JPS63319288A - Flanged quartz crucible - Google Patents

Flanged quartz crucible

Info

Publication number
JPS63319288A
JPS63319288A JP15626387A JP15626387A JPS63319288A JP S63319288 A JPS63319288 A JP S63319288A JP 15626387 A JP15626387 A JP 15626387A JP 15626387 A JP15626387 A JP 15626387A JP S63319288 A JPS63319288 A JP S63319288A
Authority
JP
Japan
Prior art keywords
single crystal
quartz crucible
crucible
upper edge
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15626387A
Other languages
Japanese (ja)
Other versions
JPH054358B2 (en
Inventor
Hirotoshi Yamagishi
浩利 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP15626387A priority Critical patent/JPS63319288A/en
Publication of JPS63319288A publication Critical patent/JPS63319288A/en
Publication of JPH054358B2 publication Critical patent/JPH054358B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To control the carbon content in a pulled-up single crystal Si to an extremely small value and to obtain the title crucible for pulling up a high- quality semiconductor single crystal Si rod by providing a flange inclined beyond a specified angle range from the vertical direction and having a specified width on the upper edge of a quartz crucible. CONSTITUTION:In the quartz crucible 1 to be used at the time of pulling up a semiconductor single crystal Si rod 11 by the Czochralski method, a flange 15 inclined outward at an angle of 30-120 deg. to the vertical direction and having 5-50mm width is provided on the upper edge of a cylindrical side wall. As a result, a graphite susceptor 3 and a graphite heater 2 are covered by the flange 15, and hence the CO or CO2 generated therefrom hardly reach the crucible 1. Consequently, the carbon content in the single crystal Si rod pulled up with the use of the flanged quartz crucible can be controlled to <=0.01ppm.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、チョコラルスキー法によって引上げる半導体
単結晶シリコン棒の品質向上特に炭素含有量を低減する
石英るつぼの構造に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to the structure of a quartz crucible for improving the quality of semiconductor single crystal silicon rods pulled by the Czochralski method, particularly for reducing the carbon content.

(従来の技術とその問題点) 半導体シリコン単結晶棒は、ウェーハに加工されて、半
導体素子あるいは半導体集積回路素子製造のためのシリ
コン基板に用いられるが、いかに高純度の多結晶を用い
ても、基板の炭素含有量が多くなり1 ppmaにも達
することがある。かかる基板は前記用途に適さない。た
とえば含有量が0.5Ppma程度のウェーハで半導体
素子あるいは半導体集積回路素子を製造すると、PN接
合における耐圧が低下し、またMO8構造デバイスにお
いては電極間にリーク電流を発生することもある。炭素
含有量は最低限に抑えなければならないので種々の手段
が講じられているが、以下に述べるように、いずれも充
分な効果をあげるにいたっていない。
(Prior art and its problems) Semiconductor silicon single crystal rods are processed into wafers and used as silicon substrates for manufacturing semiconductor devices or semiconductor integrated circuit devices, but no matter how high-purity polycrystals are used, , the carbon content of the substrate can be high and reach up to 1 ppma. Such substrates are not suitable for the above applications. For example, when semiconductor devices or semiconductor integrated circuit devices are manufactured using wafers with a content of about 0.5 Ppma, the withstand voltage at the PN junction decreases, and leakage current may occur between electrodes in MO8 structure devices. Since the carbon content must be kept to a minimum, various measures have been taken, but none of them have been sufficiently effective as described below.

第2図に示す装置は、従来のチョコラルスキー法による
単結晶シリコン棒製造装置であるが、石英るつぼ1に原
料として多結晶シリコンをチャージし、ヒーター2によ
って加熱溶融する。るつぼ1はグラファイトサセプター
3に嵌合し、底中央を回転軸4によって支持され、ヒー
トシールド5とともにチャンバー6内に収容されている
。雰囲気ガスは供給ロアより導入され、排出口8より排
出される。ヒーターにより加熱して多結晶シリコンを充
分溶融した後、引上げ軸9の下端に挟持した種結晶10
を融液に浸漬し引上げると単結晶11が育成される。
The apparatus shown in FIG. 2 is a conventional single crystal silicon rod manufacturing apparatus using the Czochralski method, in which polycrystalline silicon is charged as a raw material in a quartz crucible 1 and heated and melted by a heater 2. The crucible 1 is fitted into a graphite susceptor 3, the center of the bottom is supported by a rotating shaft 4, and the crucible 1 is housed in a chamber 6 together with a heat shield 5. Atmospheric gas is introduced from the supply lower and discharged from the exhaust port 8. After sufficiently melting the polycrystalline silicon by heating with a heater, the seed crystal 10 held between the lower end of the pulling shaft 9 is
When it is immersed in a melt and pulled up, a single crystal 11 is grown.

しかしながらこの方法では、チャンバー内のグラファイ
ト材より徐々に放出される酸素または水分がヒーターと
反応し酸化炭素ガスを、また石英るつぼとサセプターと
の接触により一酸化炭素ガスを生じ、これらが逆流して
シリコン融液12を汚染する。
However, in this method, oxygen or moisture gradually released from the graphite material in the chamber reacts with the heater to produce carbon oxide gas, and contact between the quartz crucible and the susceptor produces carbon monoxide gas, which flows back. The silicon melt 12 is contaminated.

これを避けるため、石英るつぼ1の上縁13をサセプタ
ー上縁14より高くすれば、るつぼ上縁がヒーターより
遠ざかって温度が低下し、ここに析出した一酸化珪素が
シリコン融液12中に落下して単結晶の育成が乱される
。またチャンバー内のグラファイト材を窒化珪素で被覆
する方法も提案されたが、汚染防止には効果があるもの
の高価に過ぎ経済的でないという問題点があった。さら
にヒートシールド5の上縁にドーナツ状円板の遮蔽具を
設ける方法も検討されたが、シリコン融液への炭素の混
入を効果的に防止することはできなかった。
To avoid this, if the upper edge 13 of the quartz crucible 1 is made higher than the upper edge 14 of the susceptor, the upper edge of the crucible will move away from the heater, the temperature will drop, and the silicon monoxide deposited here will fall into the silicon melt 12. This disturbs single crystal growth. A method of coating the graphite material in the chamber with silicon nitride has also been proposed, but although it is effective in preventing contamination, it is too expensive and uneconomical. Furthermore, a method of providing a donut-shaped disk shield on the upper edge of the heat shield 5 was considered, but it was not possible to effectively prevent carbon from entering the silicon melt.

(問題点を解決するための手段) 本発明者は、前記問題点を解決するため種々検討を重ね
た結果、石英るつぼの上縁形状を若干変更することによ
り、単結晶化率を低下させることなく、炭素含有量の少
ない単結晶シリコンを製造することに成功したのであっ
て、これはチョコラルスキー法で半導体単結晶シリコン
棒を引上げる際使用する石英るつぼにおいて、鉛直上方
向より30’ 乃至120a外に向カッチ傾き、幅が5
〜50III11である鍔を円筒状側壁上縁に設けたこ
とを特徴とする尚付石英るつぼである。
(Means for Solving the Problems) As a result of various studies to solve the above problems, the inventor of the present invention has found that the single crystallization rate can be reduced by slightly changing the shape of the upper edge of the quartz crucible. They succeeded in producing single crystal silicon with low carbon content, and this was done in a quartz crucible used for pulling semiconductor single crystal silicon rods using the Czochralski method, from 30' to 120' from vertically upward. Tilt outward, width 5
This quartz crucible is characterized in that a flange of ~50III11 is provided on the upper edge of the cylindrical side wall.

本発明の鍔付石英るつぼを使用したチョコラルスキー法
による単結晶シリコン棒の引上げ装置の一実施態様を第
1図に示す。
FIG. 1 shows an embodiment of a single-crystal silicon rod pulling device using the Czochralski method using the flanged quartz crucible of the present invention.

鍔15は、少なくともグラファイトサセプターの上縁を
カバーすればよいので、5m幅あれば充分であるが、さ
らに好ましくはグラファイトヒーターをも覆うようにす
れば完全である。シリコン単結晶の汚染を避ける本発明
の目的を助長するためには、鍔15はさらにその幅が拡
幅されることが好ましいが、ヒーター2を囲むヒートシ
ールド5を超えて拡幅することはできないのでおのずか
ら限界がある。このような理由から上限として約50m
mが選ばれる。また鍔の上方に向かう鉛直線に対する傾
き角θは30°以上1206まで増大することはできる
。また本発明の石英るつぼは一酸化珪素のシリコン融液
面への落下防止に効果がある。
Since the collar 15 only needs to cover at least the upper edge of the graphite susceptor, a width of 5 m is sufficient, but it is more preferable that it also covers the graphite heater. In order to further the objective of the present invention of avoiding contamination of the silicon single crystal, it is preferable that the width of the collar 15 is further widened, but since it cannot be widened beyond the heat shield 5 surrounding the heater 2, There is a limit. For this reason, the upper limit is approximately 50m.
m is selected. Further, the inclination angle θ with respect to the vertical line directed upward of the tsuba can be increased from 30° to 1206°. Furthermore, the quartz crucible of the present invention is effective in preventing silicon monoxide from falling onto the surface of the silicon melt.

(作用) 第1図より明らかなように、石英るつぼ上縁に外に向か
って設けた鍔15がグラファイトサセプターおよびグラ
フアイ1〜ヒーターを覆っているので、これらから発生
する一酸化炭素または二酸化炭素は石英るつぼに到達す
ることは容易でない。これは、前記酸化炭素が石英るつ
ぼの中のシリコン融液12に接触するためには、石英鍔
表面と雰囲気ガスの境界層流域を拡散で逆流しなければ
ならないためである。
(Function) As is clear from Fig. 1, the collar 15 provided outward on the upper edge of the quartz crucible covers the graphite susceptor and the graph eye 1 to the heater, so carbon monoxide or carbon dioxide is generated from these. It is not easy to reach the quartz crucible. This is because, in order for the carbon oxide to come into contact with the silicon melt 12 in the quartz crucible, it must flow back through the quartz collar surface and the boundary layer region of the atmospheric gas by diffusion.

(実施例) 第1図に示すチョコラルスキー法による単結晶シリコン
棒引上げ装置において、本発明の石英るつぼ(直径45
an、高さ40anのるつぼに幅50mm、  O’。
(Example) In the apparatus for pulling a single crystal silicon rod using the Czochralski method shown in FIG.
an, width 50mm in a crucible of height 40an, O'.

=900の鍔をとりつけたもの)にシリコン多結晶塊5
01Lgをチャージして溶融し、アンドープでアル−4
= ボンガスを内圧50mbに保ちながら、50Q/分の流
量で流入させ、引上げ方位(100)で直径160mの
単結晶シリコン棒を5バッチ引上げた。これら単結晶棒
の尾部側の同化率85%の位置からウェーハを切出し、
赤外線吸収式カーボン濃度測定器で測定したところ、置
換型カーボンは検出されなかった(この装置のカーボン
検出可能量はo、otppma以上である)。
= 900 tsuba attached) with silicon polycrystalline lump 5
Charge and melt 01Lg, and undope Al-4.
= While maintaining the internal pressure of 50 mb, Bong gas was flowed in at a flow rate of 50 Q/min, and 5 batches of single crystal silicon rods with a diameter of 160 m were pulled in the pulling direction (100). A wafer is cut from a position on the tail side of these single crystal rods where the assimilation rate is 85%,
When measured with an infrared absorption type carbon concentration meter, no substitutional carbon was detected (the amount of carbon that can be detected by this device is more than o, otppma).

(比較例) 鍔をつけない従来の石英るつぼを使った以外は実施例と
同じ条件で単結晶を引上げたところ、平均0.15pp
maの置換型カーボンが検出された。
(Comparative example) When a single crystal was pulled under the same conditions as in the example except that a conventional quartz crucible without a collar was used, the average yield was 0.15pp.
Substituted carbon of ma was detected.

(発明の効果) 上記したように、本発明の石英るつぼは引上げ単結晶シ
リコンの炭素含有量を0.01ppma以下に抑えるこ
とができ、しかも経済的で産業上有為な発明である。
(Effects of the Invention) As described above, the quartz crucible of the present invention can suppress the carbon content of pulled single crystal silicon to 0.01 ppma or less, and is an economical and industrially useful invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の鍔付石英るつぼを使用したチョコラル
スキー法による単結晶シリコン棒引上装置の縦断面図を
、第2図は従来の石英るつぼを使用したチョコラルスキ
ー法による単結晶シリコン棒引上装置の縦断面図を示す
。 1・・・石英るつぼ、    2・・・ヒーター、3・
・・サセプター、    4・・・回転軸、5・・・ヒ
ートシールド、   6・・・チャンバー、7・・・供
給口、       8・・・排出口、9・・・引上げ
軸、     10・・・種結晶、11・・・単結晶、
      12・・・融液、13・・・るつぼ上縁、
    14・・・サセプター上縁、15・・・鍔、 
       θ・・・傾き角。 銅1図
Fig. 1 is a vertical cross-sectional view of a single crystal silicon rod pulling device using the Czochralski method using the flanged quartz crucible of the present invention, and Fig. 2 is a longitudinal cross-sectional view of a single crystal silicon rod pulling device using the Czochralski method using a conventional quartz crucible. A vertical cross-sectional view of the pulling device is shown. 1...Quartz crucible, 2...Heater, 3.
... Susceptor, 4... Rotating shaft, 5... Heat shield, 6... Chamber, 7... Supply port, 8... Discharge port, 9... Pulling shaft, 10... Type Crystal, 11... Single crystal,
12... Melt liquid, 13... Upper edge of crucible,
14... Upper edge of susceptor, 15... Tsuba,
θ...Tilt angle. Copper 1 figure

Claims (1)

【特許請求の範囲】[Claims] チョコラルスキー法で半導体単結晶シリコン棒を引上げ
る際使用する石英るつぼにおいて、鉛直上方向より30
°乃至120°外に向かって傾き、幅が5〜50mmで
ある鍔を円筒状側壁上縁に設けたことを特徴とする鍔付
石英るつぼ。
In a quartz crucible used to pull a semiconductor single crystal silicon rod using the Czochralski method, the
A flange-equipped quartz crucible characterized in that a flange is provided on the upper edge of a cylindrical side wall, tilting outward at 120° and having a width of 5 to 50 mm.
JP15626387A 1987-06-23 1987-06-23 Flanged quartz crucible Granted JPS63319288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15626387A JPS63319288A (en) 1987-06-23 1987-06-23 Flanged quartz crucible

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15626387A JPS63319288A (en) 1987-06-23 1987-06-23 Flanged quartz crucible

Publications (2)

Publication Number Publication Date
JPS63319288A true JPS63319288A (en) 1988-12-27
JPH054358B2 JPH054358B2 (en) 1993-01-19

Family

ID=15623981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15626387A Granted JPS63319288A (en) 1987-06-23 1987-06-23 Flanged quartz crucible

Country Status (1)

Country Link
JP (1) JPS63319288A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363581U (en) * 1989-10-27 1991-06-20
JPH04236153A (en) * 1991-01-11 1992-08-25 Nippon Densan Corp Spindle motor
JPH04106367U (en) * 1991-02-18 1992-09-14 小松電子金属株式会社 Graphite crucible for semiconductor single crystal pulling equipment
JP2011121843A (en) * 2009-12-14 2011-06-23 Japan Siper Quarts Corp Crucible for pulling single crystal, and method for pulling single crystal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5537460A (en) * 1978-09-07 1980-03-15 Sanyo Electric Co Ltd Structure of crucible
JPS5627244U (en) * 1979-08-07 1981-03-13
JPS6228880U (en) * 1985-08-02 1987-02-21

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629190A (en) * 1979-08-20 1981-03-23 Tokyo Shibaura Electric Co Nuclear reactor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5537460A (en) * 1978-09-07 1980-03-15 Sanyo Electric Co Ltd Structure of crucible
JPS5627244U (en) * 1979-08-07 1981-03-13
JPS6228880U (en) * 1985-08-02 1987-02-21

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0363581U (en) * 1989-10-27 1991-06-20
JPH04236153A (en) * 1991-01-11 1992-08-25 Nippon Densan Corp Spindle motor
JPH04106367U (en) * 1991-02-18 1992-09-14 小松電子金属株式会社 Graphite crucible for semiconductor single crystal pulling equipment
JP2011121843A (en) * 2009-12-14 2011-06-23 Japan Siper Quarts Corp Crucible for pulling single crystal, and method for pulling single crystal

Also Published As

Publication number Publication date
JPH054358B2 (en) 1993-01-19

Similar Documents

Publication Publication Date Title
US4330362A (en) Device and process for pulling high-purity semiconductor rods from a melt
CA1261715A (en) Apparatus and process for growing monocrystals of semiconductor materials from shallow crucibles by czochralski technique
EP0229322A2 (en) Method and apparatus for Czochralski single crystal growing
JPH037637B2 (en)
KR101563221B1 (en) Single crystal manufacturing apparatus and manufacturing method
JP2580197B2 (en) Single crystal pulling device
JPH0639351B2 (en) Apparatus and method for manufacturing single crystal ingot
JP2813592B2 (en) Single crystal manufacturing method
JPS60251191A (en) Process for growing single crystal of compound having high dissociation pressure
JPS63319288A (en) Flanged quartz crucible
JPH10167892A (en) Method for pulling silicon single crystal
JP3750174B2 (en) Single crystal manufacturing apparatus and manufacturing method
JP2937109B2 (en) Single crystal manufacturing apparatus and manufacturing method
JP2528309B2 (en) Single crystal growth equipment
JP2002321997A (en) Apparatuses for making silicon single crystal and method for making silicon single crystal using the same
JP2681115B2 (en) Single crystal manufacturing method
JP2783049B2 (en) Method and apparatus for manufacturing single crystal silicon rod
JP2520925B2 (en) Method for controlling oxygen concentration in silicon single crystal
JP2520926B2 (en) Method for controlling oxygen concentration in silicon single crystal
JP2690419B2 (en) Single crystal growing method and apparatus
EP0221051A1 (en) Method and apparatus for growing single crystal bodies
JPH0543381A (en) Apparatus for growing single crystal by molten layer process and method for controlling oxygen concentration in single crystal using the apparatus
JP2710433B2 (en) Single crystal pulling device
JPH04198086A (en) Process for growing single crystal
JPH02116695A (en) Production of single crystal