JPH07172971A - Apparatus for pulling up semiconductor single crystal - Google Patents

Apparatus for pulling up semiconductor single crystal

Info

Publication number
JPH07172971A
JPH07172971A JP34498093A JP34498093A JPH07172971A JP H07172971 A JPH07172971 A JP H07172971A JP 34498093 A JP34498093 A JP 34498093A JP 34498093 A JP34498093 A JP 34498093A JP H07172971 A JPH07172971 A JP H07172971A
Authority
JP
Japan
Prior art keywords
single crystal
screen
radiation
pulling
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34498093A
Other languages
Japanese (ja)
Inventor
Toshimichi Kubota
利通 久保田
Toshirou Kotooka
敏朗 琴岡
Toshiaki Saishoji
俊昭 最勝寺
Akihiro Iida
哲広 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Original Assignee
Komatsu Electronic Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Electronic Metals Co Ltd filed Critical Komatsu Electronic Metals Co Ltd
Priority to JP34498093A priority Critical patent/JPH07172971A/en
Publication of JPH07172971A publication Critical patent/JPH07172971A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To prolong the time for passing a single crystal through a high- temperature range of >=1200 deg.C and to quickly pass through a temperature range of about 900-500 deg.C in the production of a single crystal using a semiconductor single crystal pull-up apparatus provided with a radiation screen. CONSTITUTION:The radiation screen 1 to be used in this pull-up apparatus is composed of an upper screen 2 having a three-layer structure consisting of a heat-insulation material 2a made of graphite or ceramic fiber and outer members 2b and 2c made of graphite and covering the heat-insulation material 2a and a lower screen 3 having a single layer structure and composed of graphite, quartz or fine ceramic material. The radiation heat emitting from a molten liquid 4, etc., passes through the lower screen 3 and heat the lower part of a single crystal 6 to prolong the time for passing through the above high- temperature range. The single crystal 6 in the part surrounded by the upper screen 2 is shielded from the above radiation heat and, accordingly, relatively quickly cooled to pass the temperature range of 90-500 deg.C in a short time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、引き上げ単結晶の周囲
を取り囲み、下端が融液面に近接するように設置した輻
射スクリーンを有する半導体単結晶引き上げ装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor single crystal pulling apparatus having a radiation screen which surrounds a pulling single crystal and is installed so that its lower end is close to the melt surface.

【0002】[0002]

【従来の技術】半導体素子の基板には主として高純度の
シリコン単結晶が用いられているが、このシリコン単結
晶の製造方法の一つとして、るつぼ内の原料融液から円
柱状の単結晶を引き上げるチョクラルスキー法(以下C
Z法という)がある。CZ法においては、半導体単結晶
引き上げ装置のチャンバ内に設置したるつぼに原料であ
る多結晶を充填し、前記るつぼの外周に設けたヒータに
よって原料を加熱溶解した上、シードチャックに取り付
けた種子結晶を融液に浸漬し、シードチャックおよびる
つぼを同方向または逆方向に回転しつつシードチャック
を引き上げて単結晶を成長させる。
2. Description of the Related Art A high-purity silicon single crystal is mainly used for a substrate of a semiconductor element. As one of the methods for producing this silicon single crystal, a cylindrical single crystal is prepared from a raw material melt in a crucible. Czochralski method of pulling up (hereinafter C
There is a Z method). In the CZ method, a crucible installed in a chamber of a semiconductor single crystal pulling apparatus is filled with a polycrystal as a raw material, the raw material is heated and melted by a heater provided on the outer periphery of the crucible, and then a seed crystal attached to a seed chuck. Is immersed in a melt, and the seed chuck is pulled up while the seed chuck and the crucible are rotated in the same direction or opposite directions to grow a single crystal.

【0003】上記の単結晶引き上げ装置において、単結
晶の引き上げ速度を早めるとともに不純物による汚染を
防止して単結晶の無転位化を向上させる手段として、単
結晶引き上げ領域の周囲に輻射スクリーンを設置するこ
とが知られている。図3は、輻射スクリーンを有する半
導体単結晶引き上げ装置の一部を模式的に示す断面図で
ある。前記輻射スクリーン1は単結晶引き上げ領域を取
り巻く熱遮蔽体で、一般に下端開口部の直径が上端開口
部の直径より小さい円錐状の筒である。輻射スクリーン
1は融液4、石英るつぼ5などから単結晶6に加えられ
る輻射熱を遮断して単結晶6の冷却を促進し、単結晶引
き上げ速度を早めるとともに、結晶欠陥の発生を防止す
る。また、チャンバ7の上方から導入される不活性ガス
を単結晶6の周囲に誘導し、石英るつぼ5の中心部から
周縁部を経てチャンバ7の底部に設けられた排気孔に至
るガス流を形成させることによって、融液4から発生す
る酸化珪素や黒鉛るつぼ8から発生する金属蒸気など、
単結晶化を阻害するガスを排除する機能を備えている。
なお、9はヒータ、10は保温筒である。
In the above single crystal pulling apparatus, a radiation screen is installed around the single crystal pulling region as a means for increasing the pulling speed of the single crystal and preventing contamination by impurities to improve dislocation-free single crystal. It is known. FIG. 3 is a sectional view schematically showing a part of a semiconductor single crystal pulling apparatus having a radiation screen. The radiation screen 1 is a heat shield surrounding the single crystal pulling region, and is generally a conical tube having a lower end opening diameter smaller than an upper end opening diameter. The radiant screen 1 blocks the radiant heat applied to the single crystal 6 from the melt 4, the quartz crucible 5 and the like to accelerate the cooling of the single crystal 6, speed up the single crystal pulling speed and prevent the generation of crystal defects. Further, an inert gas introduced from above the chamber 7 is guided around the single crystal 6 to form a gas flow from the central portion of the quartz crucible 5 to the exhaust hole provided at the bottom of the chamber 7 through the peripheral portion. As a result, silicon oxide generated from the melt 4 or metal vapor generated from the graphite crucible 8,
It has the function of eliminating the gas that inhibits single crystallization.
In addition, 9 is a heater and 10 is a heat insulation cylinder.

【0004】[0004]

【発明が解決しようとする課題】輻射スクリーンを設け
ることによって単結晶の冷却が促進されるため、結晶欠
陥発生頻度が高いとされている900°C〜500°C
前後の温度領域を短時間で通過させることができるとと
もに、酸化珪素などを効率的に排出させることにより単
結晶化率が向上する。しかしながら、900°C〜50
0°C前後の温度領域を短時間で通過させるだけでは必
ずしもデバイスプロセス後も安定した高品質のウェーハ
が得られるとは限らない。すなわち、輻射スクリーンを
有する従来の単結晶引き上げ装置ではすべての温度領域
を短時間で通過するため、酸化膜耐圧の良好なウェーハ
を得るために必要な1200°C以上の高温領域に引き
上げ単結晶を長時間滞留させることができない。また、
輻射スクリーンを廃止し、かつ単結晶引き上げ速度を下
げた場合、前記酸化膜耐圧性能は向上するが、単結晶化
率の低下とOSFあるいは転位ループの発生によるデバ
イスの不良率上昇を招くとともに、単結晶の生産能率も
下がる。
Since the cooling of the single crystal is promoted by providing the radiation screen, it is said that the frequency of occurrence of crystal defects is 900 ° C to 500 ° C.
The temperature range before and after can be passed in a short time, and the rate of single crystallization is improved by efficiently discharging silicon oxide and the like. However, 900 ° C to 50
Simply passing the temperature region around 0 ° C in a short time does not always provide a stable and high-quality wafer even after the device process. That is, since the conventional single crystal pulling apparatus having a radiation screen passes through all temperature regions in a short time, the single crystal is pulled to a high temperature region of 1200 ° C. or higher necessary for obtaining a wafer having a good oxide film withstand voltage. Cannot be retained for a long time. Also,
When the radiation screen is abolished and the pulling rate of the single crystal is reduced, the withstand voltage performance of the oxide film is improved, but the single crystallization rate is lowered and the defective rate of the device is increased due to the generation of OSF or dislocation loops. The production efficiency of crystals also decreases.

【0005】単結晶の引き上げに当たり、輻射スクリー
ンの下端と融液面との間隔を従来よりも拡げた場合は、
引き上げ中の単結晶下端部分は輻射スクリーンによる遮
蔽効果を受けず、冷却されにくくなる。従って、120
0°C以上の高温領域通過時間は長くなり、輻射スクリ
ーンの遮蔽効果を受ける900°C〜500°C前後の
温度領域は短時間で通過することができる。しかし、酸
化珪素などを効率的に排出させ、かつ単結晶中の酸素濃
度を高精度に制御するとともに単結晶の生産性を維持す
るためには、輻射スクリーンの下端と融液面との間隔を
従来通りに保たなければならない。本発明は上記従来の
問題点に着目してなされたもので、1200°C以上の
高温領域通過時間をできるだけ長くし、かつ900°C
〜500°C前後の温度領域は速やかに通過させること
ができるとともに、不活性ガス流による酸化珪素などの
排出を効率的に行うことが可能な輻射スクリーンを備え
た半導体単結晶引き上げ装置を提供することを目的とし
ている。
When pulling the single crystal, if the distance between the lower end of the radiant screen and the melt surface is made wider than before,
The lower end portion of the single crystal during pulling is not affected by the shielding effect of the radiation screen and is less likely to be cooled. Therefore, 120
The passage time in the high temperature region of 0 ° C. or higher becomes long, and the temperature region around 900 ° C. to 500 ° C., which receives the shielding effect of the radiation screen, can pass in a short time. However, in order to efficiently discharge silicon oxide and the like, to control the oxygen concentration in the single crystal with high accuracy, and to maintain the productivity of the single crystal, the distance between the lower end of the radiation screen and the melt surface is set. You must keep it as usual. The present invention has been made by paying attention to the above-mentioned problems of the prior art.
Provided is a semiconductor single crystal pulling apparatus provided with a radiation screen which can quickly pass through a temperature range of about 500 ° C. and can efficiently discharge silicon oxide and the like by an inert gas flow. Is intended.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係る半導体単結晶引き上げ装置は、半導体
単結晶の原料を溶解するるつぼと、このるつぼの周囲に
あってるつぼ内の原料を加熱するヒータと、溶解した原
料に種子結晶を浸漬して単結晶を引き上げる引き上げ機
構とを備え、引き上げ領域を取り囲む円錐状の断熱筒か
らなる輻射スクリーンを融液近傍上方に設けた半導体単
結晶引き上げ装置において、前記輻射スクリーンの上部
と下部の断熱性能を任意の位置で変える構成とし、この
ような構成において、輻射スクリーン下部の断熱性能
が、輻射スクリーン上部の断熱性能に比べて低いもので
あることを特徴としている。
In order to achieve the above object, a semiconductor single crystal pulling apparatus according to the present invention comprises a crucible for melting a raw material of a semiconductor single crystal and a raw material in a crucible surrounding the crucible. A semiconductor single crystal puller provided with a heater for heating and a pulling mechanism for pulling a single crystal by immersing a seed crystal in a melted raw material, and a radiation screen consisting of a conical heat insulating cylinder surrounding a pulling region provided near the melt In the device, the heat insulation performance of the upper and lower parts of the radiation screen is changed at arbitrary positions, and in such a structure, the heat insulation performance of the lower part of the radiation screen is lower than the heat insulation performance of the upper part of the radiation screen. Is characterized by.

【0007】[0007]

【作用】上記構成によれば、単結晶の引き上げ領域を取
り囲む輻射スクリーンの断熱性能を上部と下部とで異な
るものとし、輻射スクリーン下部の断熱性能を上部より
低くしたので、輻射スクリーン下部に包囲される部分、
すなわち固液界面の直上近傍部分では融液、石英るつぼ
などからの輻射熱が前記輻射スクリーン下部を透過して
単結晶に到達する。従って、単結晶は加熱され、高温領
域通過時間が長くなる。単結晶が成長し、更に引き上げ
られて断熱性能の高い輻射スクリーン上部に包囲された
部分は従来と同様に冷却されるので、900°C〜50
0°C前後の温度領域を速やかに通過させることができ
る。また、輻射スクリーンの下端と融液面との間隔を従
来通りに保つことにより、不活性ガス流による酸化珪素
などの排出を効率的に行うことが可能である。
According to the above structure, the heat insulation performance of the radiation screen surrounding the pulling region of the single crystal is different between the upper portion and the lower portion, and the heat insulation performance of the lower portion of the radiation screen is lower than that of the upper portion, so that the radiation screen is surrounded by the lower portion of the radiation screen. Part,
That is, in the portion immediately above the solid-liquid interface, the radiant heat from the melt, the quartz crucible, etc. passes through the lower portion of the radiant screen and reaches the single crystal. Therefore, the single crystal is heated and the transit time in the high temperature region becomes long. The single crystal grows, is pulled up, and the part surrounded by the upper part of the radiant screen with high heat insulation performance is cooled in the same manner as in the conventional method, so that the temperature is 900 ° C.
It can quickly pass through the temperature range around 0 ° C. Further, by keeping the distance between the lower end of the radiant screen and the melt surface as usual, it is possible to efficiently discharge silicon oxide and the like by the inert gas flow.

【0008】[0008]

【実施例】以下に、本発明に係る半導体単結晶引き上げ
装置の実施例について、図面を参照して説明する。図1
は輻射スクリーンおよびその周辺の模式的断面図で、輻
射スクリーン1は断熱性能の異なる上部スクリーン2と
下部スクリーン3とに分割されている。上部スクリーン
2は3層構造で、黒鉛またはセラミックスの繊維からな
る断熱材2aを、黒鉛からなる外側部材2bおよび2c
で被包したものである。前記上部スクリーン2は、上端
開口部より下端開口部が小さい円錐状の筒で、上端に環
状のフランジを備えている。また、上部スクリーン2の
下端には下部スクリーン3を取り付ける掛止部が設けら
れている。下部スクリーン3は1層構造で、黒鉛または
石英もしくはファインセラミックスからなり、上端に設
けられたフランジが前記上部スクリーン2の下端に掛止
されている。4は融液、5は石英るつぼ、6は引き上げ
中の単結晶である。
Embodiments of the semiconductor single crystal pulling apparatus according to the present invention will be described below with reference to the drawings. Figure 1
Is a schematic cross-sectional view of the radiant screen and its surroundings. The radiant screen 1 is divided into an upper screen 2 and a lower screen 3 having different heat insulating properties. The upper screen 2 has a three-layer structure and includes a heat insulating material 2a made of graphite or ceramic fibers and outer members 2b and 2c made of graphite.
It has been encapsulated in. The upper screen 2 is a conical cylinder whose lower end opening is smaller than its upper end opening, and has an annular flange at its upper end. Further, a hooking portion for attaching the lower screen 3 is provided at the lower end of the upper screen 2. The lower screen 3 has a single-layer structure and is made of graphite, quartz, or fine ceramics, and a flange provided on the upper end is hooked on the lower end of the upper screen 2. 4 is a melt, 5 is a quartz crucible, and 6 is a single crystal being pulled.

【0009】下部スクリーン3は1層構造であるため、
従来の輻射スクリーンのように融液4や石英るつぼ5な
どからの輻射熱を完全に遮蔽する機能を有しない。従っ
て、融液4からの輻射熱は、直接下部スクリーン3を透
過して、あるいは石英るつぼ5の内面で反射した後、下
部スクリーン3を透過して引き上げ中の単結晶6の下部
に到達し、単結晶6の下部を加熱する。従来の輻射スク
リーンを用いた場合、前記単結晶6の下部は輻射熱が遮
断されるため、1200°C以上の高温領域を短時間で
通過して冷却されていた。しかし、本実施例の場合は輻
射スクリーンがありながら逆に加熱されるため、前記高
温領域通過時間を長引かせることになる。一方、上部ス
クリーン2は従来と同じく十分な断熱性能を持っている
ので、中低温領域に対する急冷機能を発揮することがで
きる。従って、単結晶6が下部スクリーン3の部分から
引き上げられて上部スクリーン2に包囲されると、比較
的急速に冷却され、900°C〜500°C前後の温度
領域を短時間で通過することができる。
Since the lower screen 3 has a one-layer structure,
It does not have the function of completely shielding the radiant heat from the melt 4 and the quartz crucible 5 unlike the conventional radiant screen. Therefore, the radiant heat from the melt 4 directly passes through the lower screen 3 or after being reflected by the inner surface of the quartz crucible 5 and then passes through the lower screen 3 to reach the lower portion of the single crystal 6 being pulled, The lower part of the crystal 6 is heated. When a conventional radiant screen is used, the lower part of the single crystal 6 is cooled by passing through a high temperature region of 1200 ° C. or higher in a short time because radiant heat is blocked. However, in the case of the present embodiment, the radiation screen is heated conversely, so that the passage time in the high temperature region is prolonged. On the other hand, since the upper screen 2 has sufficient heat insulation performance as in the conventional case, it can exhibit a rapid cooling function in the middle and low temperature regions. Therefore, when the single crystal 6 is pulled up from the lower screen 3 and surrounded by the upper screen 2, it is cooled relatively rapidly and can pass through a temperature range of about 900 ° C to 500 ° C in a short time. it can.

【0010】下部スクリーン3の下端と融液4の表面と
の間隔は、従来通りの寸法範囲に保たれていて、前記下
部スクリーン3は不活性ガスの整流効果を発揮する。単
結晶引き上げ装置の上部から導入されたアルゴンなどの
不活性ガスは、単結晶6の外周に沿って流下した後、前
記下部スクリーン3の下端と融液4との隙間を通り、石
英るつぼ5の内面に沿って上昇した後、単結晶引き上げ
装置の底部に設けた排気孔から排出される。
The distance between the lower end of the lower screen 3 and the surface of the melt 4 is maintained in the conventional size range, and the lower screen 3 exerts the rectifying effect of the inert gas. An inert gas such as argon introduced from the upper portion of the single crystal pulling apparatus flows down along the outer periphery of the single crystal 6, and then passes through the gap between the lower end of the lower screen 3 and the melt 4 to pass through the quartz crucible 5. After ascending along the inner surface, it is discharged from an exhaust hole provided at the bottom of the single crystal pulling apparatus.

【0011】図2は、デバイスプロセス後の酸化膜耐圧
に関する良品率を、本実施例による単結晶引き上げ装置
を用いて得られた製品と従来の輻射スクリーンを備えた
単結晶引き上げ装置によって得られた製品とについて比
較した図である。ここでいう酸化膜耐圧の良品率とはシ
リコンウェーハ上に多数個の素子を形成し、酸化膜の絶
縁破壊電圧が8MV/cm以上の素子数の割合を示して
いる。同図で明らかなように、本実施例による製品の良
品率は従来品の1.5倍以上に向上している。
FIG. 2 shows the non-defective product rate related to the breakdown voltage of the oxide film after the device process, obtained by the product obtained by using the single crystal pulling apparatus according to this embodiment and the conventional single crystal pulling apparatus equipped with a radiation screen. It is the figure compared with the product. The non-defective rate of the oxide film breakdown voltage as used herein means the ratio of the number of elements in which a large number of elements are formed on a silicon wafer and the dielectric breakdown voltage of the oxide film is 8 MV / cm or more. As is clear from the figure, the non-defective rate of the product according to the present embodiment is more than 1.5 times that of the conventional product.

【0012】本実施例では上部スクリーンと下部スクリ
ーンとを分割したが、これに限るものではなく、3層構
造の上部スクリーンと1層構造の下部スクリーンとを一
体に構成してもよい。加えて、下部スクリーンの厚さや
材質を変えることにより、単結晶に任意の熱履歴を与え
ることが可能となる。また、下部スクリーンを排除する
ことで、酸化膜耐圧特性が向上することは言うまでもな
い。
Although the upper screen and the lower screen are divided in this embodiment, the present invention is not limited to this, and the upper screen having a three-layer structure and the lower screen having a one-layer structure may be integrally formed. In addition, by changing the thickness and material of the lower screen, it becomes possible to give an arbitrary heat history to the single crystal. Needless to say, the oxide film breakdown voltage characteristics are improved by eliminating the lower screen.

【0013】[0013]

【発明の効果】以上説明したように本発明によれば、単
結晶引き上げ速度を早めるとともに単結晶の無転位化を
向上させる手段として輻射スクリーンを備えた半導体単
結晶引き上げ装置において、前記輻射スクリーンの断熱
性能を上部と下部とで異なるものとし、輻射スクリーン
下部の断熱性能を上部より低くすることによって、輻射
スクリーン下部に包囲される部分が輻射熱を受けるよう
にした。これにより、単結晶引き上げ時における120
0°C以上の高温領域通過時間の延長が可能となり、デ
バイスプロセス後、酸化膜耐圧の良好なウェーハを得る
ことができる。また、輻射スクリーン上部に包囲された
単結晶は従来と同様に冷却されるので、900°C〜5
00°C前後の温度領域は速やかに通過させることがで
き、結晶欠陥の発生は従来同様に少なく、輻射スクリー
ンの設置高さを従来通りとすることにより、不活性ガス
流による酸化珪素などの排出を効率的に行うことが可能
である。更に、本発明を利用して下部スクリーンの厚さ
あるいは材質を変えることにより、任意の熱履歴を単結
晶に与えることが可能となり、多様な品質規格に対応し
た単結晶を製造することができる。
As described above, according to the present invention, in a semiconductor single crystal pulling apparatus provided with a radiation screen as a means for increasing the single crystal pulling rate and improving dislocation-free single crystal, the radiation screen By making the heat insulation performance different between the upper part and the lower part and making the heat insulation performance of the lower part of the radiant screen lower than that of the upper part, the part surrounded by the lower part of the radiant screen receives radiant heat. As a result, 120
It is possible to extend the passage time in the high temperature region of 0 ° C. or higher, and it is possible to obtain a wafer having a good oxide film breakdown voltage after the device process. Further, since the single crystal surrounded by the upper part of the radiation screen is cooled in the same manner as in the conventional case,
The temperature range around 00 ° C can be passed quickly, and the generation of crystal defects is as small as that of the conventional one. By keeping the installation height of the radiation screen as usual, discharge of silicon oxide etc. by the inert gas flow can be performed. Can be performed efficiently. Furthermore, the present invention can be used to change the thickness or the material of the lower screen to give an arbitrary heat history to the single crystal, and the single crystal corresponding to various quality standards can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】輻射スクリーンおよびその周辺の模式的断面図
である。
FIG. 1 is a schematic cross-sectional view of a radiation screen and its periphery.

【図2】デバイスプロセス後の酸化膜耐圧に関する良品
率を、本実施例による製品と従来品とについて比較した
図である。
FIG. 2 is a diagram comparing a non-defective product rate related to an oxide film breakdown voltage after a device process between a product according to this embodiment and a conventional product.

【図3】従来の技術による輻射スクリーンを備えた半導
体単結晶引き上げ装置の模式的部分断面図である。
FIG. 3 is a schematic partial cross-sectional view of a semiconductor single crystal pulling apparatus including a radiation screen according to a conventional technique.

【符号の説明】[Explanation of symbols]

1 輻射スクリーン 2 上部スクリーン 2a 断熱材 2b,2c 外側部材 3 下部スクリーン 4 融液 5 石英るつぼ 6 単結晶 1 Radiation Screen 2 Upper Screen 2a Heat Insulating Materials 2b, 2c Outer Member 3 Lower Screen 4 Melt 5 Quartz Crucible 6 Single Crystal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯田 哲広 神奈川県平塚市四之宮2612 コマツ電子金 属株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tetsuhiro Iida 2612 Shinomiya, Hiratsuka-shi, Kanagawa Komatsu Electronics Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体単結晶の原料を溶解するるつぼ
と、このるつぼの周囲にあってるつぼ内の原料を加熱す
るヒータと、溶解した原料に種子結晶を浸漬して単結晶
を引き上げる引き上げ機構とを備え、引き上げ領域を取
り囲む円錐状の断熱筒からなる輻射スクリーンを融液近
傍上方に設けた半導体単結晶引き上げ装置において、前
記輻射スクリーンの上部と下部の断熱性能を任意の位置
で変えたことを特徴とする半導体単結晶引き上げ装置。
1. A crucible for melting a raw material of a semiconductor single crystal, a heater for heating the raw material in a crucible around the crucible, and a pulling mechanism for dipping a seed crystal in the molten raw material to pull up the single crystal. In a semiconductor single crystal pulling apparatus provided with a radiation screen consisting of a conical heat insulating tube surrounding a pulling region above the vicinity of the melt, the heat insulating performance of the upper part and the lower part of the radiation screen may be changed at any position. Characteristic semiconductor single crystal pulling apparatus.
【請求項2】 輻射スクリーン下部の断熱性能が、輻射
スクリーン上部の断熱性能に比べて低いものであること
を特徴とする請求項1の半導体単結晶引き上げ装置。
2. The apparatus for pulling a semiconductor single crystal according to claim 1, wherein the heat insulating performance of the lower portion of the radiation screen is lower than that of the upper portion of the radiation screen.
JP34498093A 1993-12-20 1993-12-20 Apparatus for pulling up semiconductor single crystal Pending JPH07172971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34498093A JPH07172971A (en) 1993-12-20 1993-12-20 Apparatus for pulling up semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34498093A JPH07172971A (en) 1993-12-20 1993-12-20 Apparatus for pulling up semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPH07172971A true JPH07172971A (en) 1995-07-11

Family

ID=18373465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34498093A Pending JPH07172971A (en) 1993-12-20 1993-12-20 Apparatus for pulling up semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPH07172971A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5868836A (en) * 1996-01-19 1999-02-09 Komatsu Electronic Metal Co., Ltd. Semiconductor single-crystal lift device
US6071341A (en) * 1996-05-22 2000-06-06 Komatsu Electronic Metals Co., Ltd. Apparatus for fabricating single-crystal silicon
JP2023509113A (en) * 2020-08-10 2023-03-07 西安奕斯偉材料科技有限公司 Single crystal furnace assembly sleeve and single crystal furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5868836A (en) * 1996-01-19 1999-02-09 Komatsu Electronic Metal Co., Ltd. Semiconductor single-crystal lift device
US6071341A (en) * 1996-05-22 2000-06-06 Komatsu Electronic Metals Co., Ltd. Apparatus for fabricating single-crystal silicon
JP2023509113A (en) * 2020-08-10 2023-03-07 西安奕斯偉材料科技有限公司 Single crystal furnace assembly sleeve and single crystal furnace
US11932961B2 (en) 2020-08-10 2024-03-19 Xian Eswin Material Technology Co., Ltd. Assembly sleeve of single crystal pulling apparatus, and single crystal pulling apparatus

Similar Documents

Publication Publication Date Title
JP3634867B2 (en) Single crystal manufacturing apparatus and manufacturing method
US4981549A (en) Method and apparatus for growing silicon crystals
US5264189A (en) Apparatus for growing silicon crystals
US6197111B1 (en) Heat shield assembly for crystal puller
KR100453850B1 (en) Silicon single crystal with no crystal defect in peripheral part of wafer
US6071341A (en) Apparatus for fabricating single-crystal silicon
US5824152A (en) Semiconductor single-crystal pulling apparatus
JPH0639351B2 (en) Apparatus and method for manufacturing single crystal ingot
US5730799A (en) Device for producing single crystals
JPH07172971A (en) Apparatus for pulling up semiconductor single crystal
JPS6168389A (en) Apparatus for growing single crystal
JP2937109B2 (en) Single crystal manufacturing apparatus and manufacturing method
JPH0761889A (en) Semiconductor single crystal pull device and method fir pulling semiconductor single crystal
JP2952733B2 (en) Silicon single crystal manufacturing method
JPH11240790A (en) Apparatus for producing single crystal
JPH07223894A (en) Apparatus for production of semiconductor single crystal
JP2800867B2 (en) Silicon single crystal manufacturing equipment
JP3640940B2 (en) Semiconductor single crystal manufacturing equipment
JP3203342B2 (en) Single crystal manufacturing equipment
JP2800482B2 (en) Method for producing silicon single crystal
JPH09309787A (en) Eater-cooling tower for single crystal-pulling up apparatus
JPH07330482A (en) Method and apparatus for growing single crystal
JP2735740B2 (en) Method for producing silicon single crystal
JP2939603B2 (en) Manufacturing method of semiconductor single crystal
JPH06340493A (en) Apparatus for growing single crystal and growing method