which shows the whole single crystal manufacturing apparatus in one Embodiment of this invention. 図1における種結晶ホルダーに種結晶を保持した状態を拡大して示す縦断面図である。It is a longitudinal cross-sectional view which expands and shows the state which hold | maintained the seed crystal in the seed crystal holder in FIG. 図2の種結晶ホルダーの外観を示す斜視図である。It is a perspective view which shows the external appearance of the seed crystal holder of FIG.

符号の説明Explanation of symbols

1 ハウジング
2 上部駆動軸
3 下部駆動軸
4 吊り具
5 多結晶ホルダー
6 種結晶
6a 上端部
6b 下端部(一端部)
7 種結晶ホルダー
8 高周波誘導加熱コイル
9 発熱リング
10 支持棒
11 支持シャフト
11A 操作手段
21 開口
22 上部収納孔(収納孔)
22a テーパ面
23 下部収納孔
24 支持部材
25 ネジ孔
26 止めネジ
S1 多結晶シリコン棒
DESCRIPTION OF SYMBOLS 1 Housing 2 Upper drive shaft 3 Lower drive shaft 4 Hanging tool 5 Polycrystalline holder 6 Seed crystal 6a Upper end 6b Lower end (one end)
7 seed crystal holder 8 high frequency induction heating coil 9 heating ring 10 support rod 11 support shaft 11A operation means 21 opening 22 upper storage hole (storage hole)
22a Tapered surface 23 Lower storage hole 24 Support member 25 Screw hole 26 Set screw S1 Polycrystalline silicon rod

Claims (3)

ハウジング内に、種結晶ホルダーに保持した種結晶と、多結晶ホルダーに保持した多結晶シリコン棒とを対向して配置し、その多結晶シリコン棒を加熱溶融しながら種結晶に融着させて単結晶に成長させる単結晶シリコン製造装置であって、
前記種結晶ホルダーは、種結晶の一端部を直立姿勢で保持する収納孔が形成されるとともに、該収納孔に収納した種結晶の一端部を固定する止めネジが収納孔の軸線に直交して設けられ、
前記収納孔の内周面は、その開口に向けて漸次拡径するテーパ面とされていることを特徴とする単結晶シリコン製造装置。
In the housing, the seed crystal held in the seed crystal holder and the polycrystalline silicon rod held in the polycrystalline holder are arranged to face each other, and the polycrystalline silicon rod is fused to the seed crystal while being heated and melted. A single crystal silicon manufacturing apparatus for growing a crystal,
The seed crystal holder has a storage hole for holding one end of the seed crystal in an upright posture, and a set screw for fixing the one end of the seed crystal stored in the storage hole is perpendicular to the axis of the storage hole. Provided,
The single crystal silicon manufacturing apparatus according to claim 1, wherein an inner peripheral surface of the storage hole is a tapered surface that gradually increases in diameter toward the opening.
前記テーパ面は、収納孔の軸線となす角度が10〜25°に設定されていることを特徴とする請求項1記載の単結晶シリコン製造装置。   The single crystal silicon manufacturing apparatus according to claim 1, wherein the taper surface is set to have an angle of 10 to 25 ° with the axis of the storage hole. 前記テーパ面の面粗さは、平均粗さ(Ra)で10〜200μmとされていることを特徴とする請求項1又は2記載の単結晶シリコン製造装置。   3. The single crystal silicon manufacturing apparatus according to claim 1, wherein the taper surface has an average roughness (Ra) of 10 to 200 μm.
JP2007331547A 2007-12-25 2007-12-25 Single crystal silicon production equipment Expired - Fee Related JP4894749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007331547A JP4894749B2 (en) 2007-12-25 2007-12-25 Single crystal silicon production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007331547A JP4894749B2 (en) 2007-12-25 2007-12-25 Single crystal silicon production equipment

Publications (2)

Publication Number Publication Date
JP2009155115A true JP2009155115A (en) 2009-07-16
JP4894749B2 JP4894749B2 (en) 2012-03-14

Family

ID=40959532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007331547A Expired - Fee Related JP4894749B2 (en) 2007-12-25 2007-12-25 Single crystal silicon production equipment

Country Status (1)

Country Link
JP (1) JP4894749B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710681A (en) * 1993-05-11 1995-01-13 Hemlock Semiconductor Corp Suscepter for floating melting zone apparatus
JPH11292689A (en) * 1998-04-15 1999-10-26 Shin Etsu Handotai Co Ltd Production of silicon single crystal, seed crystal and seed crystal holding tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710681A (en) * 1993-05-11 1995-01-13 Hemlock Semiconductor Corp Suscepter for floating melting zone apparatus
JPH11292689A (en) * 1998-04-15 1999-10-26 Shin Etsu Handotai Co Ltd Production of silicon single crystal, seed crystal and seed crystal holding tool

Also Published As

Publication number Publication date
JP4894749B2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
JP5482859B2 (en) Single crystal silicon manufacturing apparatus and manufacturing method
JP5664573B2 (en) Method for calculating height position of silicon melt surface, method for pulling silicon single crystal, and silicon single crystal pulling apparatus
US5885344A (en) Non-dash neck method for single crystal silicon growth
JP4894749B2 (en) Single crystal silicon production equipment
JP5304206B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
JP5888631B2 (en) Method for producing single crystal ingot
US7195671B2 (en) Thermal shield
KR20000068909A (en) Single crystal pull-up apparatus and single crystal pull-up method
JP2009269802A (en) Method and apparatus for manufacturing single crystal
JP6604440B2 (en) Single crystal manufacturing method and apparatus
JP4351976B2 (en) Seed crystal holding device and silicon single crystal pulling method using the same
JPH1081581A (en) Single crystal pulling up apparatus
KR101600378B1 (en) Crystal growing apparatus
WO2022024667A1 (en) Crucible for cz
JP5682821B2 (en) Connection structure between seed shaft and seed holder and method for producing single crystal ingot
CN108866620B (en) Coil centering device for preparing zone-melting monocrystal
JP2013139350A (en) Method of producing silicon single crystal
JPH11292686A (en) Seed chuck
CN116981800A (en) Apparatus and method for producing single crystal silicon rod in zone melting and pulling system
JPH1029892A (en) Seed crystal holder for pulling up crystal
JP2021134126A (en) Measuring jig and measuring method
JP2012193061A5 (en)
JP2005104755A (en) Seed crystal used in single crystal pulling apparatus and seed crystal holding tool for single crystal pulling apparatus
JP2006131440A (en) Seed chuck for single crystal pulling apparatus
KR20140091873A (en) Apparatus and method for manufacturing ingot having single crystals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

R150 Certificate of patent or registration of utility model

Ref document number: 4894749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees