JPH0639351B2 - Apparatus and method for manufacturing single crystal ingot - Google Patents

Apparatus and method for manufacturing single crystal ingot

Info

Publication number
JPH0639351B2
JPH0639351B2 JP62222259A JP22225987A JPH0639351B2 JP H0639351 B2 JPH0639351 B2 JP H0639351B2 JP 62222259 A JP62222259 A JP 62222259A JP 22225987 A JP22225987 A JP 22225987A JP H0639351 B2 JPH0639351 B2 JP H0639351B2
Authority
JP
Japan
Prior art keywords
single crystal
cylinder
pulling
crystal rod
collar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62222259A
Other languages
Japanese (ja)
Other versions
JPS6465086A (en
Inventor
幹夫 好宮
友彦 太田
正 庭山
哲宏 小田
亨彦 水野
正巳 中野
啓 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP62222259A priority Critical patent/JPH0639351B2/en
Publication of JPS6465086A publication Critical patent/JPS6465086A/en
Publication of JPH0639351B2 publication Critical patent/JPH0639351B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は単結晶棒の製造装置及び方法に関し、特には積
層欠陥や微小欠陥のない高純度シリコン単結晶棒を高い
生産能率をもって製造する装置と方法に関するものであ
る。
Description: TECHNICAL FIELD The present invention relates to an apparatus and method for producing a single crystal ingot, and in particular, an apparatus for producing a high-purity silicon single crystal ingot having no stacking fault or microdefect with high production efficiency. And about the method.

(従来の技術とその問題点) 高純度単結晶棒の代表的な製造方法は、チョクラルスキ
ー法と浮遊帯域法であるが、半導体集積回路素子の製造
には、前者が多用されている。
(Prior Art and its Problems) Typical methods for producing high-purity single crystal ingots are the Czochralski method and the floating zone method, but the former is frequently used in the production of semiconductor integrated circuit elements.

このチョクラルスキー法でシリコン単結晶棒を製造する
場合を第3図により説明すると、引上室(金属製チャン
バー)のほぼ中央に、黒鉛サセプター2に保持された
石英るつぼ3を設け、黒鉛サセプターの底部中央を回転
・上下自在の支持軸4で下方より支持する。石英るつぼ
の中に原料の多結晶シリコンを装填し、これを保温体5
で囲繞された黒鉛ヒーター6により加熱、溶融して溶融
体7とする。引上室1の天井中央には開口部8を有し、
これに接続したサブチャンバー9の中を通って先端に種
結晶10を保持した回転、上下自在の引上軸11を降下し、
溶融体7に浸漬した後引上軸11、石英るつぼ3を回転し
ながら種結晶を引上げると、その下に単結晶棒12を成長
させることができる。この間保護ガスたとえばアルゴン
ガスをサブチャンバー9の上部より導入し、13→13′、
14→14′に示す流路を通して排出口15より排出する。
A case where a silicon single crystal ingot is manufactured by the Czochralski method will be described with reference to FIG. 3, in which a quartz crucible 3 held by a graphite susceptor 2 is provided at approximately the center of a pulling chamber (metal chamber) 1. The center of the bottom portion of the susceptor is supported from below by a support shaft 4 which is rotatable and vertically movable. The raw material polycrystalline silicon was loaded into the quartz crucible, and this was used as the heat insulator 5.
The graphite heater 6 surrounded by is heated and melted to form a melt 7. There is an opening 8 in the center of the ceiling of the pulling room 1,
The sub-chamber 9 connected to this is passed through the sub-chamber 9, and the rotating and vertically movable pulling shaft 11 holding the seed crystal 10 at its tip is lowered,
When the seed crystal is pulled up while being rotated in the pulling shaft 11 and the quartz crucible 3 after being immersed in the melt 7, the single crystal ingot 12 can be grown under the seed crystal. During this time, a protective gas such as argon gas is introduced from the upper part of the sub-chamber 9, and 13 → 13 ′,
It is discharged from the discharge port 15 through the flow path indicated by 14 → 14 ′.

導入する保護ガスはきわめて高純度であるが、引上室内
において石英るつぼ3とシリコン溶融体7とが反応して
生成したSiO蒸気を含む。このSiO蒸気の大部分は流路13
→13′、14→14′を通り引上室外に排出されるが、一部
は石英るつぼの上端縁や引上室内壁にそれぞれアモルフ
ァス凝集体16、17となって付着する。これが引上げる単
結晶棒12と溶融体表面の周辺とに発生する乱流18、18′
によって導かれ、単結晶棒と溶融体との界面近くに落下
して単結晶棒の有転位化や多結晶化の原因となった。
The protective gas to be introduced has an extremely high purity, but contains SiO vapor generated by the reaction between the quartz crucible 3 and the silicon melt 7 in the pulling chamber. Most of this SiO vapor is in the flow path 13
→ 13 ', 14 → 14' is discharged to the outside of the pulling chamber, but some of them adhere to the upper edge of the quartz crucible and the pulling chamber inner wall as amorphous aggregates 16 and 17, respectively. This causes turbulent flow 18, 18 'generated around the single crystal rod 12 that is pulled up and around the melt surface.
Led to near the interface between the single crystal rod and the melt, causing dislocation and polycrystallization of the single crystal rod.

また黒鉛サセプター2、黒鉛ヒーター6、保温体5(黒
鉛フェルト)等の素材に含まれ、空焼きによっても除去
し得なかった吸蔵酸素や水分が、高温に加熱されたこれ
らの炭素質材と反応してCOやCO2ガスを生成し、引
上室の排気置換が不十分のために引上室内に滞留してい
る不純物ガスと共に、乱流18、18′に導かれて溶融体表
面に還流接触し、単結晶シリコン棒中の炭素等の不純物
濃度を高め、この単結晶棒よりつくったウエーハの集積
回路素子の特性を劣化させる原因となっていた。最近の
技術の進歩によって、単結晶棒の炭素汚染はいちじるし
く減少しているが、必ずしも満足すべきものではなく、
場合によっては0.1〜0.3ppmaの汚染のみられることがあ
る。
In addition, the stored oxygen and water contained in the materials such as the graphite susceptor 2, the graphite heater 6, and the heat retaining body 5 (graphite felt) and could not be removed even by the air baking react with these carbonaceous materials heated to a high temperature. To generate CO or CO 2 gas, which is led to the turbulent flows 18 and 18 ′ and refluxed to the surface of the melt together with the impurity gas remaining in the pulling chamber due to insufficient exhaust gas replacement in the pulling chamber. The contact with each other increases the concentration of impurities such as carbon in the single crystal silicon rod, which causes the deterioration of the characteristics of the integrated circuit element of the wafer made from this single crystal rod. Due to recent technological advances, carbon contamination of single crystal rods has been significantly reduced, but it is not always satisfactory.
In some cases, 0.1 to 0.3 ppma contamination may occur.

単結晶棒12の引上速度は、固液界面における単結晶棒の
温度勾配によって調節しなければならないが、この温度
勾配は黒鉛サセプター2、石英るつぼ3、溶融体7等か
らの輻射熱の影響を大きく受ける。また引上単結晶棒の
直径が大きくなれば引上速度も低下しなければならな
い。通常この速度は、装置や製造条件によっても異なる
が、一例をあげると4″φの単結晶棒では1.0mm/分で
あるが、6″φでは0.8mm/分である。
The pulling rate of the single crystal rod 12 must be adjusted by the temperature gradient of the single crystal rod at the solid-liquid interface, and this temperature gradient is influenced by the radiation heat from the graphite susceptor 2, the quartz crucible 3, the melt 7, etc. Receive big. Further, if the diameter of the pulling single crystal ingot increases, the pulling speed must decrease. This speed is usually 1.0 mm / min for a 4 ″ φ single crystal rod, but 0.8 mm / min for a 6 ″ φ, although it varies depending on the equipment and manufacturing conditions.

シリコン単結晶基板上に集積回路素子を高密度で形成す
る場合は、熱酸化工程で基板表面に酸化誘起欠陥(Oxida
tion Induced Stacking Fault以下OISFという)、
スワール欠陥(Swirl Defect)その他の微小欠陥が形成さ
れ易く、電子回路素子の特性を劣化させ、製品収率をい
ちじるしく低下させるが、従来のチョクラルスキー法の
装置においてはこれらの諸欠陥の発生を抑制することは
困難であった。
When forming high density integrated circuit devices on a silicon single crystal substrate, oxidation-induced defects (Oxida
tion Induced Stacking Fault (hereinafter referred to as OISF),
Swirl Defects and other small defects are easily formed, which deteriorates the characteristics of electronic circuit elements and significantly lowers the product yield.However, in the conventional Czochralski method device, these defects are generated. It was difficult to control.

かかる問題点を解決するため従来下記のような提案がな
されている。
In order to solve such problems, the following proposals have hitherto been made.

特公昭51-47153号公報。Japanese Patent Publication No. 51-47153.

これには、引上げ中の単結晶棒を囲み、溶融体の上方に
熱遮蔽輪を配設し、これを単結晶棒に対し上下させて単
結晶棒の温度勾配を調節し、固液界面を平面化して転位
のような結晶欠陥のない単結晶棒を引上げることができ
るとの記載があるが、これには異物や不純物に対する対
策は記載されていない。
To this end, a single crystal rod being pulled is surrounded, a heat shield ring is arranged above the melt, and this is moved up and down with respect to the single crystal rod to adjust the temperature gradient of the single crystal rod, and to establish a solid-liquid interface. Although it is described that a single crystal ingot having no crystal defects such as dislocation can be pulled up by planarization, no countermeasure against foreign matter or impurities is described therein.

特公昭54-6511号公報。Japanese Patent Publication No. 54-6511.

これには、単結晶棒を囲繞する管を設け、棒と管の間隙
に雰囲気ガスを導入し、その吹付け効果により、単結晶
棒の引上げ系内にSiOが析出、散乱することを防止する
記載があるが、炭素不純物やOISFその他の引上条件
に伴う結晶欠陥発生に対する対策は考慮されていない。
For this, a tube surrounding the single crystal rod is provided, atmospheric gas is introduced into the gap between the rod and the tube, and the spraying effect prevents SiO from precipitating and scattering in the pulling system of the single crystal rod. Although it is described, no countermeasure is taken for the occurrence of crystal defects due to carbon impurities, OISF and other pulling conditions.

特公昭57-40119号公報 これには、平たい環状リムと同リムに取付けた連結部よ
りなるカバー部材で石英るつぼと溶融体を部分的にカバ
ーする記載があるが、実施上の難点としては複雑な構造
であり、溶融体の全表面を覆っているカバー部材は高温
による損傷を受け易く、それによる製品への不純物混入
の危険性がある。
JP-B-57-40119 discloses that the quartz crucible and the melt are partially covered by a cover member composed of a flat annular rim and a connecting part attached to the rim, but it is complicated as a practical problem. The cover member, which has a simple structure and covers the entire surface of the melt, is easily damaged by high temperature, and there is a risk of impurities being mixed into the product.

以上のほか、熱酸化後シリコン表面にOISF等の微小
欠陥が発生するのを防止するため種々研究が行われ、こ
の発生の原因はシリコン基板表面の微小機械歪または熱
処理過程に発生する点欠陥の凝集あるいはナトリウム、
アルミニウムまたは鉄による表面汚染などであることが
分かった。さらに最近の研究において、シリコン基板中
の酸素が原因となるいわゆる微小欠陥に注目し、高温に
おけるアウトデヒュージョンにより、熱酸化の際シリコ
ン基板表面に酸素欠乏層を意図的に作る集積回路素子製
造技術が開発された。さらにこのような熱酸化による積
層欠陥発生原因を追及した結果、ウエーハに含まれる酸
素のアウトデヒュージョンを主体とする熱処理技術の改
良によって、熱酸化時の積層欠陥発生を大幅に減少させ
ることができるようになった。しかしながら近年集積回
路素子が一層高密度化するにつれ、この積層欠陥密度を
さらに低下させ、実質的に零とすることが要請されるよ
うになった。
In addition to the above, various studies have been conducted in order to prevent the generation of minute defects such as OISF on the silicon surface after thermal oxidation. The cause of this generation is the small mechanical strain of the silicon substrate surface or the point defects generated during the heat treatment process. Agglomeration or sodium,
It was found to be surface contamination with aluminum or iron. Furthermore, in recent research, attention has been paid to so-called minute defects caused by oxygen in the silicon substrate, and the out-diffusion at high temperature intentionally creates an oxygen-deficient layer on the surface of the silicon substrate during thermal oxidation to produce an integrated circuit device manufacturing technology. Was developed. Further, as a result of investigating the cause of stacking fault occurrence due to such thermal oxidation, the stacking fault occurrence during thermal oxidation can be significantly reduced by the improvement of the heat treatment technique mainly based on the out-diffusion of oxygen contained in the wafer. It became so. However, as the density of integrated circuit devices has increased in recent years, it has been required to further reduce the stacking fault density to substantially zero.

(問題点を解決するための手段) 本発明はかかる背景に基いて単結晶棒の引上げ条件を検
討し、特にシリコン多結晶の溶融体が単結晶化し、さら
に冷却される各過程の温度ならびに冷却速度を調節する
ことがOISFやスワール欠陥の減少に有効であること
に想到した。
(Means for Solving Problems) Based on such a background, the present invention has examined the pulling conditions of a single crystal ingot, and in particular, the temperature and cooling of each process in which a melt of silicon polycrystal is single crystallized and further cooled. We have found that adjusting the speed is effective in reducing OISF and swirl defects.

このような改良を行う本発明は、引上げ中の単結晶棒を
囲繞する黒鉛円筒のほかに、その下端にカラーを設け、
その高さ、拡開角を適宜調節することにより、溶融体及
び黒鉛ヒーターから単結晶棒が受ける輻射熱を効果的に
遮断し、単結晶棒引上げ中の熱履歴を広範囲に調節制御
することを可能にする。
The present invention to make such an improvement, in addition to the graphite cylinder surrounding the single crystal rod being pulled, a collar is provided at the lower end thereof,
By appropriately adjusting the height and spread angle, it is possible to effectively block the radiant heat received by the single crystal rod from the melt and the graphite heater, and control the heat history during pulling the single crystal rod in a wide range. To

本発明の他の効果は、従来法で問題となった、SiOのシ
リコン溶融体表面への落下による単結晶化率の低下及び
引上げ単結晶棒の炭素汚染を阻止し、従来法に比較して
50〜100%以上の高速引上げを可能とし、きわめて効率
のよい生産を行い得ることである。すなわちかかる発明
のうち第1の発明は、 1)チョクラルスキー法による単結晶棒の製造装置におい
て、引上単結晶棒を同軸に囲繞する円筒を設け、その一
端は引上室天井中央の開口縁に気密結合し、他端は石英
るつぼ内の溶融体表面に向けて垂下し外上方に折り返し
て拡開されたカラーを有してなることを特徴とする単結
晶棒の製造装置を要旨とするものであり、この場合 2)前記円筒の下端と溶融体表面との距離が5〜50mmで、
該円筒と引上単結晶棒との間隙が5〜100mmで、前記カ
ラーの外側面と石英るつぼの内壁または上端いずれかと
の最短距離が5〜100mmであり、 3)前記カラーと円筒は、相互に着脱可能であることが特
徴である。
Another effect of the present invention is to prevent the carbon contamination of the pulled single crystal rod and the decrease in the single crystallization rate due to the drop of SiO on the surface of the silicon melt, which is a problem in the conventional method, and compared with the conventional method.
High-speed pulling of 50-100% or more is possible and extremely efficient production can be performed. That is, the first aspect of the invention is as follows: 1) In the apparatus for producing a single crystal rod by the Czochralski method, a cylinder that coaxially surrounds the pulling single crystal rod is provided, and one end of the cylinder has an opening in the center of the pulling chamber ceiling. A gist of an apparatus for manufacturing a single crystal rod is characterized in that it has a collar that is airtightly bonded to an edge and that the other end hangs down toward the surface of the melt in the quartz crucible and folds back upward and expands. In this case, 2) the distance between the lower end of the cylinder and the surface of the melt is 5 to 50 mm,
The gap between the cylinder and the pulled single crystal rod is 5 to 100 mm, and the shortest distance between the outer surface of the collar and either the inner wall or the upper end of the quartz crucible is 5 to 100 mm, 3) the collar and the cylinder are mutually It is characterized by being removable.

また第2の発明は、 4)引上単結晶棒を同軸に囲繞し、一端は引上室天井中央
の開口縁に気密結合し、他端は石英るつぼ内の溶融体表
面に向けて垂下し外上方に折り返して拡開されたカラー
を有する円筒を設けたチョクラルスキー法による単結晶
棒の製造装置を使用して、単結晶棒を1.1mm/分以上の
引上速度で製造することを特徴とする単結晶棒の製造方
法を要旨とするものであり、この場合 5)前記円筒の下端と溶融体表面との距離が5〜50mmで、
該円筒と引上単結晶棒との間隙が5〜100mmで、前記カ
ラーの外側面と石英るつぼの内壁または上端いずれかと
の最短距離が5〜100mmであることが特徴である。
Further, the second invention is 4) coaxially surrounding a pulling single crystal rod, one end of which is hermetically coupled to an opening edge in the center of the pulling chamber ceiling, and the other end of which is hung toward the surface of the melt in the quartz crucible. Using a Czochralski method for producing single crystal rods, which is provided with a cylinder having a collar that is folded back upward and outward, it is possible to produce single crystal rods at a pulling rate of 1.1 mm / min or more. The gist is a method for producing a characteristic single crystal ingot, in which case 5) the distance between the lower end of the cylinder and the melt surface is 5 to 50 mm,
The gap between the cylinder and the pulled single crystal rod is 5 to 100 mm, and the shortest distance between the outer surface of the collar and either the inner wall or the upper end of the quartz crucible is 5 to 100 mm.

(作用) 以下図面によって本発明の装置と方法を説明する。(Operation) The apparatus and method of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施態様を示す装置で、引上室
中央に黒鉛サセプター2に保持された石英るつぼ3を設
け、黒鉛サセプターは底部中央を回転、上下自在の支持
軸4によって下方より支持される。引上室は天井中央に
開口部8を有し、サブチャンバー9はこれに接続し、サ
ブチャンバー内に回転、上下自在の引上軸11を備え、
前記開口部8の縁に一端を気密に結合し他端を溶融体に
向かって垂下する円筒19を設けるが、この他端には折返
して外上方に向かって拡開するカラー20が形成されてい
る。サブチャンバー上方には保護ガス導入口21が、引上
室底部には排出口15が開口している。
FIG. 1 shows an apparatus according to an embodiment of the present invention, in which a quartz crucible 3 held by a graphite susceptor 2 is provided in the center of a pulling chamber 1 , and the graphite susceptor is rotated around the center of the bottom by a support shaft 4 which is vertically movable. It is supported from below. The pull-up chamber has an opening 8 in the center of the ceiling, the sub-chamber 9 is connected to the pull-up chamber, and the pull-up shaft 11 that is rotatable and vertically movable is provided in the sub-chamber.
A cylinder 19 is provided at the edge of the opening 8 so that one end is airtightly coupled and the other end is hung down toward the melt. A collar 20 is formed at this other end and is folded back and spreads outward and upward. There is. A protective gas inlet 21 is opened above the sub chamber, and an outlet 15 is opened at the bottom of the pulling chamber.

円筒19の上端と開口部8の縁との結合は、必ずしも高度
の気密性を要せず、円筒中に導入した保護ガスがある程
度洩れることはかまわない。
The connection between the upper end of the cylinder 19 and the edge of the opening 8 does not necessarily require a high degree of airtightness, and the protective gas introduced into the cylinder may leak to some extent.

つぎに本発明の上記装置の構成と作用効果を述べる。Next, the configuration and operational effects of the above device of the present invention will be described.

まず石英るつぼ3に原料の多結晶シリコンを装填し、引
上室1を排気し、保護ガスを導入口21より導入し、排出
口15より排出して引上室内を保護ガス雰囲気に置換す
る。ついで黒鉛ヒーター6に所定電流を流して原料を加
熱し溶融体7とした後、引上軸11を下降しその下端に保
持した種結晶10を一旦溶融体7に浸漬し、支持軸4、引
上軸11を回転しながら、種結晶10を引上げると、その下
端に単結晶棒12が成長する。
First, the raw material polycrystalline silicon is loaded into the quartz crucible 3, the pulling chamber 1 is evacuated, the protective gas is introduced through the inlet 21, and the outlet 15 is discharged to replace the inside of the pulling chamber with the protective gas atmosphere. Then, a predetermined current is applied to the graphite heater 6 to heat the raw material to form a melt 7, and then the pulling shaft 11 is lowered and the seed crystal 10 held at the lower end thereof is once dipped in the melt 7 and the supporting shaft 4 is pulled. When the seed crystal 10 is pulled up while rotating the upper shaft 11, the single crystal rod 12 grows at the lower end thereof.

引上げ中の単結晶棒の温度は、固化界面からの熱伝導を
除けば、他は円筒を通じての間接輻射加熱によって決ま
るので、引上げ中の単結晶棒の冷却速度を早めるには、
カラーが溶融体、ヒーター及び黒鉛サセプターからの円
筒に対する直接輻射をさえぎることが必要であり、また
カラーと円筒とは近接しないのが望ましい。
The temperature of the single crystal rod during pulling is determined by indirect radiant heating through the cylinder, except for heat conduction from the solidification interface, so to increase the cooling rate of the single crystal rod during pulling,
It is necessary that the collar block direct radiation from the melt, heater and graphite susceptor to the cylinder, and it is desirable that the collar and cylinder are not in close proximity.

このために前記カラーの幾何学的寸法はつぎのように設
定することが必要である。
For this reason, the geometrical dimensions of the collar must be set as follows.

たとえばカラーが鉛直線からの角度αだけ傾いた直線を
母線とする円筒下端よりただちに外上方に折返し拡開し
た中空截頭逆円錐形である場合、角度αは0〜90°が有
効であり、さらに好ましくはおよそ15〜70°である。
For example, if the collar is a hollow truncated inverted conical shape that expands immediately upward and outward from the lower end of the cylinder with a straight line inclined by an angle α from the vertical line as a generatrix, then an angle α of 0 to 90 ° is effective, More preferably, it is about 15 to 70 °.

角度αが15〜70°の場合は、円筒ひいては単結晶棒に対
する熱遮蔽効果が大きく、引上げ中の単結晶棒の引上室
中央部における冷却が促進され、単結晶棒の急冷が行わ
れ、結晶内部に含まれる微量不純物特に酸素はほぼ溶存
状態で分散固定されるので微小欠陥の発生は大幅に抑制
され、特にOISFおよびスワール欠陥の全く発生しな
い単結晶棒を成長させることができる。この結果集積回
路素子製造工程で、デヌーデッドゾーン及びイントリン
シックゲッタリング形成のために低温たとえば600〜800
℃、高温たとえば1100〜1200℃の両処理を前処理として
行う必要がなくなり、ただちに中温処理たとえば1000℃
のみでデヌーデッドゾーン及びイントリンシックゲッタ
リングの同時形成が可能になるという利点が得られる。
When the angle α is 15 to 70 °, the heat shielding effect on the cylinder and by extension the single crystal rod is large, cooling in the center of the pulling chamber of the single crystal rod during pulling is promoted, and the single crystal rod is rapidly cooled, Since trace impurities contained in the crystal, particularly oxygen, are dispersed and fixed in a substantially dissolved state, the generation of microdefects is greatly suppressed, and in particular, a single crystal rod free from OISF and swirl defects can be grown. As a result, in the integrated circuit device manufacturing process, a low temperature, for example, 600 to 800, is formed due to formation of a denuded zone and intrinsic gettering.
It is no longer necessary to perform both pre-treatment at ℃ and high temperature such as 1100 to 1200 ℃.
The advantage of being able to simultaneously form the denuded zone and the intrinsic gettering is obtained with only this.

角度αが15°より小さい場合、あるいは70°より大きい
場合には、いずれも15〜70°の範囲の場合と比較して円
筒の温度が上昇し、円筒からの輻射熱が強くなって、引
上げ中の単結晶棒が冷却されにくくなる。
When the angle α is smaller than 15 ° or larger than 70 °, the temperature of the cylinder rises and the radiant heat from the cylinder becomes stronger than when the angle α is in the range of 15 to 70 °. It becomes difficult for the single crystal rod to be cooled.

角度αが15°より小さい場合には、もちろんシリコン溶
融体の表面、黒鉛サセプターおよびヒーターからの輻射
熱がカラーによって遮断され得るが、カラーと円筒が接
近するため円筒の温度が上昇し、引上げ中の単結晶棒の
冷却は困難となる。
When the angle α is smaller than 15 °, of course, the radiant heat from the surface of the silicon melt, the graphite susceptor and the heater can be blocked by the collar, but the temperature of the cylinder rises due to the proximity of the collar and the cylinder, It becomes difficult to cool the single crystal ingot.

引上げ中の単結晶棒の冷却は、単結晶棒上端の種結晶を
通じての熱伝導および円筒中で下方に流れる保護ガスの
単結晶棒表面との熱交換で行われるが、円筒からの輻射
熱が大きいと引上げ中の単結晶棒の冷却が困難となるの
である。
Cooling of the single crystal rod during pulling is performed by heat conduction through the seed crystal at the upper end of the single crystal rod and heat exchange with the surface of the single crystal rod of the protective gas flowing downward in the cylinder, but the radiation heat from the cylinder is large. Therefore, it becomes difficult to cool the single crystal rod during pulling.

また角度αが70°を超える場合には、シリコン溶融体表
面の一部、黒鉛サセプターおよびヒーターからの直接輻
射が円筒に与えられ、角度が小さい場合と結果的には同
様な熱的効果が引上げ中の単結晶棒に起こり、充分な冷
却が困難となるのである。
If the angle α exceeds 70 °, direct radiation from a part of the surface of the silicon melt, the graphite susceptor and the heater is given to the cylinder, resulting in the same thermal effect as when the angle is small. It occurs in the single crystal rod inside and it becomes difficult to cool it sufficiently.

以上の場合においてαの数値は15°または70°で区別さ
れたが、引上げ単結晶棒の直径、使用する円筒の直径、
その先端の溶融体からの距離、使用する石英るつぼの内
径、溶融体の石英るつぼ上端部からの深さによって多少
の変化があり、必ずしも厳密なものではない。αの値が
15〜70°以外の場合、あるいは15〜70°以内の場合であ
ってもその両側の上下限値に近い場合には、引上げ単結
晶棒中央部の冷却速度は緩やかになり、単結晶棒引上げ
中に微小欠陥が成長し、このような単結晶棒から得られ
たシリコン基板は、特に微小欠陥によるゲッター効果す
なわちイントリンシックゲッタリング効果の高い性質を
もたせることができる。
In the above cases, the numerical value of α was distinguished by 15 ° or 70 °, but the diameter of the pulled single crystal rod, the diameter of the cylinder used,
There is some variation depending on the distance of the tip from the melt, the inner diameter of the quartz crucible to be used, and the depth of the melt from the upper end of the quartz crucible. the value of α is
If the temperature is outside the range of 15 to 70 °, or if it is within the range of 15 to 70 ° and is close to the upper and lower limits on both sides, the cooling rate at the center of the pulled single crystal rod becomes slow and the single crystal rod is pulled up. A silicon substrate obtained from such a single crystal rod in which microdefects grow can have a high getter effect, that is, an intrinsic gettering effect due to the microdefect.

このような微小欠陥の意図的な成長は、αが15〜70°の
場合であっても、単結晶棒と円筒の間の間隙を小さくし
て単結晶棒の冷却効果を制限することによっても実現で
きる。またαの値が15°より小さく70°より大きい場合
にもOISFおよびスワール欠陥の発生は充分に抑制さ
れ、さらに集積回路素子製造工程の最初の熱処理工程
で、高温度たとえば1200℃を選択することにより、実用
に耐えるデヌーデッドゾーンを形成することができる。
Even if α is 15 to 70 °, the intentional growth of such microdefects can be achieved by reducing the gap between the single crystal rod and the cylinder to limit the cooling effect of the single crystal rod. realizable. Also, when the value of α is smaller than 15 ° and larger than 70 °, the occurrence of OISF and swirl defects is sufficiently suppressed, and a high temperature such as 1200 ° C is selected in the first heat treatment step of the integrated circuit device manufacturing process. Thereby, the denuded zone which can endure practical use can be formed.

本発明において、カラーの熱遮蔽効果を高めるには、角
度αを調節するとともに適当な高さと直径の選択が必要
であるが、カラーの高さには特に制限はないが、円筒の
長さを超えることはできない。
In the present invention, in order to enhance the heat shield effect of the collar, it is necessary to adjust the angle α and select an appropriate height and diameter, but the height of the collar is not particularly limited, but the length of the cylinder is It cannot be exceeded.

また本発明の円筒とカラーとの組合せによってつぎのよ
うなもう一つの効果が得られる。
Further, the combination of the cylinder and the collar of the present invention can obtain the following other effect.

カラーと石英るつぼ内壁と該石英るつぼ中に保持される
シリコン溶融体表面で形成される空間は、カラーのない
場合と比較して、いちじるしくシリコン溶融体表面の空
間が制限されるため、円筒とシリコン単結晶棒との間の
間隙を通って導入された保護ガスたとえばアルゴンガス
はシリコン溶融体表面に到達した後、反転して石英るつ
ぼ外へ排出されるとき、シリコン溶融体表面上での滞留
時間が短く制限され、石英るつぼ内壁とカラー上端縁と
の間の狭い間隙を比較的高速で通過し、石英るつぼ内壁
および/またはカラー上端縁の表面を洗うように流れる
ので、従来技術で問題となっていたシリコン溶融体から
蒸発するSiOの石英るつぼ上端縁への凝集が全くなく、
また引上室の黒鉛サセプター、ヒーター及びこれらを囲
繞する黒鉛保温体に起因するCO又はCO2が逆流して
シリコン溶融体を炭素で汚染することもなくなる。
The space formed by the collar, the inner wall of the quartz crucible and the surface of the silicon melt held in the quartz crucible is significantly limited as compared with the case without the collar, so that the space on the surface of the silicon melt is significantly limited. When the protective gas introduced through the gap between the single crystal rod and the argon gas reaches the surface of the silicon melt and then reverses and is discharged to the outside of the quartz crucible, the residence time on the surface of the silicon melt. Is limited to a short time, flows through the narrow gap between the inner wall of the quartz crucible and the upper edge of the collar at a relatively high speed, and flows like washing the inner wall of the quartz crucible and / or the upper edge of the collar. There was no aggregation of SiO evaporated from the silicon melt on the upper edge of the quartz crucible,
In addition, the carbon susceptor in the pull-up chamber, the heater, and the carbon or CO 2 originating from the graphite heat insulator surrounding them do not flow back to contaminate the silicon melt with carbon.

以上のような炭素汚染やSiOの石英るつぼの内壁や上端
縁への凝集を妨げるためのカラーの形状寸法は、シリコ
ン溶融体表面上の保護ガスを制限するため、カラーとシ
リコン溶融体表面および石英るつぼ内壁との空間をほぼ
閉空間に制限し、カラーと石英るつぼ内壁または上端縁
との最小間隙は、引上げ開始から終了まで、5〜100mm
の間になるようカラーを設計し、円筒の下端に付設する
のが望ましい。引上げ過程のなかで、カラーが石英るつ
ぼの中に完全に入る場合には、たとえばそれが中空截頭
逆円錐形のときは、そのカラー上端の最大外径部と石英
るつぼ内壁との間隔は5〜100mmになるよう調節する。
The shape and size of the collar to prevent carbon contamination and agglomeration of SiO on the inner wall and upper edge of the quartz crucible as described above limit the protective gas on the surface of the silicon melt, so that the collar and the surface of the silicon melt and the quartz The space between the inner wall of the crucible and the inner wall of the quartz crucible is limited to a closed space.
It is desirable to design the collar so that it is located between them and attach it to the lower end of the cylinder. During the pulling process, when the collar is completely inside the quartz crucible, for example when it is a hollow truncated cone, the maximum outer diameter of the upper end of the collar and the inner wall of the quartz crucible are 5 Adjust to ~ 100mm.

つぎに本発明において、単結晶棒の引上速度はOISF
発生防止と生産性向上のため早くする必要がある。引上
げ単結晶棒の直径や引上げ条件により異なるが、速度が
1.0mm/分以下では、OISF及びスワール欠陥が多発
するので、速度は1.0mm/分以上にするのが望ましい。
Next, in the present invention, the pulling speed of the single crystal rod is OISF.
It is necessary to speed up to prevent occurrence and improve productivity. Depending on the diameter of the pulled single crystal rod and the pulling conditions, the speed is
If the speed is 1.0 mm / min or less, OISF and swirl defects occur frequently, so the speed is preferably 1.0 mm / min or more.

高速引上げを実現するには、シリコン溶融体と成長しつ
つあるシリコン単結晶棒との固液界面すなわち成長界面
の固体側の成長軸方向の温度勾配を高めることが必要で
あり、このためには、円筒と単結晶棒との間の間隙を、
一定の範囲に制限することを要し、また円筒下端とシリ
コン溶融体表面との距離をある値に制限する必要のある
ことを実験的に確かめた。すなわち円筒内径と引上げ単
結晶棒との間隙が5〜100mmであり、また円筒先端とシ
リコン溶融体表面との距離は5〜50mmに制限するのが好
ましい。円筒と単結晶棒の間隙が5mm以下では、引上げ
単結晶棒が引上げ中若干の偏心運動を起こして円筒内壁
に接触したり、また引上げ単結晶棒の直径の制御不良の
ため接触することがあるのでこれらを避ける意味と、間
隙が小さくなりすぎると、ガス流の分散が不均一になっ
て上記カラー外面とシリコン溶融体表面及び石英るつぼ
内壁との間の空間におけるガス流が不均一となるのを防
ぐ意味である。また単結晶棒直径と円筒内径の間隙が10
0mmを超えると、この間隙を流れる保護ガスの流速が低
下し、保護ガスによる冷却効果が低下するうえ、保護ガ
スの浪費となる。つぎに円筒下端がシリコン溶融体表面
に5mm以下に近接すると、シリコン溶融体表面にガス流
により振動が起き単結晶化に悪い影響を及ぼし、50mm以
上離れると固化直後の単結晶部分に対する熱遮蔽が不充
分となり高速引上げが不可能となる。
To achieve high-speed pulling, it is necessary to increase the temperature gradient in the growth axis direction on the solid-liquid interface between the silicon melt and the growing silicon single crystal ingot, that is, on the solid side of the growth interface. , The gap between the cylinder and the single crystal rod,
It was experimentally confirmed that it is necessary to limit the distance to a certain range and the distance between the lower end of the cylinder and the surface of the silicon melt to a certain value. That is, the gap between the inner diameter of the cylinder and the pulled single crystal ingot is 5 to 100 mm, and the distance between the tip of the cylinder and the surface of the silicon melt is preferably limited to 5 to 50 mm. If the gap between the cylinder and the single crystal rod is 5 mm or less, the pulling single crystal rod may make a slight eccentric movement during pulling to contact the inner wall of the cylinder, or may contact due to poor control of the diameter of the pulling single crystal rod. In the sense of avoiding these, if the gap becomes too small, the distribution of the gas flow becomes non-uniform, and the gas flow in the space between the outer surface of the collar and the surface of the silicon melt and the inner wall of the quartz crucible becomes non-uniform. It means to prevent. In addition, the gap between the diameter of the single crystal rod and the inner diameter of the cylinder is 10
If it exceeds 0 mm, the flow velocity of the protective gas flowing through this gap decreases, the cooling effect of the protective gas decreases, and the protective gas is wasted. Next, when the lower end of the cylinder is close to the surface of the silicon melt by 5 mm or less, vibration occurs due to the gas flow on the surface of the silicon melt, which adversely affects single crystallization. It becomes insufficient and it becomes impossible to pull up at high speed.

要するに本発明は円筒の各寸法、すなわち引上げ単結晶
棒と円筒との間の間隙を5〜100mmとするとともに、円
筒の先端がシリコン溶融体表面に対し5〜50mm(このた
めには、通常シリコン溶融体表面は円筒下端に対し一定
距離にあるよう、単結晶棒引上げ工程に連動して自動的
にまたは手動で石英るつぼを上昇する)、円筒先端から
ただちに外上方に折返し拡開されたカラーは、たとえば
中空截頭逆円錐形の場合鉛直線からの角度αが0〜90
°、カラー外側面と石英るつぼ内壁または上端縁のいず
れかとの最小間隙が5〜100mmであるよう調節すること
によて、従来法に比較して単結晶棒引上速度を50〜100
%も大きくすることが可能となり、引上速度を1.0mm/
分以上に保つことによって、半導体素子製造上好ましく
ないOISFやスワール欠陥等の発生を実質的に零とす
ることができる。またシリコン単結晶棒の炭素による汚
染も無視できる程度に少なく、たとえば測定限界0.05pp
ma以下に、さらにしばしば従来法で問題となった石英る
つぼ上端縁に付着するSiOのアモルファス凝集体発生を
防止し、これの落下による単結晶棒の乱れを実質的に零
にできる。
In short, the present invention provides each dimension of the cylinder, that is, the gap between the pulled single crystal rod and the cylinder is 5 to 100 mm, and the tip of the cylinder is 5 to 50 mm with respect to the surface of the silicon melt (for this purpose, usually silicon is used). The surface of the melt is at a certain distance from the bottom of the cylinder, and the quartz crucible is raised automatically or manually in conjunction with the pulling process of the single crystal rod.) , For example, in the case of a hollow truncated cone, the angle α from the vertical line is 0 to 90
By adjusting the minimum clearance between the outer surface of the collar and either the inner wall of the quartz crucible or the upper edge to be 5 to 100 mm, the pulling speed of the single crystal rod is 50 to 100 compared to the conventional method.
%, It is possible to increase the pulling speed to 1.0 mm /
By keeping the amount at least, it is possible to substantially eliminate the occurrence of OISF, swirl defects, etc., which are not preferable in manufacturing a semiconductor device. Also, carbon contamination of silicon single crystal rods is negligibly small, for example, a measurement limit of 0.05 pp.
Below ma, it is possible to prevent the generation of amorphous agglomerates of SiO adhering to the upper edge of the quartz crucible, which is often a problem in the conventional method, and the disorder of the single crystal rod due to the drop can be substantially reduced to zero.

カラーは第1図に示すように母線が直線である場合のほ
か、曲線を母線として、第2図(a)に示すように曲面で
構成したり、また(b)に示すように円筒の下端を先細と
したりして単結晶棒に対する熱遮蔽効果及びガス冷却効
果を高めることもできる。
In addition to the straight line of the busbar as shown in Fig. 1, the collar is composed of curved lines as shown in Fig. 2 (a) and the lower end of the cylinder as shown in Fig. 2 (b). Can be tapered to enhance the heat shielding effect and the gas cooling effect for the single crystal ingot.

第1図に示す22は、引上げ中の単結晶棒の観察用窓で、
さらに第2図(c),(d)に示すように円筒に窓23を設ける
ことにより、引上げ直後の単結晶棒の外観を観察するこ
とができる。
22 shown in FIG. 1 is a window for observing the single crystal rod being pulled,
Further, by providing the window 23 in the cylinder as shown in FIGS. 2 (c) and 2 (d), the appearance of the single crystal ingot immediately after being pulled can be observed.

また、カラーと円筒の素材も、不定形炭素や黒鉛あるい
は窒化珪素または炭化珪素被覆の黒鉛として耐久性を高
めることもでき、またこれら素材の多層構造として断熱
効果をさらに大きくすることもできる。あるいは単結晶
棒を金属汚染させないことを配慮したうえでの耐熱金属
材料を用いることも可能である。
Further, the materials for the collar and the cylinder can also be improved in durability as amorphous carbon, graphite, silicon nitride or graphite coated with silicon carbide, and the heat insulating effect can be further enhanced by a multilayer structure of these materials. Alternatively, it is possible to use a refractory metal material in consideration of preventing metal contamination of the single crystal rod.

さらにカラー20は、円筒19にねじ等により着脱可能とす
れば製作が簡単となり、消耗し易いカラーの交換も容易
で経済的である。
Further, the collar 20 can be manufactured easily if it can be attached to and detached from the cylinder 19 with a screw or the like, and the collar, which easily wears out, can be replaced easily and economically.

(実施例) 本発明の引上室天井中央の開口部8の縁に、るつぼ内の
溶融体表面に向かって垂下する内径200mmの黒鉛製円筒
を気密に結合し、その円筒の先端に外上方に折り返し鉛
直線から60°の傾き角度の母線で形成され、その最大外
径が360mmであり、円筒と同材質の黒鉛製カラーを装着
した第1図に示す構造配置のチョクラルスキー法による
製造装置を使用してシリコン単結晶棒を引上げ製造し
た。
(Example) A graphite cylinder having an inner diameter of 200 mm that hangs toward the surface of the melt in the crucible is airtightly joined to the edge of the opening 8 in the center of the ceiling of the pulling chamber of the present invention, and the tip of the cylinder is outwardly extended upward. Manufactured by the Czochralski method with the structural arrangement shown in Fig. 1, which is formed by a busbar with an inclination angle of 60 ° from the folded vertical line, has a maximum outer diameter of 360 mm, and is equipped with a graphite collar of the same material as the cylinder. An apparatus was used to pull and manufacture a silicon single crystal ingot.

石英るつぼの内径は460mmで、これに高純度多結晶シリ
コン60Kgを装填して加熱溶融後、アルゴンガスを100
/分の流量で導入し、前記カラーを装着した円筒下端が
溶融体表面に対し30mmの高さになるよう、支持軸4で維
持しながら溶融体に種結晶を浸漬し、1.3mm/分の引上
速度で単結晶を引上げ、直径160mm、直胴長さ1200mmの
シリコン単結晶棒を10本製造した(以上を製造Aとす
る)。
The inner diameter of the quartz crucible is 460 mm, and 60 kg of high-purity polycrystalline silicon was loaded into this, and after heating and melting, 100% argon gas was added.
Introduced at a flow rate of 1 / min, the seed crystal is immersed in the melt while maintaining the support shaft 4 so that the lower end of the cylinder equipped with the collar is 30 mm above the surface of the melt, and 1.3 mm / min. The single crystal was pulled at a pulling rate to manufacture 10 silicon single crystal rods having a diameter of 160 mm and a straight body length of 1200 mm (the above is referred to as production A).

つぎにカラー付きの円筒を有しない第3図に示す従来の
チョクラルスキー法による装置で、従来の製造条件であ
る引上速度0.9mm/分のほかはすべてAと同一条件によ
り、同一形状のシリコン単結晶を6本製造した(以上を
製造Bとする)。
Next, in the conventional Czochralski method device shown in FIG. 3 which does not have a collared cylinder, the same shape is obtained under the same conditions as A except for the conventional manufacturing condition of a pulling speed of 0.9 mm / min. Six silicon single crystals were produced (the above is production B).

次表に製造したA、B両単結晶棒の検査結果を示す。The following table shows the inspection results of both the A and B single crystal rods produced.

(発明の効果) 本発明は上記のような方法及び装置により、引上げ単結
晶棒の結晶品質を向上し、単結晶乱れを防止し、さらに
引上速度を高めて生産能率を上げることができ、しかも
装置は構造が簡単で取扱いが容易であり、産業上の利用
性のきわめて優れたものである。
(Effects of the Invention) The present invention can improve the crystal quality of a pulled single crystal ingot by the method and apparatus as described above, prevent single crystal disorder, and further increase the pulling rate to increase the production efficiency, Moreover, the device has a simple structure and is easy to handle, and has extremely excellent industrial applicability.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の装置の縦断面図を、第2図は本発明の
装置の円筒とカラーの他の実施態様を示す図で、
(a),(b)は縦断面図を、(c),(d)は窓23
を設けた円筒とカラーの斜視図を、第3図は従来のチョ
クラルスキー法の装置の縦断面図を示す。 ……引上室、2……黒鉛サセプター、 3……石英るつぼ、4……支持軸、 5……保温体、6……黒鉛ヒーター、 7……溶融体、8……開口部、 9……サブチャンバー、10……種結晶、 11……引上軸、12……単結晶棒、 13、13′、14、14′……流路、15……排出口、 16、17……アモルファス凝集体、 18、18′……乱流、19……円筒、20……カラー、 21……導入口、22……観察用窓、23……窓、 α……角度。
FIG. 1 is a longitudinal sectional view of the device of the present invention, and FIG. 2 is a view showing another embodiment of a cylinder and a collar of the device of the present invention.
(A) and (b) are vertical sectional views, and (c) and (d) are windows 23.
FIG. 3 is a perspective view of a cylinder and a collar provided with the above, and FIG. 3 is a longitudinal sectional view of a conventional Czochralski method apparatus. 1 ... pulling chamber, 2 ... graphite susceptor, 3 ... quartz crucible, 4 ... support shaft, 5 ... heat retaining body, 6 ... graphite heater, 7 ... melt, 8 ... opening, 9 ...... Subchamber, 10 …… Seed crystal, 11 …… Pulling shaft, 12 …… Single crystal rod, 13, 13 ', 14, 14' …… Flow path, 15 …… Discharge port, 16, 17 …… Amorphous aggregate, 18, 18 '... Turbulence, 19 ... Cylinder, 20 ... Color, 21 ... Inlet, 22 ... Observation window, 23 ... Window, α ... Angle.

フロントページの続き (72)発明者 小田 哲宏 福井県武生市北府2丁目13番50号 信越半 導体株式会社武生工場内 (72)発明者 水野 亨彦 福井県武生市北府2丁目13番50号 信越半 導体株式会社武生工場内 (72)発明者 中野 正巳 群馬県安中市磯部2丁目13番1号 信越半 導体株式会社半導体研究所内 (72)発明者 内川 啓 福井県武生市北府2丁目13番50号 信越半 導体株式会社武生工場内 (56)参考文献 特開 昭64−61383(JP,A)Front page continuation (72) Inventor Tetsuhiro Oda 2-13-50 Kitafu, Takefu City, Fukui Prefecture Shinetsu Semiconductor Co., Ltd. Takefu Factory (72) Inventor Tokuhiko Mizuno 2-13-50 Kitafu, Takefu City, Fukui Prefecture Shinetsu Semiconductor Co., Ltd., Takefu Factory (72) Inventor Masami Nakano 2-13-1, Isobe, Annaka-shi, Gunma Shin-Etsu Semiconductor Co., Ltd. Semiconductor Research Laboratory (72) Inventor, Kei Uchikawa 2-13, Kitafu, Takefu City, Fukui Prefecture No.50 Shin-Etsu Semiconductor Co., Ltd., Takefu Factory (56) References JP-A-64-61383 (JP, A)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】チョクラルスキー法による単結晶棒の製造
装置において、引上単結晶棒を同軸に囲繞する円筒を設
け、その一端は引上室天井中央の開口縁に気密結合し、
他端は石英るつぼ内の溶融体表面に向けて垂下し外上方
に折返して拡開されたカラーを有してなることを特徴と
する単結晶棒の製造装置。
1. A manufacturing apparatus for a single crystal rod by the Czochralski method, wherein a cylinder surrounding the pulling single crystal rod is provided coaxially, and one end thereof is airtightly coupled to an opening edge at the center of the pulling chamber ceiling,
An apparatus for producing a single crystal rod, characterized in that the other end has a collar that hangs toward the surface of the melt in the quartz crucible and folds back outward and expands.
【請求項2】前記円筒の下端と溶融体表面との距離が5
〜50mmで、該円筒と引上単結晶棒との間隙が5〜100mm
で、前記カラーの外側面と石英るつぼの内壁または上端
いずれかとの最短距離が5〜100mmである特許請求の範
囲第1項記載の単結晶棒の製造装置。
2. The distance between the lower end of the cylinder and the surface of the melt is 5
~ 50 mm, the gap between the cylinder and the pulling single crystal rod is 5 ~ 100 mm
The apparatus for producing a single crystal ingot according to claim 1, wherein the shortest distance between the outer surface of the collar and either the inner wall or the upper end of the quartz crucible is 5 to 100 mm.
【請求項3】前記カラーと円筒は、相互に着脱可能であ
る特許請求の範囲第1項または第2項記載の単結晶棒の
製造装置。
3. The apparatus for producing a single crystal ingot according to claim 1, wherein the collar and the cylinder are detachable from each other.
【請求項4】引上単結晶棒を同軸に囲繞し、一端は引上
室天井中央の開口縁に気密結合し、他端は石英るつぼ内
の溶融体表面に向けて垂下し外上方に折り返して拡開さ
れたカラーを有する円筒を設けたチョクラルスキー法に
よる単結晶棒の製造装置を使用して、単結晶棒を1.1mm
/分以上の引上速度で製造することを特徴とする単結晶
棒の製造方法。
4. A pulling single crystal rod is coaxially surrounded, one end is airtightly coupled to an opening edge in the center of the pulling chamber ceiling, and the other end is hung toward the surface of the melt in the quartz crucible and folded back upward. Using the Czochralski method for producing single crystal rods with a cylinder having an expanded collar, a single crystal rod is
A method for producing a single crystal ingot, which is produced at a pulling rate of not less than / min.
【請求項5】前記円筒の下端と溶融体表面との距離が5
〜50mmで、該円筒と引上単結晶棒との間隙が5〜100mm
で、前記カラーの外側面と石英るつぼの内壁または上端
いずれかとの最短距離が5〜100mmである特許請求の範
囲第4項記載の単結晶棒の製造方法。
5. The distance between the lower end of the cylinder and the surface of the melt is 5
~ 50 mm, the gap between the cylinder and the pulling single crystal rod is 5 ~ 100 mm
5. The method for producing a single crystal ingot according to claim 4, wherein the shortest distance between the outer surface of the collar and either the inner wall or the upper end of the quartz crucible is 5 to 100 mm.
JP62222259A 1987-09-05 1987-09-05 Apparatus and method for manufacturing single crystal ingot Expired - Lifetime JPH0639351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62222259A JPH0639351B2 (en) 1987-09-05 1987-09-05 Apparatus and method for manufacturing single crystal ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62222259A JPH0639351B2 (en) 1987-09-05 1987-09-05 Apparatus and method for manufacturing single crystal ingot

Publications (2)

Publication Number Publication Date
JPS6465086A JPS6465086A (en) 1989-03-10
JPH0639351B2 true JPH0639351B2 (en) 1994-05-25

Family

ID=16779586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62222259A Expired - Lifetime JPH0639351B2 (en) 1987-09-05 1987-09-05 Apparatus and method for manufacturing single crystal ingot

Country Status (1)

Country Link
JP (1) JPH0639351B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2509477B2 (en) * 1991-04-20 1996-06-19 コマツ電子金属株式会社 Crystal growth method and crystal growth apparatus
JP2504875B2 (en) * 1991-06-18 1996-06-05 コマツ電子金属株式会社 Single crystal manufacturing equipment
JP2620999B2 (en) * 1991-10-17 1997-06-18 信越半導体株式会社 Single crystal pulling device
JP2606046B2 (en) * 1992-04-16 1997-04-30 住友金属工業株式会社 Control method of single crystal oxygen concentration during single crystal pulling
JP2686223B2 (en) * 1993-11-30 1997-12-08 住友シチックス株式会社 Single crystal manufacturing equipment
US5683505A (en) * 1994-11-08 1997-11-04 Sumitomo Sitix Corporation Process for producing single crystals
JPH09183686A (en) 1995-12-27 1997-07-15 Shin Etsu Handotai Co Ltd Method and apparatus for pulling up single crystal
JP4582149B2 (en) 2008-01-10 2010-11-17 信越半導体株式会社 Single crystal manufacturing equipment
JP5092940B2 (en) 2008-07-01 2012-12-05 信越半導体株式会社 Single crystal manufacturing apparatus and single crystal manufacturing method
JP5904079B2 (en) 2012-10-03 2016-04-13 信越半導体株式会社 Silicon single crystal growing apparatus and silicon single crystal growing method
JP6614380B1 (en) 2019-03-20 2019-12-04 信越半導体株式会社 Single crystal production equipment
JP6825728B1 (en) 2020-01-10 2021-02-03 信越半導体株式会社 Single crystal manufacturing equipment
CN114592235B (en) * 2022-03-04 2022-12-09 徐州康信软件技术有限公司 Single crystal furnace for integrated circuit production

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461383A (en) * 1987-08-31 1989-03-08 Nippon Steel Corp Method for pulling up single crystal rod and apparatus therefor

Also Published As

Publication number Publication date
JPS6465086A (en) 1989-03-10

Similar Documents

Publication Publication Date Title
JP3634867B2 (en) Single crystal manufacturing apparatus and manufacturing method
US9217208B2 (en) Apparatus for producing single crystal
JPH0639351B2 (en) Apparatus and method for manufacturing single crystal ingot
JPS62138384A (en) Method and device for pulling single crystal
JP2686223B2 (en) Single crystal manufacturing equipment
KR100504423B1 (en) Crystal growth method
JP2619611B2 (en) Single crystal manufacturing apparatus and manufacturing method
JP2937109B2 (en) Single crystal manufacturing apparatus and manufacturing method
JPH06340490A (en) Apparatus for production of silicon single crystal
JP3750174B2 (en) Single crystal manufacturing apparatus and manufacturing method
JP2009001489A (en) Apparatus and method for producing single crystal
JP3129187B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP2800867B2 (en) Silicon single crystal manufacturing equipment
JP2558171Y2 (en) Heat shield for single crystal pulling
JPH06199590A (en) Device for producing semiconductor single crystal rod
JP2755452B2 (en) Silicon single crystal pulling equipment
JPH054358B2 (en)
JPH09309787A (en) Eater-cooling tower for single crystal-pulling up apparatus
JP3214988B2 (en) Silicon single crystal manufacturing equipment
JP2800482B2 (en) Method for producing silicon single crystal
WO2022249614A1 (en) Monocrystal production device
JP4569090B2 (en) Single crystal manufacturing method, single crystal, and single crystal manufacturing apparatus
JPH06340493A (en) Apparatus for growing single crystal and growing method
JP2735740B2 (en) Method for producing silicon single crystal
JP3151327B2 (en) Single crystal production equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080525

Year of fee payment: 14