JP2681114B2 - Single crystal manufacturing method - Google Patents

Single crystal manufacturing method

Info

Publication number
JP2681114B2
JP2681114B2 JP1269389A JP1269389A JP2681114B2 JP 2681114 B2 JP2681114 B2 JP 2681114B2 JP 1269389 A JP1269389 A JP 1269389A JP 1269389 A JP1269389 A JP 1269389A JP 2681114 B2 JP2681114 B2 JP 2681114B2
Authority
JP
Japan
Prior art keywords
crucible
single crystal
oxygen concentration
heater
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1269389A
Other languages
Japanese (ja)
Other versions
JPH02192486A (en
Inventor
誠人 伊藤
喜一郎 北浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Sitix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=11812458&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2681114(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Sitix Corp filed Critical Sumitomo Sitix Corp
Priority to JP1269389A priority Critical patent/JP2681114B2/en
Publication of JPH02192486A publication Critical patent/JPH02192486A/en
Application granted granted Critical
Publication of JP2681114B2 publication Critical patent/JP2681114B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はチョクラルスキー法(CZ法)により製造され
る単結晶の結晶成長方向における酸素濃度の均一化を可
能とした単結晶の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a single crystal capable of making the oxygen concentration uniform in the crystal growth direction of a single crystal produced by the Czochralski method (CZ method). About.

〔従来の技術〕[Conventional technology]

一般にチョクラルスキー法(CZ法)による、単結晶の
製造は、例えばチャンバ内に配した坩堝内に単結晶用原
料を投入し、これをヒータにて加熱溶融せしめた後、こ
の溶融液中に引上軸に吊るした種結晶を浸し、これを回
転させつつ上方に引上げて種結晶下端に単結晶を成長せ
しめることによって行なわれている。
In general, the Czochralski method (CZ method) is used to manufacture a single crystal. For example, a single crystal raw material is put into a crucible placed in a chamber, and this is heated and melted by a heater, and then melted in this melt. It is carried out by immersing a seed crystal hung on a pulling shaft and pulling it upward while rotating it to grow a single crystal at the lower end of the seed crystal.

ところで、例えばシリコン単結晶基板においては半導
体集積回路の製造過程で極微量の重金属の汚れを浄化す
る、所謂IG(Intrinsic Gettering)効果を得るために
適度の酸素含有量が必要とされる。
By the way, for example, in a silicon single crystal substrate, an appropriate oxygen content is required in order to obtain a so-called IG (Intrinsic Gettering) effect for purifying a trace amount of heavy metal contamination in the process of manufacturing a semiconductor integrated circuit.

従ってシリコン単結晶中にはその結晶成長方向に均一
な濃度で酸素を含有させることが必要となり、このため
には坩堝内における単結晶原料の溶融液中、特に単結晶
成長領域中の酸素濃度を均一化することが必要とされ
る。
Therefore, it is necessary to contain oxygen in the silicon single crystal at a uniform concentration in the crystal growth direction. For this purpose, the oxygen concentration in the melt of the single crystal raw material in the crucible, especially in the single crystal growth region, should be controlled. Uniformity is required.

ところで坩堝内における酸素の殆どは結晶原料である
多結晶シリコンを石英坩堝内で溶融する過程で石英がシ
リコン溶融液へ溶解し、酸素がシリコン溶融液へ供給さ
れる。
By the way, most of the oxygen in the crucible is melted in the silicon melt and quartz is supplied to the silicon melt in the process of melting polycrystalline silicon, which is a crystal raw material, in the quartz crucible.

従って坩堝内における溶融液量が多く、石英坩堝との
接触面積が大きい結晶成長開始の初期においては酸素濃
度が高く、単結晶の成長が進み坩堝内の溶融液量が減少
するに従って低下してゆく傾向があり、これに伴って、
単結晶中に取り込まれる酸素濃度も溶融液中の酸素濃度
が高い間は概ね高くなり、単結晶の成長が進むに従って
単結晶中の酸素濃度も低下することとなる。
Therefore, the amount of molten liquid in the crucible is large, the contact area with the quartz crucible is large, and the oxygen concentration is high at the beginning of the crystal growth, and the growth of the single crystal proceeds and the amount of molten liquid decreases as the amount of molten liquid in the crucible decreases. There is a tendency, and with this,
The oxygen concentration taken into the single crystal also increases while the oxygen concentration in the melt is high, and the oxygen concentration in the single crystal also decreases as the growth of the single crystal progresses.

しかし、両者の関係は必ずしも一元的ではなく、坩堝
内の溶融液量の外に石英溶解量、溶出酸素を運ぶ溶融液
の流れ、一酸化ケイ素の形で蒸発する酸素の蒸発量等と
関連し、しかも石英溶解量は反応温度、換言すればヒー
タから坩堝に対する加熱分布によって、また溶融液の流
れは坩堝,単結晶の回転速度によって、更に酸素の蒸発
量はチャンバ内の圧力、Ar流速等の影響を受けることが
知られており、、これらの要因が複雑に交錯して単結晶
の酸素濃度が決まるため結晶開始時から終了時まで一定
の濃度を維持することは極めて難しいのが現状である。
However, the relationship between the two is not necessarily unitary, and is related to the amount of quartz dissolved in the crucible in addition to the amount of molten liquid, the flow of the molten liquid that carries dissolved oxygen, the amount of evaporated oxygen in the form of silicon monoxide, etc. Moreover, the amount of dissolved quartz depends on the reaction temperature, in other words, the heating distribution from the heater to the crucible, the flow of the melt depends on the crucible and the rotation speed of the single crystal, and the amount of evaporated oxygen depends on the pressure in the chamber, Ar flow rate, etc. It is known to be affected, and it is extremely difficult to maintain a constant concentration from the beginning to the end of the crystal because the oxygen concentration of the single crystal is determined by the complex combination of these factors. ..

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

この対策として坩堝の回転速度と単結晶中の酸素濃度
との関係に着目し、坩堝の回転数を原料溶融液量の減少
に応じて変化させる方法が提案されている(特開昭57−
27996号,特開昭57−135796号)。
As a countermeasure against this, a method has been proposed in which the rotational speed of the crucible and the oxygen concentration in the single crystal are focused, and the rotational speed of the crucible is changed according to the decrease in the amount of the raw material melt (JP-A-57-
27996, JP-A-57-135796).

これらの方法は単結晶中の均一性が若干向上すること
は認められるものの本発明者の実験によっても結晶中酸
素濃度変動幅を±0.5×10(1017atm/cm3)とすることが
出来なかった。
Although it is recognized that the homogeneity in the single crystal is slightly improved by these methods, the fluctuation range of the oxygen concentration in the crystal can be ± 0.5 × 10 (10 17 atm / cm 3 ) also by the experiment of the present inventor. There wasn't.

本発明者はこのような単結晶の成長方向における酸素
濃度を均一にすべく実験,研究を行った結果、坩堝内の
溶融液中の酸素濃度は坩堝の内側底壁温度と密接な関係
にあることを知見した。
The present inventor has conducted experiments and researches to make the oxygen concentration in the growth direction of such a single crystal uniform, and as a result, the oxygen concentration in the melt in the crucible is closely related to the inner bottom wall temperature of the crucible. I found out that.

第4図は縦軸に酸素濃度を、また横軸に単結晶の固化
率をとって示すグラフであり、グラフ中○印でプロット
してあるのはボトムヒータの出力比率を40%としたとき
の、また△印でプロットしてあるのはボトムヒータの出
力比率を20%としたときの、更に□印でプロットしてあ
るのはボトムヒータの出力比率を零としたときの各結果
を示している。
FIG. 4 is a graph showing the oxygen concentration on the vertical axis and the solidification rate of the single crystal on the horizontal axis. The circles in the graph are plotted when the output ratio of the bottom heater is 40%. The plots with triangles show the results when the output ratio of the bottom heater is 20%, and the plots with squares show the results when the output ratio of the bottom heater is zero.

このグラフから明らかなように、ボトムヒータの出力
比率を高めると単結晶中の酸素濃度がより高めにシフト
してゆくことが解る。
As is clear from this graph, it is understood that the oxygen concentration in the single crystal shifts higher when the output ratio of the bottom heater is increased.

この理由については十分には解明されていないが、概
略次のように考えられる。第5図は石英製の内坩堝2a内
における酸素の動態を示す説明図である。前述した如く
内坩堝2a内の溶融液中の酸素は溶融液と石英製の内坩堝
2a壁との接触面から矢符で示す如くに供給されるが、内
坩堝2a内の溶融液の流れは白抜矢符で示す如くであるた
め、内坩堝2aの側周壁側から供給された酸素は溶融液表
面側に流れてそのまま蒸発されるのに対し、底壁から供
給された酸素は単結晶9の成長領域下に向けて流れる。
従って内坩堝2aにおける周壁側から供給される酸素に比
較して底壁側から供給される酸素が単結晶中に取り込ま
れる比率が大きくなることになり、それだけボトムヒー
タ出力が与える影響が大きくなることとなる。従って結
晶成長の初期では、坩堝底壁の温度を低目に、成長に従
って高めていくようにボトムヒータの出力を変化させれ
ば成長方向に均一な酸素が得られることが解る。
The reason for this is not fully understood, but it can be considered as follows. FIG. 5 is an explanatory view showing the dynamics of oxygen in the quartz inner crucible 2a. As described above, the oxygen in the melt in the inner crucible 2a is the melt and the inner crucible made of quartz.
2a is supplied from the contact surface with the wall as shown by the arrow, but since the flow of the molten liquid in the inner crucible 2a is as shown by the white arrow, it was supplied from the side peripheral wall side of the inner crucible 2a. Oxygen flows toward the surface of the melt and is vaporized as it is, whereas oxygen supplied from the bottom wall flows downward toward the growth region of the single crystal 9.
Therefore, as compared with oxygen supplied from the peripheral wall side in the inner crucible 2a, the ratio of oxygen supplied from the bottom wall side into the single crystal becomes large, and the influence of the bottom heater output increases accordingly. Become. Therefore, it is understood that in the initial stage of crystal growth, if the temperature of the bottom wall of the crucible is kept low and the output of the bottom heater is changed so as to increase with the growth, uniform oxygen can be obtained in the growth direction.

本発明はかかる知見に基づきなされたものであって、
その目的とするところは結晶成長の開始から終了に至る
まで単結晶の成長方向における酸素濃度を均一化し得る
ようにした単結晶の製造方法を提供するにある。
The present invention has been made based on such knowledge,
It is an object of the invention to provide a method for producing a single crystal in which the oxygen concentration in the growth direction of the single crystal can be made uniform from the start to the end of the crystal growth.

〔課題を解決するための手段〕[Means for solving the problem]

本発明に係る単結晶の成長方法は、CZ法により単結晶
を坩堝から引上げる過程で引上げ方向における単結晶中
の酸素濃度を均一とすべく、坩堝壁の温度を設定温度に
制御するように坩堝の周囲,底部に臨ませた各加熱手段
の出力を制御し、またこれに加えて坩堝の軸心線回りの
回転速度を制御する。
The single crystal growth method according to the present invention, in order to make the oxygen concentration in the single crystal in the pulling direction uniform in the process of pulling the single crystal from the crucible by the CZ method, the temperature of the crucible wall is controlled to a set temperature. The output of each heating means facing the crucible and the bottom of the crucible is controlled, and in addition to this, the rotation speed of the crucible about its axis is controlled.

〔作用〕[Action]

本発明にあってはこれによって単結晶の成長領域に対
して供給される酸素量をより精密に制御することが可能
となる。
In the present invention, this makes it possible to more precisely control the amount of oxygen supplied to the growth region of the single crystal.

〔実施例〕〔Example〕

以下本発明をその実施例を示す図面に基づき具体的に
説明する。第1図は本発明方法の実施状態を示す模式的
縦断面図であり、図中1はチャンバ、2は坩堝、3はサ
イドヒータ、4はボトムヒータ、5は保温材を示してい
る。
Hereinafter, the present invention will be described in detail with reference to the drawings showing the embodiments. FIG. 1 is a schematic vertical sectional view showing an embodiment of the method of the present invention, in which 1 is a chamber, 2 is a crucible, 3 is a side heater, 4 is a bottom heater, and 5 is a heat insulating material.

チャンバ1の内部中央に坩堝2が配設され、この坩堝
2と保温材5との間にサイドヒータ3が、また坩堝2の
下部にボトムヒータ4が配設されている。サイドヒータ
3は坩堝2の側周壁を囲む態様で、またボトムヒータ4
は坩堝2の底部に面して軸2cの回りに配設され、夫々独
立して出力制御が可能となっている。
A crucible 2 is arranged at the center of the inside of the chamber 1, a side heater 3 is arranged between the crucible 2 and the heat insulating material 5, and a bottom heater 4 is arranged below the crucible 2. The side heater 3 surrounds the side peripheral wall of the crucible 2 and the bottom heater 4
Are arranged around the shaft 2c so as to face the bottom of the crucible 2 and the output of each can be controlled independently.

坩堝2は石英製の内坩堝2aの外周にグラファイト製の
外坩堝2bを配した二重構造に構成されており、その底部
中央にはチャンバ1の底壁を貫通させた軸2cの上端が連
結され、該軸2cにて回転させつつ昇降せしめられるよう
になっている。
The crucible 2 has a double structure in which an outer crucible 2b made of graphite is arranged on the outer periphery of an inner crucible 2a made of quartz, and the upper end of a shaft 2c penetrating the bottom wall of the chamber 1 is connected to the center of the bottom of the crucible 2. The shaft 2c can be rotated and raised and lowered.

坩堝2内には単結晶用の原料、例えば多結晶シリコン
が供給され、サイドヒータ3,ボトムヒータ4にて加熱溶
融せしめるようになっている。
A raw material for single crystal, for example, polycrystalline silicon is supplied into the crucible 2 and is heated and melted by the side heater 3 and the bottom heater 4.

チャンバ1の上部壁中央にはチャンバ1内への雰囲気
ガスの供給筒を兼ねる単結晶の保護筒1aが立設され、保
護筒1aの上方には回転、昇降機構(図示せず)に連繋さ
れた引上げ軸7の上端が連結され、引上げ軸7の下端に
はチャックに掴持させた種結晶8が吊設され、この種結
晶8を坩堝2内の溶融液6になじませた後、回転させつ
つ上昇させることによって、種結晶8下端にシリコンの
単結晶9を成長せしめるようになっている。
At the center of the upper wall of the chamber 1, a single-crystal protective cylinder 1a that doubles as a cylinder for supplying atmospheric gas is erected, and above the protective cylinder 1a is connected to a rotation / elevation mechanism (not shown). The upper end of the pulling shaft 7 is connected, and the seed crystal 8 held by a chuck is hung at the lower end of the pulling shaft 7. The seed crystal 8 is allowed to adapt to the melt 6 in the crucible 2 and then rotated. The silicon single crystal 9 is grown at the lower end of the seed crystal 8 by raising the temperature while raising the temperature.

而してこのような本発明方法にあっては、先ず坩堝2
内に結晶用原料を装入し、サイドヒータ3,ボトムヒータ
4を用いて7溶融した後、溶融液6に種結晶8を浸漬
し、種結晶8を回転させつつ上昇させ、単結晶9の成長
を開始するが、この単結晶9の成長開始に先立って所定
時間前又は成長開始と同時的にサイドヒータ3,ボトムヒ
ータ4の出力制御、更にこれに加えて坩堝2の回転速度
制御を開始し、これを単結晶の引き上げ終了まで継続す
る。
Thus, in the method of the present invention, first, the crucible 2
A crystal raw material is charged into the inside, and after melting 7 by using the side heater 3 and the bottom heater 4, the seed crystal 8 is immersed in the melt 6 and the seed crystal 8 is rotated and raised to grow a single crystal 9. However, prior to the start of the growth of the single crystal 9 or at the same time as the start of the growth, the output control of the side heater 3 and the bottom heater 4 is started, and in addition, the rotation speed control of the crucible 2 is started. This is continued until the pulling of the single crystal is completed.

第2図はサイドヒータ3,ボトムヒータ4の制御パター
ンを示すグラフであり、横軸に単結晶の固化率を、また
縦軸に酸素濃度(×1017atm/cm3)、設定温度(℃)、
ヒータ出力(%)を夫々とって示してある。グラフ中
は坩堝底(内坩堝2aの内底)温度目標のプロファイル、
はサイドヒータ3、はボトムヒータ4の各出力を示
している。は得られた単結晶中の酸素濃度である。
FIG. 2 is a graph showing the control patterns of the side heater 3 and the bottom heater 4, where the horizontal axis represents the solidification rate of the single crystal, the vertical axis represents the oxygen concentration (× 10 17 atm / cm 3 ), and the set temperature (° C). ,
The heater output (%) is shown for each. In the graph, the crucible bottom (inner bottom of inner crucible 2a) temperature target profile,
Shows the outputs of the side heater 3 and the bottom heater 4. Is the oxygen concentration in the obtained single crystal.

坩堝底温度プロファイルは予め、実験的に単結晶中
の酸素濃度を一定にすべく設定しておき、結晶成長中
はサイドヒータ3,ボトムヒータ4の制御によって坩堝低
温度を当初の目標プロフィルに倣わせる。
The crucible bottom temperature profile has been experimentally set in advance so as to keep the oxygen concentration in the single crystal constant, and the side temperature of the crucible 3 and the bottom heater 4 are controlled during the crystal growth to make the crucible low temperature follow the initial target profile. It

〔試験例1〕 第1図に示した如き設備で単結晶中酸素濃度目標値を
16×1017atm/cm3とし、坩堝2を一定速度で回転させつ
つ、第2図に示す如きパターンでサイドヒータ,ボトム
ヒータをの各出力制御した結果、単結晶の成長方向にお
いて酸素濃度を15.5〜16.4×1017atm/cm3の範囲内に納
め得ることが確認された。
[Test Example 1] The oxygen concentration target value in the single crystal was measured by the equipment shown in FIG.
With 16 × 10 17 atm / cm 3 and rotating the crucible 2 at a constant speed, each side heater and bottom heater output was controlled in a pattern as shown in FIG. 2, and as a result, the oxygen concentration in the growth direction of the single crystal was 15.5. It was confirmed that it can be accommodated within the range of ~ 16.4 × 10 17 atm / cm 3 .

〔試験例2〕 第1図に示した如き態様で単結晶中酸素濃度目標値と
して、16×1017atm/cm3,14×1017atm/cm3,を設定し、こ
れを達成すべくサイドヒータに対するボトムヒータに出
力を第3図に示す如く制御した。
[Test Example 2] In order to achieve this, 16 × 10 17 atm / cm 3 and 14 × 10 17 atm / cm 3 are set as the target oxygen concentration values in the single crystal in the manner as shown in FIG. The output of the bottom heater with respect to the side heater was controlled as shown in FIG.

グラフ中は単結晶中酸素濃度目標値が16×1017atm/
cm3の時のボトムヒータ出力であり、 ′はこの時、得られた単結晶中の酸素濃度を示してい
る。
In the graph, the target oxygen concentration in the single crystal is 16 × 10 17 atm /
It is the bottom heater output at cm 3 , and ′ indicates the oxygen concentration in the single crystal obtained at this time.

は単結晶中酸素濃度目標値が14×1017atm/cm3の時の
ボトムヒータ出力であり、 ′はこの時、得られた単結晶中の酸素濃度を示してい
る。
Indicates the bottom heater output when the target oxygen concentration in the single crystal is 14 × 10 17 atm / cm 3 , and ′ indicates the oxygen concentration in the single crystal obtained at this time.

なお、坩堝の回転数は前者においては一定8rpmとし、ま
た後者においては10〜15rpmで単結晶の成長の進行に合
わせて増大制御した。夫々15.8〜16.5×1017atm/cm3,1
3.5〜14.1×1017atm/cm3が得られ、従来方法では到底得
られない均一性が得られることが確認された。
The rotation speed of the crucible was fixed at 8 rpm in the former case and 10 to 15 rpm in the latter case, which was controlled to increase according to the progress of single crystal growth. 15.8〜16.5 × 10 17 atm / cm 3 , 1 respectively
It was confirmed that 3.5 to 14.1 × 10 17 atm / cm 3 was obtained, and that the uniformity which could not be obtained by the conventional method was obtained.

〔効果〕〔effect〕

以上の如く本発明方法にあっては、単結晶の成長方向
における酸素濃度の変動幅を大幅に低減し得ることとな
り、均一性が高く半導体基板等として製品の高い信頼性
が得られ、また高い歩留りが得られるなどの本発明は優
れた効果を奏するものである。
As described above, according to the method of the present invention, the fluctuation range of the oxygen concentration in the growth direction of the single crystal can be significantly reduced, so that the uniformity is high and the high reliability of the product as a semiconductor substrate or the like can be obtained. The present invention has excellent effects such as yield can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明方法の実施状態を示す模式図、第2図は
本発明方法における制御内容を示すグラフ、第3図は本
発明方法の他の制御内容を示すグラフ、第4図は本発明
者が行った実験で求めた固化率とボトムヒータの出力比
率との関係を示すグラフ、第5図は坩堝内における酸素
の動態を示す説明図である。 1……チャンバ、2……坩堝、2a……内坩堝、2b……外
坩堝、3……サイドヒータ、4……ボトムヒータ、8…
…種結晶、9……単結晶
FIG. 1 is a schematic diagram showing an implementation state of the method of the present invention, FIG. 2 is a graph showing control contents in the method of the present invention, FIG. 3 is a graph showing other control contents of the method of the present invention, and FIG. FIG. 5 is a graph showing the relationship between the solidification rate and the output ratio of the bottom heater obtained in the experiment conducted by the inventor, and FIG. 5 is an explanatory diagram showing the dynamics of oxygen in the crucible. 1 ... Chamber, 2 ... Crucible, 2a ... Inner crucible, 2b ... Outer crucible, 3 ... Side heater, 4 ... Bottom heater, 8 ...
… Seed crystal, 9… Single crystal

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−153191(JP,A) 特開 昭60−46993(JP,A) 特開 平1−93489(JP,A) 特開 昭60−239389(JP,A) 特開 昭63−159285(JP,A) 特開 昭62−119189(JP,A) 特開 昭59−13695(JP,A) 特開 昭57−135796(JP,A) 実開 昭63−50881(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP 62-153191 (JP, A) JP 60-46993 (JP, A) JP 1-93489 (JP, A) JP 60- 239389 (JP, A) JP 63-159285 (JP, A) JP 62-119189 (JP, A) JP 59-13695 (JP, A) JP 57-135796 (JP, A) 63-50881 (JP, U)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】CZ法により単結晶を坩堝から引上げる過程
で、引上げ方向における単結晶中の酸素濃度を均一とす
べく、坩堝壁の温度が設定温度に制御されるように坩堝
の周囲、底部に臨ませた各加熱手段の出力を制御するこ
とを特徴とする単結晶製造方法。
1. In the process of pulling a single crystal from a crucible by the CZ method, in order to make the oxygen concentration in the single crystal uniform in the pulling direction, the temperature around the crucible wall is controlled to a set temperature, the surroundings of the crucible, A method for producing a single crystal, which comprises controlling the output of each heating means facing the bottom.
【請求項2】CZ法により単結晶を坩堝から引上げる過程
で、引上げ方向における単結晶中の酸素濃度を均一とす
べく、坩堝の軸心線回りの回転速度、並びに坩堝の周
囲、底部に臨ませた各加熱手段の出力を制御することを
特徴とする単結晶製造方法。
2. In the process of pulling a single crystal from a crucible by the CZ method, in order to make the oxygen concentration in the single crystal uniform in the pulling direction, the rotation speed around the axis of the crucible, and the circumference and bottom of the crucible. A method for producing a single crystal, characterized in that the output of each heating means facing the surface is controlled.
JP1269389A 1989-01-20 1989-01-20 Single crystal manufacturing method Expired - Fee Related JP2681114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1269389A JP2681114B2 (en) 1989-01-20 1989-01-20 Single crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1269389A JP2681114B2 (en) 1989-01-20 1989-01-20 Single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JPH02192486A JPH02192486A (en) 1990-07-30
JP2681114B2 true JP2681114B2 (en) 1997-11-26

Family

ID=11812458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1269389A Expired - Fee Related JP2681114B2 (en) 1989-01-20 1989-01-20 Single crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP2681114B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3907727B2 (en) 1995-12-26 2007-04-18 信越半導体株式会社 Single crystal pulling device
JP5104437B2 (en) * 2008-03-18 2012-12-19 株式会社Sumco Carbon doped single crystal manufacturing method

Also Published As

Publication number Publication date
JPH02192486A (en) 1990-07-30

Similar Documents

Publication Publication Date Title
US4040895A (en) Control of oxygen in silicon crystals
JP2686460B2 (en) Single crystal manufacturing method
US5260037A (en) Apparatus for producing silicon single crystal
JPH05194083A (en) Method for manufacture of silicon rod
JP2813592B2 (en) Single crystal manufacturing method
JPH10167892A (en) Method for pulling silicon single crystal
JP2681114B2 (en) Single crystal manufacturing method
EP0936289A1 (en) A method for producing a silicon single crystal
JP2020114802A (en) Method for manufacturing silicon single crystal
JP2681115B2 (en) Single crystal manufacturing method
US3261722A (en) Process for preparing semiconductor ingots within a depression
JP4013324B2 (en) Single crystal growth method
JPH10167881A (en) Method for pulling semiconductor single crystal
JPH04305087A (en) Method and device for producing single crystal
JP2759105B2 (en) Single crystal manufacturing method
JPH0474789A (en) Method for pulling up semiconductor single crystal
JPH01160892A (en) Method for controlling oxygen concentration in silicon single crystal
JPH08133886A (en) Production of single crystal
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JPH09183692A (en) Apparatus for producing silicon single crystal and method therefor
JPH02116695A (en) Production of single crystal
JPH04321590A (en) Growing method of single crystal
JPS63319288A (en) Flanged quartz crucible
JPH03174390A (en) Production device for single crystal
JPH01160893A (en) Method for controlling oxygen concentration in silicon single crystal

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees