JP2937109B2 - Single crystal manufacturing apparatus and manufacturing method - Google Patents

Single crystal manufacturing apparatus and manufacturing method

Info

Publication number
JP2937109B2
JP2937109B2 JP4374996A JP4374996A JP2937109B2 JP 2937109 B2 JP2937109 B2 JP 2937109B2 JP 4374996 A JP4374996 A JP 4374996A JP 4374996 A JP4374996 A JP 4374996A JP 2937109 B2 JP2937109 B2 JP 2937109B2
Authority
JP
Japan
Prior art keywords
heat
single crystal
insulating member
melt
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4374996A
Other languages
Japanese (ja)
Other versions
JPH09235190A (en
Inventor
俊二 倉垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4374996A priority Critical patent/JP2937109B2/en
Publication of JPH09235190A publication Critical patent/JPH09235190A/en
Application granted granted Critical
Publication of JP2937109B2 publication Critical patent/JP2937109B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シリコン等の単結
晶の製造装置および製造方法に関し、単結晶の汚染や熱
酸化誘起積層欠陥が少なく、酸化膜耐圧特性に優れた単
結晶の製造や酸素濃度の精密制御に適する製造装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for producing a single crystal such as silicon and the like. The present invention relates to a manufacturing apparatus suitable for precise control of concentration.

【0002】[0002]

【従来の技術】現在、シリコン等の単結晶は、チョクラ
ルスキー法によって製造されることが多い。このチョク
ラルスキー法では、単結晶は石英製坩堝内のシリコン溶
融液から引上げて育成されるので、成長した結晶内には
坩堝の石英 (SiO2)から溶出した多くの酸素を含んで
いる。このため、ICやLSIの製造プロセスにおいて
繰り返し熱処理を受けても、スリップや反りを発生しに
くい。更に、内部の酸素析出物は、1000℃近傍の熱処理
で高密度欠陥層を形成し、ウエーハの表面領域に存在す
る不純物を低減する作用 (いわゆるイントリンシックゲ
ッタリング作用)も有する。
2. Description of the Related Art At present, single crystals such as silicon are often produced by the Czochralski method. In the Czochralski method, a single crystal is grown by being pulled up from a silicon melt in a quartz crucible, and thus the grown crystal contains a large amount of oxygen eluted from the quartz (SiO 2 ) in the crucible. For this reason, even if it is repeatedly subjected to heat treatment in the manufacturing process of an IC or an LSI, a slip or a warp hardly occurs. Further, the oxygen precipitate inside has a function of forming a high-density defect layer by heat treatment at around 1000 ° C. and reducing impurities present in the surface region of the wafer (so-called intrinsic gettering function).

【0003】図8は、チョクラルスキー法の実施状況を
示す概略断面図である。坩堝1は二重構造であり、内側
は石英容器1aで、外側は黒鉛容器1bで構成される。坩堝
1の外側には加熱ヒーター2が配設されており、坩堝1
内にはこの加熱ヒーターによって溶融された結晶原料の
溶融液5が収容されている。この溶融液5の表面に種結
晶3の下端を接触させて上方へ引き上げることによっ
て、その下端に単結晶4を成長させる。これらの部品、
部材は水冷式の金属チャンバー6内に収納され、全体と
して単結晶製造装置を構成している。
FIG. 8 is a schematic sectional view showing the state of implementation of the Czochralski method. The crucible 1 has a double structure, the inside being a quartz container 1a and the outside being a graphite container 1b. A heater 2 is provided outside the crucible 1,
The melt 5 of the crystal raw material melted by the heater is accommodated therein. By bringing the lower end of the seed crystal 3 into contact with the surface of the melt 5 and pulling it upward, the single crystal 4 is grown at the lower end. These parts,
The members are housed in a water-cooled metal chamber 6 and constitute a single crystal manufacturing apparatus as a whole.

【0004】単結晶の引上げ中は、金属チャンバー6の
上方の中央部から常時不活性ガスとして高純度のアルゴ
ンガスを流して、ガス流れ30を形成させる。ガス流れ30
は、シリコン溶融液5の表面から蒸発する一酸化珪素
(SiO)およびこの一酸化珪素と加熱ヒーター2や黒
鉛容器1b等の高温部材との反応により生成される一酸化
炭素(CO)などを伴ってガス流れ31となり、加熱ヒー
ター2の内外周面を下方に流れて排出口8から排出され
る。
During the pulling of the single crystal, a high-purity argon gas as an inert gas is constantly flowed from the upper central portion of the metal chamber 6 to form a gas flow 30. Gas flow 30
Is accompanied by silicon monoxide (SiO) evaporating from the surface of the silicon melt 5 and carbon monoxide (CO) generated by a reaction between the silicon monoxide and a high-temperature member such as the heater 2 or the graphite container 1b. As a result, a gas flow 31 flows down the inner and outer peripheral surfaces of the heater 2 and is discharged from the discharge port 8.

【0005】上記の金属チャンバー6内のアルゴンガス
の流れは複雑な乱流であり、局部的には滞留も生じてい
るため、一酸化珪素の析出物が金属チャンバー6の天井
部に層状または塊状に付着する。この析出した一酸化珪
素の微粉または塊が溶融液5の表面上に落下し、これが
結晶成長界面に取り込まれて、結晶の有転位化の原因と
なる。
The flow of the argon gas in the metal chamber 6 is a complicated turbulent flow, and local stagnation occurs. Therefore, the deposit of silicon monoxide is deposited on the ceiling of the metal chamber 6 in a layered or lump form. Adheres to The precipitated silicon monoxide fine powder or lump falls onto the surface of the melt 5 and is taken into the crystal growth interface, which causes dislocation of the crystal.

【0006】一方、一酸化炭素も適切に排出されない場
合には、シリコン溶融液を汚染し、単結晶中に混入し
て、単結晶の結晶欠陥を誘発する要因となる。
[0006] On the other hand, if carbon monoxide is not properly discharged, it contaminates the silicon melt and mixes into the single crystal, causing a crystal defect of the single crystal.

【0007】これらの対策として、従来、下記の装置が
提案されている。
[0007] As a countermeasure, the following devices have been proposed.

【0008】図5は、特公昭57−40119 号公報によって
提案されている装置 (以下、第1の装置と記す) であ
る。この装置は、坩堝の縁から突出している上部の平た
い環状リム7aと、この環状リム7aに取り付けられ、内側
の縁から下方に向かって円錐状に先細りになっている連
結部7bとを有し、連結部7bの内部高さが坩堝1の深さの
0.2〜1.2 倍であることを特徴としている。
FIG. 5 shows an apparatus proposed by Japanese Patent Publication No. 57-40119 (hereinafter referred to as a first apparatus). This device has an upper flat annular rim 7a projecting from the edge of the crucible, and a connecting portion 7b attached to the annular rim 7a and tapering conically downward from an inner edge. , The inner height of the connecting portion 7b is the depth of the crucible 1
It is characterized by 0.2 to 1.2 times.

【0009】図6は、特開昭64−72984 号公報に開示さ
れている装置 (以下、第2の装置と記す) である。この
装置は、金属チャンバー6およびサブチャンバー6cの接
合部から下方に延び、サブチャンバー6cに気密に接合し
て、育成中の単結晶4を同軸に囲繞する耐熱性断熱円筒
10と、保温部材12の上端に密接し保温部材12の外周にほ
ぼ一致する外周をもち、かつ、その中央に上記耐熱性断
熱円筒10にほぼ嵌合する貫通孔をもつドーナツ状の耐熱
性断熱板11を有することを特徴としている。
FIG. 6 shows an apparatus disclosed in JP-A-64-72984 (hereinafter referred to as a second apparatus). This apparatus extends downward from the junction between the metal chamber 6 and the sub-chamber 6c, is air-tightly joined to the sub-chamber 6c, and coaxially surrounds the growing single crystal 4 with heat.
10 and a doughnut-shaped heat-resistant heat insulator having an outer periphery closely contacting the upper end of the heat-insulating member 12 and substantially matching the outer periphery of the heat-insulating member 12, and having a through hole at the center thereof for substantially fitting the heat-resistant heat-insulating cylinder 10. It is characterized by having a plate 11.

【0010】前述の第1の装置および第2の装置は、輻
射熱遮蔽効果による結晶引上げ速度の向上や一酸化珪素
微粉のシリコン溶融液への落下防止、更に結晶基板の熱
酸化誘起積層欠陥(以下、OSFという)の抑制に効果
がある。しかし、これ等の装置では、高集積の微細半導
体に要求される酸化膜耐圧特性の向上に問題がある。
The above-described first and second devices improve the crystal pulling speed due to a radiation heat shielding effect, prevent fine particles of silicon monoxide from dropping into a silicon melt, and further suppress thermal oxidation-induced stacking faults (hereinafter referred to as “defects”) of a crystal substrate. , OSF). However, these devices have a problem in improving the oxide film breakdown voltage characteristics required for highly integrated fine semiconductors.

【0011】また、結晶中の酸素濃度抑制にも悪影響を
及ぼすという問題があった。
In addition, there is a problem in that the suppression of the oxygen concentration in the crystal is adversely affected.

【0012】酸化膜耐圧特性を劣化させる欠陥の形成機
構は未だ十分に解明されていない。
[0012] The formation mechanism of a defect that degrades the withstand voltage characteristic of an oxide film has not yet been sufficiently elucidated.

【0013】しかし、結晶成長時に結晶中には酸化膜耐
圧特性の不良要因となる欠陥核が発生し、この欠陥核は
結晶成長後の高温領域では収縮し、低温領域では成長す
るとの報告 (第39回春季応用物理学会予稿集、30P-ZD-1
7 参照) があるように、酸化膜耐圧特性は結晶成長後の
熱履歴に起因するものであることが知られている。
However, during the crystal growth, a defect nucleus is generated in the crystal, which causes a defect in the oxide film breakdown voltage characteristic. The defect nucleus shrinks in a high temperature region after the crystal growth, and grows in a low temperature region. Proceedings of the 39th Spring Meeting of the Japan Society of Applied Physics, 30P-ZD-1
7), it is known that the breakdown voltage characteristics of an oxide film are caused by the thermal history after crystal growth.

【0014】図5に示した第1の装置では、引上げ結晶
の周囲に配設した円錐台形筒状の連結部7bの内部高さが
坩堝高さの 0.2〜1.2 倍と短い。従って、結晶成長直後
の結晶は低温に保たれている金属チャンバー内の雰囲気
に直接曝されるため、結晶が急冷されて欠陥核が収縮せ
ず、酸化膜耐圧特性が低下する。
In the first apparatus shown in FIG. 5, the internal height of the frusto-conical cylindrical connecting portion 7b disposed around the pulled crystal is as short as 0.2 to 1.2 times the crucible height. Therefore, the crystal immediately after the crystal growth is directly exposed to the atmosphere in the metal chamber kept at a low temperature, so that the crystal is rapidly cooled and the defect nucleus does not shrink, so that the oxide film breakdown voltage characteristic is reduced.

【0015】図6に示した第2の装置では、耐熱性断熱
円筒10が水冷された金属チャンバー6とサブチャンバー
6cとの接合部に気密に接合されているため、熱伝導によ
り耐熱性断熱円筒10の内表面が低温となり、結晶成長直
後の高温領域で急冷される。
In the second apparatus shown in FIG. 6, a heat-resistant heat-insulating cylinder 10 is provided with a water-cooled metal chamber 6 and a sub-chamber.
Since the inner surface of the heat-resistant heat-insulating cylinder 10 has a low temperature due to heat conduction because it is air-tightly bonded to the bonding portion with 6c, it is rapidly cooled in a high-temperature region immediately after crystal growth.

【0016】このため、結晶成長直後の結晶は欠陥核が
収縮せずに、酸化膜耐圧特性が悪化する。
For this reason, in the crystal immediately after the crystal growth, the defect nucleus does not shrink, and the breakdown voltage characteristic of the oxide film deteriorates.

【0017】一方、前述のイントリンシックゲッタリン
グ作用を効果的に発揮させるには、単結晶中の酸素濃度
は目標値に対して±0.75×1017atoms/cm3 の精度で制御
することが要求されるが、この酸素濃度は前記のアルゴ
ンガスの流通状態に強く影響される。
On the other hand, in order to effectively exert the intrinsic gettering action described above, it is necessary to control the oxygen concentration in the single crystal with a precision of ± 0.75 × 10 17 atoms / cm 3 with respect to a target value. However, the oxygen concentration is strongly affected by the flow state of the argon gas.

【0018】アルゴンガスの流速Vgは、ガス供給圧力
Pg、ガス流量Qg、ガス通過空間断面積Agおよび炉
内圧力Pfに依存し、次の(A)式によって表される。
このガス流速Vgは、単結晶中の酸素濃度のみならず、
溶融液面から蒸発した一酸化珪素や加熱ヒーター等の黒
鉛部材の反応によって発生する一酸化炭素からの単結晶
の汚染にも大きな影響を及ぼしている。
The flow rate Vg of the argon gas depends on the gas supply pressure Pg, the gas flow rate Qg, the gas passage space sectional area Ag, and the furnace pressure Pf, and is expressed by the following equation (A).
This gas flow velocity Vg is determined not only by the oxygen concentration in the single crystal, but also
It also has a significant effect on the contamination of single crystals from carbon monoxide generated by the reaction of graphite members such as silicon monoxide evaporated from the melt surface and a heater.

【0019】 Vg=(Qg/Ag)×(Pg/Pf) ・・・(A) 図5に示した第1の装置では、円錐台形筒状の連結部7b
と平たい環状リム7aおよび円筒管形材13は相互に気密に
結合されているため、引上げ室上方から流す全てのアル
ゴンガスは、連結部7bの内側から連結部7bの下端と溶融
液5の表面の狭い隙間を流れ、溶融液5の表面上を通過
したのち、加熱ヒーター2の内外周面を下方に向けて流
れるガス流れ31となる。
Vg = (Qg / Ag) × (Pg / Pf) (A) In the first device shown in FIG. 5, a frusto-conical cylindrical connecting portion 7 b
Since the flat annular rim 7a and the cylindrical tubular member 13 are airtightly connected to each other, all the argon gas flowing from above the pulling chamber is supplied from the inside of the connecting portion 7b to the lower end of the connecting portion 7b and the surface of the molten liquid 5. After passing over the surface of the melt 5, the gas flow 31 flows downward on the inner and outer peripheral surfaces of the heater 2.

【0020】前記のように、引上げ室上方から流れるア
ルゴンガスは複雑な乱流であり、溶融液5の表面から蒸
発する一酸化珪素の上昇流がアルゴンガスの流れに及ぼ
す影響も連結部7bの円周方向に一様でない。そのため、
連結部7b下端から流れ出るアルゴンガスは円周方向に均
一に流れ出ず、連結部7bの下端と溶融液5の表面の隙間
を流れるアルゴンガス流速Vgは部分的な速度差を生じ
る。
As described above, the argon gas flowing from above the pulling chamber is a complicated turbulent flow, and the influence of the upward flow of silicon monoxide evaporating from the surface of the melt 5 on the flow of the argon gas also affects the connection portion 7b. Not uniform in the circumferential direction. for that reason,
The argon gas flowing out from the lower end of the connecting portion 7b does not uniformly flow in the circumferential direction, and the flow rate Vg of the argon gas flowing through the gap between the lower end of the connecting portion 7b and the surface of the melt 5 causes a partial speed difference.

【0021】図5に示した第1の装置では、アルゴンガ
スの流量Qgを多くしてガス流速Vgを増加させた場合
には、一酸化珪素や一酸化炭素を排出する作用が十分に
発揮されるので、これらが溶融液5に混入することを防
止できる。しかし、連結部7bの下端と溶融液5の表面と
の隙間における流速Vgも大きくなるため、円周方向に
おける部分的な速度差が大きくなり、溶融液5の表面温
度および溶融液5の対流に変化を生じさせ、結晶中の酸
素濃度を所望の範囲に再現性よく精密制御することが難
しくなる。
In the first apparatus shown in FIG. 5, when the gas flow rate Vg is increased by increasing the flow rate Qg of the argon gas, the function of discharging silicon monoxide and carbon monoxide is sufficiently exhibited. Therefore, it is possible to prevent them from being mixed into the melt 5. However, since the flow velocity Vg in the gap between the lower end of the connecting portion 7b and the surface of the melt 5 also increases, a partial speed difference in the circumferential direction increases, and the surface temperature of the melt 5 and the convection of the melt 5 increase. This makes it difficult to precisely control the oxygen concentration in the crystal within a desired range with good reproducibility.

【0022】連結部7bの先端と溶融液5の表面との隙間
における流速Vgが大きくなると、溶融液5の表面が振
動して、無転位の単結晶を引上げることができない事態
も発生する。一方、アルゴンガスの流量Qgを少なくし
てガス流速Vgを遅くした場合には、連結部7bの下端と
溶融液5の表面との隙間における流速Vgの速度差も小
さくなるため、酸素濃度の制御性は向上する。しかし、
ガス流速Vgの低下にともなって、一酸化珪素や一酸化
炭素を排出する能力が低下し、適切に排出されない一酸
化珪素および一酸化炭素がシリコン溶融液5を汚染する
という問題が生じる。
If the flow velocity Vg in the gap between the tip of the connecting portion 7b and the surface of the melt 5 increases, the surface of the melt 5 vibrates, and a situation may occur in which dislocation-free single crystals cannot be pulled. On the other hand, when the gas flow rate Vg is reduced by decreasing the flow rate Qg of the argon gas, the difference in the flow rate Vg in the gap between the lower end of the connecting portion 7b and the surface of the melt 5 is also reduced, so that the oxygen concentration control is performed. Sex is improved. But,
As the gas flow rate Vg decreases, the ability to discharge silicon monoxide and carbon monoxide decreases, and the problem arises that silicon monoxide and carbon monoxide that are not properly discharged contaminate the silicon melt 5.

【0023】上記の問題は、第1の装置のみならず、図
6に示す第2の装置にも存在し、従来の装置に共通する
問題であった。
The above problem exists not only in the first device but also in the second device shown in FIG. 6, and is a problem common to conventional devices.

【0024】本出願人は、上記従来の装置における問題
点を解決すべく、単結晶の引上げ方向に適切に温度分布
を形成し、単結晶中への不純物の混入を回避し、かつ結
晶中の酸素濃度の精密制御性を損なうことなく、酸化膜
耐圧特性に優れた単結晶の引上げ成長を可能とする製造
装置および製造方法を提案した(特開平7−277887号、
以下、これを先願と記す) 。
In order to solve the above-mentioned problems in the conventional apparatus, the present applicant forms a temperature distribution appropriately in the pulling direction of the single crystal, avoids mixing of impurities into the single crystal, and reduces the temperature in the crystal. A manufacturing apparatus and a manufacturing method capable of pulling and growing a single crystal having excellent oxide film breakdown voltage characteristics without impairing the precision controllability of oxygen concentration have been proposed (Japanese Patent Application Laid-Open No. 7-277887,
Hereinafter, this is referred to as a prior application).

【0025】上記先願の発明の装置は、図7の (a)およ
び(b) に示すように『単結晶の引上げ域の周囲を囲撓し
た円筒または筒状の耐熱断熱性部材7が、この部材7の
上端と前記金属チャンバー6の天井部6aとの間に、金属
チャンバー6上方から供給される不活性ガスをこの部材
7の内側と外側を下方に流れる不活性ガス32に分岐させ
る間隔h1 を持って、金属チャンバー6の天井部6aまた
は側壁6b上部から支持されている単結晶製造装置』であ
る。
As shown in FIGS. 7 (a) and 7 (b), the apparatus according to the invention of the prior application is described as follows. An interval between the upper end of the member 7 and the ceiling 6a of the metal chamber 6 for branching the inert gas supplied from above the metal chamber 6 into an inert gas 32 flowing downward inside and outside the member 7. with h 1, a single crystal production apparatus "is supported from the ceiling portion 6a or sidewall 6b top of the metal chamber 6.

【0026】この先願発明の装置によれば、単結晶の引
上げ方向の温度勾配を調整できるだけでなく、チャンバ
ー内のガス流れの分岐および合流を適切に制御すること
ができる。従って、単結晶中への汚染物の混入防止がで
き、単結晶基板の酸化膜耐圧特性の向上および結晶内の
酸素濃度の精密制御が可能となる。
According to the apparatus of the prior application, not only can the temperature gradient in the pulling direction of the single crystal be adjusted, but also the branching and merging of the gas flow in the chamber can be appropriately controlled. Therefore, contaminants can be prevented from being mixed into the single crystal, and the oxide film breakdown voltage characteristics of the single crystal substrate can be improved and the oxygen concentration in the crystal can be precisely controlled.

【0027】[0027]

【発明が解決しようとする課題】本発明の目的は、前記
の先願発明の装置をさらに改良して、製造する単結晶の
特性の一層の向上と生産性の向上とが達成できる新たな
装置、ならびにこの装置を用いて、不純物の混入が少な
く、かつ結晶中の酸素濃度が精密に制御され、酸化膜耐
圧特性に優れた単結晶を製造する方法を提供すること、
にある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a new apparatus which can further improve the characteristics of the single crystal to be manufactured and improve the productivity by further improving the apparatus of the prior invention. And to provide a method for producing a single crystal having a small amount of impurities and the oxygen concentration in the crystal being precisely controlled using the apparatus, and having excellent oxide film breakdown voltage characteristics.
It is in.

【0028】[0028]

【課題を解決するための手段】本発明は、図1に例示す
るように、『成長させるべき単結晶の原料溶融液を収容
する坩堝1と、この溶融液を加熱する手段2と、坩堝内
の溶融液5の表面に種結晶を接触させて単結晶を成長さ
せる引上げ手段9と、前記各部材を収容する金属チャン
バー6とを具備する単結晶製造装置であって、下記の
からまでの特徴を備える単結晶製造装置』および『こ
の装置を用いて金属チャンバー内の不活性ガスの流れを
最適に調整して単結晶を製造する方法』を要旨とする。
According to the present invention, as shown in FIG. 1, a crucible 1 containing a raw material melt of a single crystal to be grown, a means 2 for heating the melt, and a crucible 1. A single crystal manufacturing apparatus comprising pulling means 9 for growing a single crystal by bringing a seed crystal into contact with the surface of a melt 5 and a metal chamber 6 accommodating the above members. And a method for producing a single crystal by optimally adjusting the flow of an inert gas in a metal chamber using this apparatus.

【0029】 単結晶の引上げ域の周囲を囲撓する円
筒状または上方から下方に向かうに従って縮径された筒
状の耐熱断熱性部材7を有すること。
A heat-resistant and heat-insulating member 7 having a cylindrical shape or a cylindrical shape whose diameter is reduced from above to below.

【0030】 上記の耐熱断熱性部材7は、その上端
と前記金属チャンバー6の天井部6aとの間に、金属チャ
ンバー6上方から供給される不活性ガスをこの部材7の
内側を下方に流れる不活性ガス33とこの部材7の外側を
下方に流れる不活性ガス32とに分岐させることが可能な
間隔h1 を持って、金属チャンバー6の天井部6aまたは
側壁6b上部に支持されていること。
The heat-resistant and heat-insulating member 7 is configured such that an inert gas supplied from above the metal chamber 6 flows downward inside the member 7 between the upper end and the ceiling 6 a of the metal chamber 6. It is supported on the ceiling 6 a or the upper portion of the side wall 6 b of the metal chamber 6 with an interval h 1 capable of branching into the active gas 33 and the inert gas 32 flowing downward outside the member 7.

【0031】 上記の耐熱断熱性部材7の内面の少な
くとも下方の一部に熱反射部材7eが装着されているこ
と。
A heat reflecting member 7 e is attached to at least a part of the inner surface of the heat-resistant and heat-insulating member 7.

【0032】上記の耐熱断熱性部材7は黒鉛製であるの
が望ましく、かつ、その表面が炭化珪素でコーディング
されているのが望ましい。その部材7の上端と金属チャ
ンバー6の天井部6aとの間隔 (h1)は5mm〜100mm の範
囲内が好ましく、また、この間隔 (h1)を上記の範囲内
で操業条件に応じて調整できる構造としておくのがよ
い。それによって、この間隔を流通する不活性ガスの流
量、即ち流速を望ましい範囲に調整することができる。
The heat-resistant and heat-insulating member 7 is desirably made of graphite, and its surface is desirably coded with silicon carbide. The interval between the ceiling portion 6a of the upper end of the member 7 and the metallic vessel 6 (h 1) is preferably in the range of 5 mm to 100 mm, also adjusting the spacing (h 1) in accordance with the operational conditions in the above-mentioned range It is better to have a structure that can be used. Thereby, the flow rate of the inert gas flowing through this interval, that is, the flow rate can be adjusted to a desired range.

【0033】熱反射部材7eは、例えば、Moのように、反
射率が高く、高温に耐え、かつ結晶への汚染がない材質
で作製され、その形状は、図2に示すような円錐状と
し、これが図1に示すように耐熱断熱性部材7の下方部
分に装着されていることが望ましい。
The heat reflecting member 7e is made of, for example, a material having a high reflectivity, a high temperature resistance and no contamination of crystals, such as Mo, and has a conical shape as shown in FIG. This is desirably mounted on the lower part of the heat-insulating member 7 as shown in FIG.

【0034】[0034]

【発明の実施の形態】以下、本発明の実施形態を示す図
面によって本発明の単結晶製造装置およびその装置を用
いる単結晶の製造方法を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a single crystal manufacturing apparatus of the present invention and a method of manufacturing a single crystal using the apparatus will be described with reference to the drawings showing an embodiment of the present invention.

【0035】図1は、本発明装置の中心軸を通る縦断面
図である。同図中の1は坩堝であり、内側を石英容器1a
とし、外側を黒鉛容器1bとした二重構造であり、坩堝支
持軸1c上に設置される。この坩堝支持軸1cは坩堝の回転
のみでなく、坩堝の昇降も行うことができるようになっ
ている。
FIG. 1 is a longitudinal sectional view passing through the central axis of the apparatus of the present invention. In the figure, reference numeral 1 denotes a crucible, the inside of which is a quartz container 1a.
It has a double structure with a graphite container 1b on the outside, and is installed on the crucible support shaft 1c. The crucible support shaft 1c is capable of not only rotating the crucible but also raising and lowering the crucible.

【0036】図中の水冷式の金属チャンバー6は、単結
晶の引上げ軸を中心として天井部6aと側壁6bから構成さ
れる円筒状の真空容器であり、その中央位置に坩堝1が
配設され、その外周にはこれを囲んで加熱ヒーター2が
配設されている。一方、坩堝1の上方には、金属チャン
バー6の天井部6aの中央から引上げ手段9が回転および
昇降可能に垂設され、その下端には種結晶3が装着され
ている。種結晶3は引上げ手段9によって回転しつつ上
昇し、溶融液5との接触面である下端部に単結晶4が成
長する。
The water-cooled metal chamber 6 in the figure is a cylindrical vacuum vessel composed of a ceiling 6a and a side wall 6b around a single crystal pulling axis, and the crucible 1 is disposed at the center of the vacuum chamber. A heater 2 is disposed around the periphery of the heater. On the other hand, above the crucible 1, a pulling means 9 is vertically suspended from the center of the ceiling 6a of the metal chamber 6 so as to be rotatable and vertically movable, and a seed crystal 3 is mounted at a lower end thereof. Seed crystal 3 rises while being rotated by pulling means 9, and single crystal 4 grows at the lower end, which is the contact surface with melt 5.

【0037】引上げ手段9と同軸に円錐状の耐熱断熱性
部材7が金属チャンバー6の天井部6aに接触せず、耐熱
断熱性部材7の上端と天井部6aとの間に不活性ガス、例
えばアルゴンガスが流通できるように間隔 (h1)を設け
て保持され、溶融液5の表面と間隔 (h2)を持って、単
結晶の引上げ域の周囲に配設される。このような耐熱断
熱性部材7の配設の具体的な形態の例を図3および図4
に示す。
The conical heat-resistant and heat-insulating member 7 does not come into contact with the ceiling 6a of the metal chamber 6 coaxially with the pulling means 9, and an inert gas such as an inert gas, for example, is provided between the upper end of the heat-resistant and heat-insulating member 7 and the ceiling 6a. Argon gas is held at an interval (h 1 ) so that it can flow, and is arranged around the single crystal pulling area at an interval (h 2 ) from the surface of the melt 5. FIGS. 3 and 4 show specific examples of the arrangement of such heat-resistant and heat-insulating members 7. FIG.
Shown in

【0038】図3は耐熱断熱性部材7が支持部材21によ
って保持される例を示す図である。
FIG. 3 is a view showing an example in which the heat-resistant and heat-insulating member 7 is held by the support member 21.

【0039】同図(a)は支持部材21による保持状況の
縦断面図であり、同図(b)はA−A矢視による水平断
面図である。また、同図(c)は耐熱断熱性部材7の斜
視図である。この例では4個の、角棒状の支持部材21が
金属チャンバー6の天井部6aに90°の間隔で配設され、
支持部材21と締め付けボルト21a によって、耐熱断熱性
部材7の上端部を挟持する。これによって、耐熱断熱性
部材7の上端が天井部6aに接触せず、アルゴンガスが分
岐して耐熱断熱性部材7の内側と外側を下方に流れるよ
うに間隔を設けて、耐熱断熱性部材7を保持する。支持
部材21の数は上記の4個に限定されるものでなく、その
形状も角棒状のものに限る必要はない。
FIG. 7A is a longitudinal sectional view of the holding state by the support member 21, and FIG. 7B is a horizontal sectional view taken along the line AA. FIG. 2C is a perspective view of the heat- and heat-insulating member 7. In this example, four square bar-shaped support members 21 are arranged at 90 ° intervals on the ceiling 6a of the metal chamber 6,
The upper end of the heat- and heat-insulating member 7 is held between the support member 21 and the fastening bolt 21a. Accordingly, the upper end of the heat-insulating member 7 does not come into contact with the ceiling 6a, and an interval is provided so that the argon gas branches and flows downward inside and outside the heat-insulating member 7. Hold. The number of the support members 21 is not limited to the above four, and the shape does not need to be limited to a square rod shape.

【0040】図3(c)に示すように、耐熱断熱性部材
7には上端部に複数個の前記のボルト21a を通す保持用
貫通孔7cが設けられている。これは任意の貫通孔を保持
用として選択することにより、耐熱断熱性部材7の上端
と天井部6aとの間隔 (前述のh1)を調整するためであ
る。勿論、この調整手段は図示の手段に限定されるもの
ではない。
As shown in FIG. 3C, the heat-resistant and heat-insulating member 7 is provided at its upper end with a holding through hole 7c through which a plurality of the bolts 21a pass. This is for adjusting an interval (the above-mentioned h 1 ) between the upper end of the heat-resistant and heat-insulating member 7 and the ceiling 6 a by selecting an arbitrary through-hole for holding. Of course, this adjusting means is not limited to the illustrated means.

【0041】図4は耐熱断熱性部材7が支持脚材22によ
って保持される例を示す図であり、耐熱断熱性部材7は
金属チャンバー6の側壁6bの上部に取り付けられてい
る。同図(a)は支持脚材22による支持状況の縦断面図
であり、同図(b)は支持脚材22の斜視図であるが、支
持脚材22は上端リング22a とこれに取り付けられた4個
の支持脚22b および先端の爪部22c からなっている。ま
た、同図(c)は支持脚材22によって保持される耐熱断
熱性部材7の斜視図であり、その上端面の円周の4箇所
に突起部7dが設けられている。
FIG. 4 is a view showing an example in which the heat-resistant and heat-insulating member 7 is held by the supporting leg members 22. The heat-resistant and heat-insulating member 7 is attached to the upper part of the side wall 6 b of the metal chamber 6. FIG. 2A is a longitudinal sectional view of a support state of the support leg member 22. FIG. 2B is a perspective view of the support leg member 22. The support leg member 22 is attached to an upper end ring 22a. It consists of four supporting legs 22b and a claw 22c at the tip. FIG. 3C is a perspective view of the heat-resistant and heat-insulating member 7 held by the support leg member 22. The protrusion 7d is provided at four locations on the circumference of the upper end surface.

【0042】この例では、金属チャンバー6の側壁6bの
上部に設けられた止着リング23に支持脚材22の上端リン
グ22a を嵌め合わせて支持脚材22を保持する。次に支持
脚材22の爪部22c と耐熱断熱性部材7の突起部7dとを係
合して、天井部6aから離間させて耐熱断熱性部材7を保
持する。さらに耐熱断熱性部材7の上端と天井部6aとの
間隔 (h1)の調整は、支持脚材22の支持脚22b の長さお
よび角度を調整することによって行われる。図3の場合
と同様に、支持脚材22の形状や支持脚22b の本数等は例
示のものに限定されるわけではない。
In this example, the support leg 22 is held by fitting the upper end ring 22a of the support leg 22 to a fastening ring 23 provided above the side wall 6b of the metal chamber 6. Next, the claw portion 22c of the support leg member 22 and the projection 7d of the heat-resistant and heat-insulating member 7 are engaged with each other and separated from the ceiling 6a to hold the heat-resistant and heat-insulating member 7. Further, the distance (h 1 ) between the upper end of the heat-insulating member 7 and the ceiling 6a is adjusted by adjusting the length and angle of the support leg 22b of the support leg member 22. As in the case of FIG. 3, the shape of the support leg member 22 and the number of the support legs 22b are not limited to those illustrated.

【0043】図3および図4から明らかなように、支持
部材の構造は、耐熱断熱性部材7の上端と天井部6aとの
間隔を閉鎖しないように構成されていればよい。この部
材7の上端と天井部6aとの間隔は、金属チャンバー6の
上方から供給されるアルゴンガスを分岐させて、耐熱断
熱性部材7の内側の領域とその外側の領域を下方に流れ
るように設けられたものである。このような支持部材を
用いて金属チャンバー6の天井部6aあるいは側壁6bから
耐熱断熱性部材7を支持する限り、本発明の目的は達成
される。
As is clear from FIGS. 3 and 4, the structure of the support member may be configured so as not to close the space between the upper end of the heat-insulating member 7 and the ceiling 6a. The distance between the upper end of the member 7 and the ceiling 6a is such that the argon gas supplied from above the metal chamber 6 is branched and flows downward through the area inside the heat-insulating member 7 and the area outside the heat-insulating member 7. It is provided. As long as such a supporting member is used to support the heat-resistant and heat-insulating member 7 from the ceiling 6a or the side wall 6b of the metal chamber 6, the object of the present invention is achieved.

【0044】いずれの例も、耐熱断熱性部材7の形状は
上方から下方に向かうに従って縮径された筒状である。
この耐熱断熱性部材7は黒鉛製で、かつ、その表面は炭
化珪素でコーティングされていることが望ましい。耐熱
断熱性部材7を黒鉛製とすれば、高純度で製造すること
が可能であり、重金属等による引上げ結晶の汚染のおそ
れが少ないからである。また、その表面を炭化珪素でコ
ーティングすれば、黒鉛製部材の気孔部からのガス放出
を防止し、溶融液5の表面から蒸発した一酸化珪素と黒
鉛製部材の反応も防止することができる。
In any of the examples, the heat-insulating member 7 has a cylindrical shape whose diameter is reduced from the top to the bottom.
Desirably, the heat-resistant and heat-insulating member 7 is made of graphite, and its surface is coated with silicon carbide. If the heat-resistant and heat-insulating member 7 is made of graphite, it can be manufactured with high purity, and there is little risk of contamination of the pulled crystal by heavy metals or the like. If the surface is coated with silicon carbide, gas emission from the pores of the graphite member can be prevented, and the reaction between silicon monoxide evaporated from the surface of the melt 5 and the graphite member can be prevented.

【0045】前述のように、酸化膜耐圧特性に優れた単
結晶を得るには、引上げ結晶の温度勾配を適切に調整す
る必要がある。特に結晶成長後の高温度領域を徐冷する
温度勾配が必要である。
As described above, it is necessary to appropriately adjust the temperature gradient of the pulled crystal in order to obtain a single crystal having excellent oxide film breakdown voltage characteristics. In particular, a temperature gradient is required to gradually cool the high temperature region after crystal growth.

【0046】本発明の装置では、耐熱断熱性部材7は単
結晶の引上げ域の周囲に坩堝内の溶融液5の表面から金
属チャンバー6の天井部6aまでの広い範囲に設けられて
いる。そして、水冷式の金属チャンバー6の天井部6aと
の間に適切な間隔を設けて取り付けられ、天井部と気密
には接合されていない。
In the apparatus of the present invention, the heat- and heat-insulating member 7 is provided in a wide range from the surface of the melt 5 in the crucible to the ceiling 6 a of the metal chamber 6 around the pulling region of the single crystal. And it is attached with an appropriate space between it and the ceiling 6a of the water-cooled metal chamber 6, and is not airtightly joined to the ceiling.

【0047】このような構造であるから、図5に示した
装置のように、連結部7bの内部高さが低いために結晶成
長後の結晶が金属チャンバー内の低温雰囲気に直接曝さ
れるということがない。また、図6に示した装置のよう
に断熱円筒部材を金属チャンバーの天井部に気密に接合
した場合に比べ、熱伝導による耐熱断熱性部材7の温度
低下が小さいので、耐熱断熱性部材7の内表面を高温に
保持できる。
With such a structure, the crystal after the crystal growth is directly exposed to the low-temperature atmosphere in the metal chamber because the internal height of the connecting portion 7b is low as in the apparatus shown in FIG. Nothing. Further, since the temperature drop of the heat-insulating member 7 due to heat conduction is small compared to the case where the heat-insulating cylindrical member is air-tightly joined to the ceiling of the metal chamber as in the apparatus shown in FIG. The inner surface can be kept at a high temperature.

【0048】前記のとおり、結晶成長後の高温度領域で
の徐冷は、これまでに述べた本発明装置の基本的構造に
よって達成できる。しかしながら、それだけの構造で
は、固液界面の温度勾配(G)が小さくなるという難点
がある。即ち、耐熱断熱性部材7の存在によって、固液
界面の熱の放散も妨げられ固液界面付近の温度が高くな
るためにGが小さくなるのである。このGが小さいと、
単結晶の引上げ速度(Vc)を小さくしなければなら
ず、結局、単結晶の生産性が落ちることになる。
As described above, the slow cooling in the high temperature region after the crystal growth can be achieved by the above-described basic structure of the device of the present invention. However, such a structure has a disadvantage that the temperature gradient (G) at the solid-liquid interface becomes small. That is, the presence of the heat-resistant and heat-insulating member 7 hinders the dissipation of heat at the solid-liquid interface and increases the temperature near the solid-liquid interface, thereby reducing G. If this G is small,
The pulling speed (Vc) of the single crystal must be reduced, which ultimately lowers the productivity of the single crystal.

【0049】上記の問題を解決するために、本発明装置
では、図1に示すように耐熱断熱性部材7の内面の一部
に熱反射部材7eが取り付けられている。この熱反射部材
は、固液界面から放射される熱を上方、即ち、徐冷すべ
き結晶成長後の高温領域に向けて反射する。従って、熱
反射部材7eは、固液界面の熱の放散を促してその部分の
温度勾配(G)を大きくし、同時に、上方の結晶温度が
1000〜1200℃の高温領域を高温に保ち、そこの温度勾配
を小さくする作用効果を持つ。
In order to solve the above problem, in the apparatus of the present invention, a heat reflecting member 7e is attached to a part of the inner surface of the heat-resistant and heat-insulating member 7 as shown in FIG. The heat reflecting member reflects heat radiated from the solid-liquid interface upward, that is, toward a high-temperature region after crystal growth to be gradually cooled. Therefore, the heat reflecting member 7e promotes the dissipation of heat at the solid-liquid interface to increase the temperature gradient (G) at that portion, and at the same time, the upper crystal temperature decreases.
It has the effect of keeping the high temperature range of 1000 to 1200 ° C high and reducing the temperature gradient there.

【0050】上記の効果を大きくするためには、熱反射
部材7eは、反射率 0.5以上のものであるのが望ましい。
また、熱反射部材は、例えば、後述の実施例で示すMoに
限定されるものではなく、反射率が高く、高温に耐え、
かつ結晶への汚染がない材質であれば良い。
In order to enhance the above effects, it is desirable that the heat reflection member 7e has a reflectance of 0.5 or more.
Further, the heat reflecting member is not limited to, for example, Mo shown in Examples described later, has a high reflectance, withstands high temperatures,
Any material that does not contaminate the crystal may be used.

【0051】熱反射部材7aの形状は、図2に示したよう
に、耐熱断熱性部材の形状に合わせて下方に向かって縮
径された円筒形とするのが望ましい。熱反射部材7eは、
耐熱断熱性部材7の少なくとも下部内面に設けるべきで
あるが、耐熱断熱性部材7の全内面を覆うものであって
も差し支えない。
As shown in FIG. 2, the shape of the heat reflecting member 7a is desirably a cylindrical shape whose diameter is reduced downward in accordance with the shape of the heat and heat insulating member. The heat reflecting member 7e
Although it should be provided at least on the lower inner surface of the heat-resistant and heat-insulating member 7, it may cover the entire inner surface of the heat-resistant and heat-insulating member 7.

【0052】上記のような構造の本発明装置によれば、
固液界面の熱の放散を促してその部分の温度勾配(G)
を大きくするとともに、上方の結晶温度が1000〜1200℃
の高温領域で単結晶を徐冷し、その酸化膜耐圧特性を向
上することが可能になる。しかも、固液界面での結晶の
温度勾配を大きくできるので、引上げ速度を上げて生産
性を高めることができる。
According to the device of the present invention having the above structure,
Promotes heat dissipation at the solid-liquid interface and causes a temperature gradient (G) at that portion
And the upper crystallization temperature is 1000 ~ 1200 ℃
It is possible to gradually cool the single crystal in the high temperature region to improve the oxide film breakdown voltage characteristics. In addition, since the temperature gradient of the crystal at the solid-liquid interface can be increased, the pulling speed can be increased to increase the productivity.

【0053】次に、本発明の単結晶の製造方法について
述べる。
Next, the method for producing a single crystal of the present invention will be described.

【0054】図1に示すとおり、本発明装置を用いれ
ば、金属チャンバー6の上方から供給されるアルゴンガ
スの流れ30は、耐熱断熱性部材7の上端と天井部6aとの
間隔から耐熱断熱性部材7の内側を下方に流れるガス流
れ33と、耐熱断熱性部材7の外側を下方に流れるガス流
れ32とに一旦分岐される。分岐されたガス流れ32および
33は、坩堝1の外周領域で合流してガス流れ34となり、
坩堝1と加熱ヒーター2との間および加熱ヒーター2の
外側を流れ、一酸化珪素および一酸化炭素を伴って、排
気口8からチャンバー外に排出される。従って、耐熱断
熱性部材7の下端と溶融液5の表面の間のアルゴンガス
の流れに発生する部分的な速度差が小さくなるようにガ
ス流れ33の流量を少なくしてガス流速を遅くしても、耐
熱断熱性部材7の外側を下方に流れるガス流れ32の流量
が十分に確保されている限り、排気口8に向かう合流す
るガス流れ34の流速を一定値以上に確保できる。そのた
め、単結晶中の酸素濃度を精度良く制御できるととも
に、一酸化珪素および一酸化炭素も適切に排出すること
ができる。
As shown in FIG. 1, when the apparatus of the present invention is used, the flow 30 of the argon gas supplied from above the metal chamber 6 depends on the distance between the upper end of the heat-insulating member 7 and the ceiling 6a. It is once branched into a gas flow 33 flowing downward inside the member 7 and a gas flow 32 flowing downward outside the heat- and heat-insulating member 7. Branched gas stream 32 and
33 merges in the outer peripheral region of the crucible 1 to form a gas flow 34,
The gas flows between the crucible 1 and the heater 2 and outside the heater 2, and is discharged from the exhaust port 8 to the outside of the chamber together with silicon monoxide and carbon monoxide. Accordingly, the flow rate of the gas flow 33 is reduced by decreasing the flow rate of the gas flow 33 so that the partial velocity difference generated in the flow of the argon gas between the lower end of the heat-resistant and heat-insulating member 7 and the surface of the melt 5 is reduced. Also, as long as the flow rate of the gas flow 32 flowing downward outside the heat-resistant and heat-insulating member 7 is sufficiently ensured, the flow velocity of the gas flow 34 converging toward the exhaust port 8 can be maintained at a certain value or more. Therefore, the oxygen concentration in the single crystal can be controlled accurately, and silicon monoxide and carbon monoxide can be appropriately discharged.

【0055】耐熱断熱性部材7の上端と天井部6aとの間
隔 (h1)は5mm〜100mm の範囲で設定するのがよい。h
1 が5mm未満であると、ガス流れ33が支配的になり、耐
熱断熱性部材7の下端と溶融液5表面の間のアルゴンガ
スの流れは部分的な速度差が大きくなり、溶融液5の表
面温度および溶融液5の対流に変化を生じさせ、結晶中
の酸素濃度を所望の範囲に精密制御することが難しくな
る。一方、h1 が 100mmを超えると、水冷式の金属チャ
ンバー6からの影響によって引上げ結晶4の冷却速度が
大きくなりすぎ、酸化膜耐圧特性が低下することにな
る。さらにh1 は30mm以下とするのが一層望ましい。h
1 が30mmを超えると、排気口8へ流れるべきガス流れ33
が、単結晶の引上げ領域で逆流または滞留して、蒸発し
た一酸化珪素が金属チャンバー6内に凝縮し、溶融液5
に落下する恐れがある。
The distance (h 1 ) between the upper end of the heat-insulating member 7 and the ceiling 6a is preferably set in the range of 5 mm to 100 mm. h
If 1 is less than 5 mm, the gas flow 33 becomes dominant, and the flow of argon gas between the lower end of the heat-resistant and heat-insulating member 7 and the surface of the melt 5 has a large partial velocity difference. A change occurs in the surface temperature and the convection of the melt 5, and it becomes difficult to precisely control the oxygen concentration in the crystal to a desired range. On the other hand, if h 1 exceeds 100 mm, the cooling rate of the pulled crystal 4 becomes too high due to the influence of the water-cooled metal chamber 6 and the withstand voltage characteristics of the oxide film deteriorate. Further h 1 is even more desirable to 30mm or less. h
If 1 exceeds 30 mm, the gas flow 33 that should flow to the exhaust port 8
Flows backward or stays in the single crystal pulling region, and the evaporated silicon monoxide is condensed in the metal chamber 6 to form the molten liquid 5.
May fall.

【0056】耐熱断熱性部材7の下端と溶融液5の表面
との間隔 (h2)は、10mm〜50mmの範囲が好ましい。h2
が50mmを超えると、引上げ結晶への加熱ヒーターや溶融
液からの輻射熱の影響が大きくなり、結晶引上げ速度を
低下させなければならない。
The distance (h 2 ) between the lower end of the heat-insulating member 7 and the surface of the melt 5 is preferably in the range of 10 mm to 50 mm. h 2
Exceeds 50 mm, the influence of radiant heat from the heater or the melt on the pulled crystal becomes large, and the pulling speed of the crystal must be reduced.

【0057】h2 を10〜50mmの範囲にすれば、耐熱断熱
性部材7の下端と溶融液5表面の間のアルゴンガスのガ
ス流れが均一化し、引上げ結晶への熱遮蔽効果も確保す
ることができる。
When h 2 is in the range of 10 to 50 mm, the gas flow of the argon gas between the lower end of the heat-insulating member 7 and the surface of the melt 5 is made uniform, and the effect of shielding the pulled crystal from heat is ensured. Can be.

【0058】結晶中の酸素濃度を目標値に対して、例え
ば±0.75×1017atoms/cm3 の精度で制御するには、溶融
液5の表面上のアルゴンガスの流速を小さくし、部分的
な速度差を極力生じさせないことが必要である。そし
て、このガス流速を再現性良く制御することは、耐熱断
熱性部材7の上端と天井部6aとの間隔h1 および耐熱断
熱性部材7の下端と溶融液5の表面との間隔h2 を、上
記の範囲内で調整することによって達成される。
In order to control the oxygen concentration in the crystal with respect to the target value with an accuracy of, for example, ± 0.75 × 10 17 atoms / cm 3 , the flow rate of the argon gas on the surface of the melt 5 is reduced, and It is necessary to minimize a large speed difference. Then, to control reproducibly the gas flow velocity, the distance h 2 between the distance h 1 and the heat resistant and heat insulating member 7 the lower end and the surface of the melt 5 in the upper end and the ceiling portion 6a of the heat insulating component 7 , Within the above range.

【0059】本発明の装置を用いて単結晶を製造するに
際しては、単結晶寸法、引上げ速度、要求される酸素濃
度等の単結晶の引上げ条件に応じて、アルゴンガスの流
速および流量が適正になるように、予め間隔h1 および
間隔h2 を設定したのち、単結晶の製造を行うのが望ま
しい。
When producing a single crystal using the apparatus of the present invention, the flow rate and flow rate of the argon gas are properly adjusted according to the single crystal pulling conditions such as the size of the single crystal, the pulling speed, and the required oxygen concentration. It is preferable to set the interval h 1 and the interval h 2 in advance so as to manufacture a single crystal.

【0060】[0060]

【実施例】図1に示す本発明の製造装置において、黒鉛
製で、その表面を炭化珪素でコーティングした耐熱断熱
性部材7の寸法を高さ 380mmとし、上端部内径 400mm、
下端部内径 200mmで肉厚10mmの円錐筒状とした。そし
て、この耐熱断熱性部材7の下方(高さ方向で1/3の
範囲)に、Mo製で、厚さ2mm、反射率 0.5の熱反射部材
7e (図2に示す形状)を取り付けた。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the manufacturing apparatus of the present invention shown in FIG. 1, a heat-insulating member 7 made of graphite, whose surface is coated with silicon carbide, has a height of 380 mm, an upper end inner diameter of 400 mm,
The lower end was formed in a conical cylindrical shape with an inner diameter of 200 mm and a thickness of 10 mm. A heat reflecting member made of Mo and having a thickness of 2 mm and a reflectance of 0.5 is provided below the heat-insulating member 7 (in a range of 1/3 in the height direction).
7e (shape shown in FIG. 2) was attached.

【0061】上記の構造の耐熱断熱性部材7を図3
(a)の支持部材21によって保持し、耐熱断熱性部材7
の上端と金属チャンバー6の天井部6aとの間隔h1 を10
mmとし、耐熱断熱性部材7の下端と溶融液5表面との間
隔h2 を30mmとして、単結晶の引上げ軸9とほぼ同軸に
配設した。
The heat-resistant and heat-insulating member 7 having the above structure is shown in FIG.
The heat-insulating member 7 held by the supporting member 21 shown in FIG.
The top and the spacing h 1 between the ceiling portion 6a of the metallic vessel 6 10
and mm, the distance h 2 between the lower end and the melt 5 surface of the heat resistant and heat insulating member 7 as 30 mm, is disposed substantially coaxially with the pulling shaft 9 of the single crystal.

【0062】別に、比較例として、前記の熱反射部材を
取り付けていない耐熱断熱性部材を用いた装置で、同じ
引上げ条件での引上げを実施した。
Separately, as a comparative example, pulling was performed under the same pulling conditions using an apparatus using a heat-resistant and heat-insulating member without the heat reflecting member.

【0063】引き上げた単結晶4は直径6インチのシリ
コン単結晶であって、石英坩堝1aは内径φ406mm(16イン
チ) のものを使用し、金属チャンバー6内に流入するア
ルゴンガス流量は60リットル/minの条件とした。
The pulled single crystal 4 is a silicon single crystal having a diameter of 6 inches, the quartz crucible 1a having an inner diameter of 406 mm (16 inches) is used, and the flow rate of argon gas flowing into the metal chamber 6 is 60 l / liter. min condition.

【0064】引上げ速度は、熱反射部材7eを取り付けた
場合 (本発明例) は 1.2 mm/min とし、これを取り付け
ない場合 (比較例) は 1.1mm/minとし、引上げ長さは12
00mmとした。
The pulling speed was 1.2 mm / min when the heat reflecting member 7e was attached (Example of the present invention), and 1.1 mm / min when the heat reflecting member 7e was not attached (Comparative Example), and the pulling length was 12 mm.
00 mm.

【0065】引き上げた単結晶は、無転位単結晶収率、
OSF良品率、酸化膜耐圧良品率および酸素濃度合格率
の試験項目で評価した。ここで、無転位単結晶収率は、
有転位部分を切削除去した無転位単結晶重量と、使用し
た原料多結晶重量の比で表す。OSF良品率は、シリコ
ンウエーハを切り出し、 780℃×3Hrおよび1000℃×16
Hrの熱処理をしたのち、選択エッチングし、OSF欠陥
が基準値 (10個/cm2)以下のものを良品とし、OSF良
品ウエーハ枚数と全ウエーハ枚数の比で表す。
The single crystal thus pulled up has a dislocation-free single crystal yield,
Evaluations were made on test items such as an OSF conforming rate, an oxide film withstand voltage conforming rate, and an oxygen concentration passing rate. Here, the dislocation-free single crystal yield is
It is represented by the ratio of the weight of the dislocation-free single crystal obtained by cutting and removing dislocations to the weight of the used polycrystalline raw material. OSF non-defective rate is as follows: 780 ℃ × 3Hr and 1000 ℃ × 16
After heat treatment of Hr, selective etching was performed, and those having an OSF defect equal to or less than a reference value (10 / cm 2 ) were regarded as non-defective products, and represented by a ratio of the number of non-defective OSF wafers to the total number of wafers.

【0066】また、酸化膜耐圧良品率は、電圧ランピン
グ法による評価であり、ゲート電極は燐(P)ドープの
多結晶シリコンで構成し、膜圧 250Åのドライ酸化膜
で、その面積は8mm2 として、良否は基準値 (平均電界
8Mv/cm) 以上でも絶縁破壊しないウエーハを良品と
判定し、その比率で表した。
The oxide film breakdown voltage non-defective rate is evaluated by a voltage ramping method. The gate electrode is made of phosphorus (P) -doped polycrystalline silicon, is a dry oxide film having a film pressure of 250 °, and its area is 8 mm 2. The quality of a wafer was determined as a non-defective wafer that did not undergo dielectric breakdown even at a reference value (average electric field of 8 Mv / cm) or more, and expressed as a ratio.

【0067】さらに、酸素濃度合格率は、無転位で引上
げされた単結晶のうち、規格値に対して精度±0.75×10
17atoms/cm3 の範囲内のものを合格と判定し、酸素濃度
合格率単結晶重量と無転位単結晶重量の比で表す。
Further, the pass rate of oxygen concentration was determined to be ± 0.75 × 10 5 with respect to the standard value among single crystals pulled without dislocation.
Those within the range of 17 atoms / cm 3 were determined to be acceptable and represented by the ratio of the oxygen concentration pass rate single crystal weight to the dislocation-free single crystal weight.

【0068】以上の試験結果を表1に示す。Table 1 shows the test results.

【0069】[0069]

【表1】 [Table 1]

【0070】表1に示すように、本発明の装置を使用
し、本発明方法で製造したシリコン単結晶は、比較例の
方法で製造したものに比べ、全ての試験項目について良
好な結果となっており、特に酸化膜耐圧良品率において
10%の向上が得られている。しかも、本発明例の引上げ
速度は、比較例の1.1 mm/minに対して 1.2mm/minで、約
1.1 倍の生産性向上効果も得られている。
As shown in Table 1, the silicon single crystal produced by the method of the present invention using the apparatus of the present invention gave better results for all the test items than those produced by the method of the comparative example. Especially in the oxide film breakdown voltage
A 10% improvement has been obtained. In addition, the pulling speed of the present invention example was 1.2 mm / min compared to 1.1 mm / min of the comparative example,
A 1.1-fold improvement in productivity has also been obtained.

【0071】[0071]

【発明の効果】本発明によれば、単結晶の引上げ方向の
温度勾配を適切に調整できるとともに、チャンバー内の
ガス流れの分岐および合流を適切に制御することができ
る。これによって、単結晶中への汚染物の混入が回避で
き、単結晶基板の酸化膜耐圧特性の向上および結晶内の
酸素濃度の精密制御が可能になる。しかも、単結晶の引
上げ速度を速め、品質のよい単結晶を高い生産性で製造
することができる。
According to the present invention, the temperature gradient in the pulling direction of the single crystal can be appropriately adjusted, and the branching and merging of the gas flow in the chamber can be appropriately controlled. Thus, contamination of the single crystal with contaminants can be avoided, and the oxide film breakdown voltage characteristics of the single crystal substrate can be improved and the oxygen concentration in the crystal can be precisely controlled. In addition, the pulling speed of the single crystal can be increased, and a high-quality single crystal can be manufactured with high productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の単結晶製造装置を示す縦断面図であ
る。
FIG. 1 is a longitudinal sectional view showing a single crystal manufacturing apparatus of the present invention.

【図2】熱反射部材の形状の一例を示す縦断面図と斜視
図、およびこれを耐熱断熱部材に取り付けた状態を示す
縦断面図である。
FIGS. 2A and 2B are a longitudinal sectional view and a perspective view showing an example of the shape of a heat reflecting member, and a longitudinal sectional view showing a state where the heat reflecting member is attached to a heat-insulating member.

【図3】耐熱断熱性部材の保持状況の一例を示す図であ
り、(a)は縦断面図、(b)は水平断面図、(c)は
保持される耐熱断熱性部材の斜視図である。
3A and 3B are diagrams showing an example of a holding state of a heat- and heat-insulating member, wherein FIG. 3A is a longitudinal sectional view, FIG. 3B is a horizontal sectional view, and FIG. is there.

【図4】耐熱断熱性部材の保持状況の他の例を示す図で
あり、(a)は縦断面図、(b)は支持脚材の斜視図、
(c)は保持される耐熱断熱性部材の斜視図である。
4A and 4B are diagrams showing another example of a holding state of the heat- and heat-insulating member, wherein FIG. 4A is a longitudinal sectional view, FIG.
(C) is a perspective view of the heat-resistant and heat-insulating member held.

【図5】従来の単結晶製造装置の一例を示す縦断面図で
ある。
FIG. 5 is a longitudinal sectional view showing an example of a conventional single crystal manufacturing apparatus.

【図6】従来の単結晶製造装置の他の例を示す縦断面図
である。
FIG. 6 is a longitudinal sectional view showing another example of a conventional single crystal manufacturing apparatus.

【図7】本出願が先に提案した単結晶製造装置を示す縦
断面図である。
FIG. 7 is a longitudinal sectional view showing a single crystal manufacturing apparatus proposed earlier by the present application.

【図8】チョクラルスキー法の実施状態を示す概略断面
図である。
FIG. 8 is a schematic cross-sectional view showing an embodiment of the Czochralski method.

【符号の説明】[Explanation of symbols]

1…坩堝、 1a…石英製容器、 1b…黒鉛製容器、 1c
…坩堝支持軸 2…加熱ヒーター、3…種結晶、4…引上げ結晶、5…
溶融液 6…金属チャンバー、6a…チャンバーの天井部、6b…チ
ャンバーの側壁 6c…サブチャンバー 7…耐熱断熱性部材、7a…環状リム、7b…連結部、7c…
貫通孔、7d…突起部 7e…熱反射部材 8…排出口、9…引上げ手段、10…耐熱性断熱円筒、11
…耐熱性断熱板 12…保温部材、13…円筒管形材 21…支持部材、21a …締め付けボルト 22…支持脚材、22a …上端リング、22b …支持脚、22c
…爪部 23…止着リング、30、31、32、33、34…ガス流れ
1 ... crucible, 1a ... quartz container, 1b ... graphite container, 1c
... crucible support shaft 2 ... heater, 3 ... seed crystal, 4 ... pulled crystal, 5 ...
Melt 6: metal chamber, 6a: ceiling of chamber, 6b: side wall of chamber 6c: sub-chamber 7: heat-resistant and heat-insulating member, 7a: annular rim, 7b: connecting part, 7c ...
Through hole, 7d Projection 7e Heat reflection member 8 Outlet, 9 Pulling means, 10 Heat-resistant insulating cylinder, 11
… Heat-resistant heat-insulating plate 12… Insulation member, 13… Cylindrical tube member 21… Support member, 21a… Tightening bolt 22… Support leg material, 22a… Top ring, 22b… Support leg, 22c
... claw 23 ... fastening ring, 30, 31, 32, 33, 34 ... gas flow

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C30B 1/00 - 35/00 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) C30B 1/00-35/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】成長させるべき単結晶の原料溶融液を収容
する坩堝と、この溶融液を加熱する手段と、坩堝内の溶
融液の表面に種結晶を接触させて単結晶を成長させる引
上げ手段と、前記各部材を収容する金属チャンバーとを
具備する単結晶製造装置であって、下記のからまで
の特徴を備える単結晶製造装置。 単結晶の引上げ域の周囲を囲撓する円筒状または上
方から下方に向かうに従って縮径された筒状の耐熱断熱
性部材を有すること。 上記の耐熱断熱性部材は、その上端と前記金属チャ
ンバーの天井部との間に金属チャンバーの上方から供給
される不活性ガスをこの耐熱断熱性部材の内側を下方に
流れる不活性ガスとこの耐熱断熱性部材の外側を下方に
流れる不活性ガスとに分岐させることが可能な間隔を持
って、金属チャンバーの天井部または側壁上部に支持さ
れていること。 上記の耐熱断熱性部材の内面の少なくとも下方の一
部に熱反射部材が装着されていること。
1. A crucible containing a single crystal raw material melt to be grown, a means for heating the melt, and a pulling means for growing a single crystal by bringing a seed crystal into contact with the surface of the melt in the crucible. And a metal chamber for accommodating each of the above members, wherein the single crystal manufacturing apparatus has the following features. A heat-resistant and heat-insulating member having a cylindrical shape or a cylindrical shape whose diameter is reduced from above to below. The heat-resistant and heat-insulating member is configured such that an inert gas supplied from above the metal chamber between an upper end thereof and a ceiling portion of the metal chamber flows downward through the inside of the heat-resistant and heat-insulating member. It is supported on the ceiling or the upper part of the side wall of the metal chamber with an interval capable of branching to the inert gas flowing down the outside of the heat insulating member. A heat reflecting member is attached to at least a part of the inner surface of the heat-insulating member.
【請求項2】成長させるべき単結晶の原料溶融液を収容
する坩堝と、この溶融液を加熱する手段と、坩堝内の溶
融液の表面に種結晶を接触させて単結晶を成長させる引
上げ手段と、前記各部材を収容する金属チャンバーとを
具備する単結晶製造装置を使用する単結晶の製造方法に
おいて、単結晶の引上げ域の周囲を囲繞する円筒または
上方から下方に向かうに従って縮径された筒状であっ
て、かつその内面の少なくとも下方の一部に熱反射部材
が装着されている耐熱断熱性部材を坩堝内の溶融液の上
方に配設し、この部材と前記金属チャンバーの天井部と
の間に不活性ガスの流通が可能な間隔を設けて、金属チ
ャンバー上方から供給される不活性ガスをこの部材の内
側を下方に向けて流れる不活性ガスとこの部材の外側を
下方に向けて流れる不活性ガスとに分岐させたのち、分
岐させた不活性ガスを合流させることを特徴とする単結
晶の製造方法。
2. A crucible for accommodating a single crystal raw material melt to be grown, means for heating the melt, and pulling means for growing a single crystal by bringing a seed crystal into contact with the surface of the melt in the crucible. And a single crystal manufacturing method using a single crystal manufacturing apparatus having a metal chamber for accommodating each of the above members, wherein the diameter of the single crystal is reduced from a cylinder surrounding the pulling region of the single crystal or downward from above. A heat-resistant and heat-insulating member having a tubular shape and a heat reflection member attached to at least a part of the inner surface at a lower portion thereof is disposed above the melt in the crucible, and the member and a ceiling portion of the metal chamber are provided. An inert gas supplied from above the metal chamber is provided between the metal gas chamber and the inert gas flowing downward from the inside of the member, and the external gas from the outside of the member is directed downward. Flowing Mixture was allowed to branch to the active gas, the method for producing a single crystal, characterized in that for combining the inert gas is branched.
JP4374996A 1996-02-29 1996-02-29 Single crystal manufacturing apparatus and manufacturing method Expired - Lifetime JP2937109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4374996A JP2937109B2 (en) 1996-02-29 1996-02-29 Single crystal manufacturing apparatus and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4374996A JP2937109B2 (en) 1996-02-29 1996-02-29 Single crystal manufacturing apparatus and manufacturing method

Publications (2)

Publication Number Publication Date
JPH09235190A JPH09235190A (en) 1997-09-09
JP2937109B2 true JP2937109B2 (en) 1999-08-23

Family

ID=12672421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4374996A Expired - Lifetime JP2937109B2 (en) 1996-02-29 1996-02-29 Single crystal manufacturing apparatus and manufacturing method

Country Status (1)

Country Link
JP (1) JP2937109B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003221296A (en) * 2002-01-29 2003-08-05 Komatsu Electronic Metals Co Ltd Apparatus and method for producing single crystal
JP4349493B2 (en) * 2005-09-27 2009-10-21 Sumco Techxiv株式会社 Single crystal silicon pulling apparatus, silicon melt contamination prevention method, and silicon melt contamination prevention apparatus
US7427325B2 (en) * 2005-12-30 2008-09-23 Siltron, Inc. Method for producing high quality silicon single crystal ingot and silicon single crystal wafer made thereby
US8152921B2 (en) * 2006-09-01 2012-04-10 Okmetic Oyj Crystal manufacturing
JP2009001489A (en) * 2008-08-28 2009-01-08 Sumco Techxiv株式会社 Apparatus and method for producing single crystal
JP5439972B2 (en) * 2009-06-19 2014-03-12 株式会社Sumco Manufacturing method of large-diameter silicon single crystal
CN116043329B (en) * 2023-03-31 2023-05-30 苏州晨晖智能设备有限公司 Single crystal furnace with argon positioning and guiding functions

Also Published As

Publication number Publication date
JPH09235190A (en) 1997-09-09

Similar Documents

Publication Publication Date Title
JP3634867B2 (en) Single crystal manufacturing apparatus and manufacturing method
EP0308308B1 (en) Apparatus for czochralski single crystal growing
EP0229322A2 (en) Method and apparatus for Czochralski single crystal growing
US5367981A (en) Apparatus for manufacturing crystals through floating zone method
KR20070094726A (en) Single-crystal production apparatus
JP2686223B2 (en) Single crystal manufacturing equipment
JP2619611B2 (en) Single crystal manufacturing apparatus and manufacturing method
JPH09309789A (en) Apparatus for producing semiconducting single crystal
JP2937109B2 (en) Single crystal manufacturing apparatus and manufacturing method
JPH0639351B2 (en) Apparatus and method for manufacturing single crystal ingot
JPH06340490A (en) Apparatus for production of silicon single crystal
KR20050120707A (en) Process for producing single crystal
US5683505A (en) Process for producing single crystals
JP2800867B2 (en) Silicon single crystal manufacturing equipment
JP3079991B2 (en) Single crystal manufacturing apparatus and manufacturing method
JPH07330482A (en) Method and apparatus for growing single crystal
JPH0710682A (en) Drawing of single crystal and production machine therefor
JPS63319288A (en) Flanged quartz crucible
JP2001002490A (en) Single crystal pulling up device
JPH07172971A (en) Apparatus for pulling up semiconductor single crystal
JPH04187585A (en) Device of growing crystal
JPH03177389A (en) Pulling device of silicon single crystal
JPH06340493A (en) Apparatus for growing single crystal and growing method
JP2003267795A (en) Silicon single crystal pulling apparatus
JPH059096A (en) Production of silicon single crystal