JP2952733B2 - Silicon single crystal manufacturing method - Google Patents

Silicon single crystal manufacturing method

Info

Publication number
JP2952733B2
JP2952733B2 JP29776092A JP29776092A JP2952733B2 JP 2952733 B2 JP2952733 B2 JP 2952733B2 JP 29776092 A JP29776092 A JP 29776092A JP 29776092 A JP29776092 A JP 29776092A JP 2952733 B2 JP2952733 B2 JP 2952733B2
Authority
JP
Japan
Prior art keywords
single crystal
gas
silicon
silicon single
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29776092A
Other languages
Japanese (ja)
Other versions
JPH06122587A (en
Inventor
信司 肥後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Original Assignee
Komatsu Electronic Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Electronic Metals Co Ltd filed Critical Komatsu Electronic Metals Co Ltd
Priority to JP29776092A priority Critical patent/JP2952733B2/en
Publication of JPH06122587A publication Critical patent/JPH06122587A/en
Application granted granted Critical
Publication of JP2952733B2 publication Critical patent/JP2952733B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、チョクラルスキー法に
よる半導体単結晶製造装置、および単結晶引き上げ時に
不活性ガスを固液界面等に吹きつけて単結晶に含まれる
酸素濃度を制御するシリコン単結晶製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for manufacturing a semiconductor single crystal by the Czochralski method, and a silicon for controlling the concentration of oxygen contained in the single crystal by blowing an inert gas onto a solid-liquid interface when pulling the single crystal. The present invention relates to a method for producing a single crystal.

【0002】[0002]

【従来の技術】半導体集積回路の基本材料であるシリコ
ン単結晶の製造方法の一つとして、るつぼ内の原料融液
から円柱状の単結晶を引き上げるチョクラルスキー法
(以下CZ法という)が用いられている。CZ法におい
ては、単結晶製造装置のメインチャンバ内に設置した石
英るつぼに高純度の多結晶シリコンを充填し、前記るつ
ぼの外周に設けたヒータによって多結晶シリコンを加熱
溶解した上、シードチャックに取り付けた種子結晶を融
液に浸漬し、シードチャックおよびるつぼを同方向また
は逆方向に回転させながら工業的には2mm/分以下の
シード移動速度でシードチャックを引き上げてシリコン
単結晶を成長させる。このようなシリコン単結晶の引き
上げ工程において、融液面から酸化珪素(SiOx;x
=1〜2)やアモルファスシリコンが蒸発する。これら
の蒸気は水冷式引き上げ炉のアッパチャンバ内壁やるつ
ぼの上端で冷却され、粉状もしくは針状に析出し、引き
上げ工程中にしばしば融液面に落下して単結晶化を阻害
する。また、主として黒鉛るつぼから発生する重金属蒸
気も融液を汚染する。
2. Description of the Related Art A Czochralski method (hereinafter referred to as a CZ method) for pulling a columnar single crystal from a raw material melt in a crucible is used as one of the methods for manufacturing a silicon single crystal which is a basic material of a semiconductor integrated circuit. Have been. In the CZ method, a high-purity polycrystalline silicon is filled in a quartz crucible installed in a main chamber of a single crystal manufacturing apparatus, and the polycrystalline silicon is heated and melted by a heater provided on the outer periphery of the crucible. The attached seed crystal is immersed in the melt, and while rotating the seed chuck and the crucible in the same or opposite directions, the seed chuck is pulled up at a seed moving speed of 2 mm / min or less industrially to grow a silicon single crystal. In such a silicon single crystal pulling step, silicon oxide (SiOx; x
= 1-2) and amorphous silicon evaporates. These vapors are cooled at the inner wall of the upper chamber of the water-cooled pulling furnace or at the upper end of the crucible, and are precipitated in a powdery or acicular shape, and often fall to the surface of the melt during the pulling process to inhibit single crystallization. In addition, heavy metal vapor mainly generated from the graphite crucible also contaminates the melt.

【0003】CZ法による単結晶の引き上げにおいて、
赤外線を反射し得る金属材料もしくは金属表面を有する
材料で構成された輻射スクリーンをるつぼの上方に設置
することにより、単結晶化が促進され、引き上げ速度を
早めることができるほか、単結晶中の炭素濃度を抑える
ことが知られている(特公昭57−40119参照)。
また、引き上げ単結晶を同軸に囲む耐熱性断熱材表層か
らなる多層構造の先細管状体を通して単結晶の引き上げ
を行うことにより、酸化珪素の析出を防止するとともに
シリコン融液面およびるつぼ壁面からの輻射熱を遮断
し、更に前記先細管状体の内側を流れるアルゴンガスに
より単結晶を冷却して引き上げ速度を早めることが知ら
れている(特開昭62−138384参照)。その他、
引き上げ単結晶を取り囲む逆円錐形の断熱複層構造の輻
射スクリーンをるつぼの上方に設けることにより、シリ
コン融液面から蒸発した酸化珪素がCZ炉内に析出して
融液面に落下するのを防止することが知られている(特
開昭62−138386参照)。
In pulling a single crystal by the CZ method,
By placing a radiation screen made of a metal material or a material having a metal surface that can reflect infrared rays above the crucible, single crystallization can be promoted, pulling speed can be increased, and carbon in the single crystal can be increased. It is known that the concentration is reduced (see Japanese Patent Publication No. 57-40119).
In addition, by pulling the single crystal through a multi-layered tapered body composed of a heat-resistant heat insulating material surface layer coaxially surrounding the pulled single crystal, silicon oxide is prevented from being precipitated and radiant heat from the silicon melt surface and the crucible wall surface is prevented. It is known that the single crystal is cooled by an argon gas flowing inside the tapered tubular body to increase the pulling speed (see JP-A-62-138384). Others
By providing a radiant screen of an inverted conical adiabatic multilayer structure surrounding the pulled single crystal above the crucible, it is possible to prevent silicon oxide evaporated from the silicon melt surface from depositing in the CZ furnace and falling onto the melt surface. It is known to prevent this (see JP-A-62-138386).

【0004】[0004]

【発明が解決しようとする課題】上記の赤外線を反射し
得る輻射スクリーンや断熱複層構造の輻射スクリーンあ
るいは多層構造の先細管状体をるつぼの上方に設置した
場合、単結晶化が促進され、引き上げ速度を早めること
ができるとともに単結晶中の炭素濃度を抑える効果があ
る。しかしながら、融液面から蒸発する酸化珪素やアモ
ルファスシリコン、あるいは黒鉛るつぼから発生する重
金属蒸気を完全に抑えることはできず、アッパチャンバ
の内壁あるいは輻射スクリーンに析出した酸化珪素、ア
モルファスシリコン、重金属、黒鉛等の粉塵が融液面に
落下して単結晶化を阻害する不具合を防止することもで
きない。また、従来の単結晶製造装置を用いて製造した
シリコン単結晶は、インゴットの軸方向の酸素濃度のば
らつきが大きく、再現性に乏しい。本発明は上記従来の
問題点に着目してなされたもので、前記酸化珪素、重金
属等の粉塵の融液面への落下を防止することによって単
結晶化を促進するとともに、単結晶インゴットの軸方向
の酸素濃度を均一にすることができるようなシリコン単
結晶製造装置を提供することを目的としている。
When a radiant screen capable of reflecting infrared rays, a radiant screen having a heat insulating multilayer structure, or a tapered tubular body having a multilayer structure is installed above a crucible, single crystallization is promoted and pulling up is performed. This has the effect of increasing the speed and suppressing the carbon concentration in the single crystal. However, it is not possible to completely suppress silicon oxide and amorphous silicon evaporating from the melt surface, or heavy metal vapor generated from the graphite crucible, and silicon oxide, amorphous silicon, heavy metal, and graphite deposited on the inner wall of the upper chamber or on the radiation screen. It is also impossible to prevent a problem that dust such as falls on the melt surface and hinders single crystallization. Further, a silicon single crystal manufactured using a conventional single crystal manufacturing apparatus has a large variation in the oxygen concentration in the axial direction of the ingot and has poor reproducibility. The present invention has been made in view of the above-mentioned conventional problems, and promotes single crystallization by preventing the dust such as the silicon oxide and heavy metal from falling onto the melt surface, and at the same time promotes the axis of the single crystal ingot. It is an object of the present invention to provide a silicon single crystal manufacturing apparatus capable of making the oxygen concentration in the direction uniform.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係るシリコン単結晶製造方法は、るつぼ内
の融液に種結晶を浸漬して引き上げるシリコン単結晶の
下部外周を取り巻きかつガス吹き出し孔を設けた環状の
ガス噴射管を有し、シリコン単結晶の引き上げ中にガス
吹き出し孔から不活性ガスを噴射してシリコン単結晶を
製造するシリコン単結晶製造方法において、不活性ガス
を融液面に向けて噴射すると共に、この融液面に向けて
噴射する不活性ガスの噴射量を制御することにより融液
面から発生する酸素量を間接的に制御する方法としてい
る。
In order to achieve the above object, a method for manufacturing a silicon single crystal according to the present invention comprises a step of immersing a seed crystal in a melt in a crucible and pulling the seed crystal around the lower periphery of the silicon single crystal and pulling the gas. A method for producing a silicon single crystal, comprising: an annular gas injection pipe provided with a blowout hole, wherein an inert gas is injected from the gas blowout hole during pulling up of the silicon single crystal to produce a silicon single crystal. A method is used in which the amount of oxygen generated from the melt surface is indirectly controlled by controlling the injection amount of the inert gas to be sprayed toward the liquid surface while controlling the injection amount toward the liquid surface.

【0006】[0006]

【作用及び効果】上記構成によれば、融液面に向けて噴
射する不活性ガスの噴射量を制御することにより、この
融液面から発生する酸素量を間接的に制御している。し
たがって、融液中の酸素濃度が制御され、引き上げられ
る単結晶中の酸素濃度が間接的に制御される。つまり、
単結晶インゴットの軸方向の酸素濃度が均一化される。
According to the above arrangement, the amount of oxygen generated from the melt surface is indirectly controlled by controlling the injection amount of the inert gas injected toward the melt surface. Therefore, the oxygen concentration in the melt is controlled, and the oxygen concentration in the single crystal to be pulled is indirectly controlled. That is,
The oxygen concentration in the axial direction of the single crystal ingot is made uniform.

【0007】[0007]

【実施例】以下に本発明に係るシリコン単結晶製造装置
および製造方法の実施例について、図面を参照して説明
する。図1はシリコン単結晶製造装置の概略構成を示す
部分断面説明図、図2は図1のP部拡大部分断面図であ
る。これらの図において、1はメインチャンバ、1aは
アッパチャンバで、メインチャンバ1内に設置された黒
鉛るつぼ2に石英るつぼ3が嵌着され、この石英るつぼ
3内に貯留されたシリコン融液4からシリコン単結晶5
が引き上げられている。6はるつぼ軸、7は黒鉛ヒー
タ、8は断熱筒である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a silicon single crystal manufacturing apparatus and a manufacturing method according to the present invention will be described below with reference to the drawings. FIG. 1 is a partial cross-sectional explanatory view showing a schematic configuration of a silicon single crystal manufacturing apparatus, and FIG. 2 is an enlarged partial cross-sectional view of a portion P in FIG. In these figures, 1 is a main chamber, 1a is an upper chamber, and a quartz crucible 3 is fitted to a graphite crucible 2 installed in the main chamber 1, and a silicon melt 4 stored in the quartz crucible 3 Silicon single crystal 5
Has been raised. 6 is a crucible shaft, 7 is a graphite heater, and 8 is a heat insulating cylinder.

【0008】ガス噴射管9は、シリコン単結晶5を同心
円状に取り巻くタングステン製の管で、その断面は図2
に示すように正方形である。前記ガス噴射管9の内周面
には、シリコン単結晶5の外周に向かって開口する複数
個のガス吹き出し孔9aが半径方向に等ピッチで穿設さ
れ、下面には斜め下向きのガス吹き出し孔9bと下向き
のガス吹き出し孔9cとがそれぞれ円周上に等ピッチで
穿設されている。前記半径方向のガス吹き出し孔9aは
単結晶5の外周に対して、斜め下向きのガス吹き出し孔
9bは単結晶5とシリコン融液4との固液界面に対し
て、また下向きのガス吹き出し孔9cはシリコン融液4
の表面に対してそれぞれ不活性ガスを吹きつけるための
ガス吹き出し孔である。前記ガス噴射管9の上面にはタ
ングステンからなる少なくとも2本のガス供給管10の
下端が接続され、ガス供給管10の上端はアッパチャン
バ1a上部で外部に開口し、図示しない不活性ガス配管
に接続されている。前記ガス供給管10はガス噴射管9
に不活性ガスを導入するとともに、ガス噴射管9を所定
の位置に固定する機能を有し、ガス噴射管9の下面は、
前記ガス供給管10によってシリコン融液4表面との距
離hが10〜20mmとなる位置に固定されている。な
お、本実施例ではガス噴射管9の断面を正方形とした
が、これに限るものではなく、断面形状は円形または長
方形等でもよい。また、前記半径方向のガス吹き出し孔
9aを水平よりやや上向きに設け、下向きのガス吹き出
し孔9cをやや外方に向けて設けてもよい。更に、ガス
供給管10の上端をアッパチャンバ1aに固定せず、ガ
ス噴射管9とともに昇降可能としてもよい。
The gas injection tube 9 is a tungsten tube surrounding the silicon single crystal 5 concentrically, and its cross section is shown in FIG.
It is square as shown in FIG. A plurality of gas blowing holes 9a, which open toward the outer periphery of the silicon single crystal 5, are formed in the inner peripheral surface of the gas injection pipe 9 at equal pitches in the radial direction, and the gas blowing holes obliquely downward are formed on the lower surface. 9b and downward gas blowing holes 9c are respectively formed on the circumference at equal pitches. The radial gas discharge holes 9a are directed to the outer periphery of the single crystal 5, the obliquely downward gas discharge holes 9b are directed to the solid-liquid interface between the single crystal 5 and the silicon melt 4, and the downward gas discharge holes 9c. Is silicon melt 4
Are gas blowing holes for blowing an inert gas to the surface of each. The lower end of at least two gas supply pipes 10 made of tungsten is connected to the upper surface of the gas injection pipe 9, and the upper end of the gas supply pipe 10 is opened to the outside at the upper part of the upper chamber 1 a and connected to an inert gas pipe (not shown). It is connected. The gas supply pipe 10 is a gas injection pipe 9
And has a function of fixing the gas injection pipe 9 at a predetermined position, and a lower surface of the gas injection pipe 9
The gas supply pipe 10 is fixed at a position where the distance h from the surface of the silicon melt 4 is 10 to 20 mm. In this embodiment, the cross section of the gas injection pipe 9 is square, but the present invention is not limited to this, and the cross section may be circular or rectangular. Alternatively, the radial gas blowing holes 9a may be provided slightly upward from the horizontal, and the downward gas blowing holes 9c may be provided slightly outward. Further, the upper end of the gas supply pipe 10 may not be fixed to the upper chamber 1a, but may be movable up and down together with the gas injection pipe 9.

【0009】次に、上記ガス噴射管9を備えたシリコン
単結晶製造装置を用いる場合のシリコン単結晶製造方
法、特に酸素濃度制御方法について説明する。シリコン
単結晶の引き上げに当たり、アッパチャンバ1a上方か
ら不活性ガスとしてアルゴンガスを炉内に導入し、これ
と同時にガス供給管10を介してガス噴射管9にもアル
ゴンガスを導入する。このとき、ガス噴射管9に導入さ
れるアルゴンガスの流量は、たとえば前記アッパチャン
バ1a上方から導入されるアルゴンガス流量の約1/3
である。そして、ガス噴射管9のガス吹き出し孔9bか
ら固液界面に向かって吹き出したアルゴンガスは、固液
界面を境としてシリコン単結晶5に沿って上昇する流れ
と、シリコン単結晶5から石英るつぼ3の内壁に向かう
流れとを形成する。また、ガス噴射管9のガス吹き出し
孔9aから吹き出したアルゴンガスはシリコン単結晶5
を冷却すると共に、シリコン単結晶5に沿って上昇する
流れを形成し、ガス吹き出し孔9cから吹き出したアル
ゴンガスは融液4の表面に吹きつけられた後石英るつぼ
3の内壁に向かう流れとなる。このようにガス噴射管9
の各ガス吹き出し孔から常に新鮮な不活性ガスが固液界
面及びシリコン単結晶5とその周辺に供給されるので、
固液界面の上方ないし側方から融液面に向かって落下す
る酸化珪素、重金属等の粉塵を排除することができると
ともに、シリコン単結晶5、ガス噴射管9およびガス供
給管10に対する粉塵付着を防止する。
Next, a method for manufacturing a silicon single crystal using the apparatus for manufacturing a silicon single crystal provided with the gas injection pipe 9 will be described, particularly a method for controlling the oxygen concentration. In pulling up the silicon single crystal, an argon gas is introduced into the furnace as an inert gas from above the upper chamber 1a, and at the same time, an argon gas is also introduced into the gas injection pipe 9 via the gas supply pipe 10. At this time, the flow rate of the argon gas introduced into the gas injection pipe 9 is, for example, about 3 of the flow rate of the argon gas introduced from above the upper chamber 1a.
It is. The argon gas blown toward the solid-liquid interface from the gas blowing holes 9b of the gas injection pipe 9 flows upward along the silicon single crystal 5 from the solid-liquid interface, and flows from the silicon single crystal 5 to the quartz crucible 3. And a flow toward the inner wall of the body. The argon gas blown out from the gas blow-out hole 9a of the gas injection pipe 9 was
And a flow rising along the silicon single crystal 5 is formed, and the argon gas blown out from the gas blowing holes 9c is blown onto the surface of the melt 4 and then flows toward the inner wall of the quartz crucible 3. . Thus, the gas injection pipe 9
Since a fresh inert gas is always supplied to the solid-liquid interface and the silicon single crystal 5 and its surroundings from each gas blowing hole of
It is possible to eliminate dust such as silicon oxide and heavy metals that fall toward the melt surface from above or from the side of the solid-liquid interface, and to prevent dust from adhering to the silicon single crystal 5, the gas injection pipe 9 and the gas supply pipe 10. To prevent.

【0010】ガス供給管10を介してガス噴射管9に導
入されるアルゴンガスの流量を調節することにより、ガ
ス吹き出し孔9bおよび9cから吹き出し、シリコン融
液4の表面に沿って流れるアルゴンガスの流量が変化す
る。そして、前記流量調節操作により、シリコン融液4
の表面から発生する酸素量を制御することができる。こ
れはシリコン融液近傍の気液界面における酸素分圧と真
空度とを制御することに基づいている。シリコン融液4
の表面から発生する酸素量を制御することにより融液4
中の酸素濃度を制御することができ、シリコン単結晶中
の酸素濃度を間接的に制御することになる。なお、ガス
噴射管9に導入するアルゴンガス流量とアッパチャンバ
1a上方から導入するアルゴンガス流量との比率、ガス
噴射管9に導入するアルゴンガス流量の調節量ならびに
調節時期は、単結晶製造装置の仕様、単結晶の要求品質
等に基づいて個別に定めるものとする。
By adjusting the flow rate of the argon gas introduced into the gas injection pipe 9 through the gas supply pipe 10, the argon gas blown out from the gas blowing holes 9 b and 9 c and flowing along the surface of the silicon melt 4. The flow rate changes. And the silicon melt 4
The amount of oxygen generated from the surface can be controlled. This is based on controlling the oxygen partial pressure and the degree of vacuum at the gas-liquid interface near the silicon melt. Silicon melt 4
Controlling the amount of oxygen generated from the surface of the melt 4
The oxygen concentration in the silicon single crystal can be controlled, and the oxygen concentration in the silicon single crystal is indirectly controlled. The ratio between the flow rate of the argon gas introduced into the gas injection pipe 9 and the flow rate of the argon gas introduced from above the upper chamber 1a, the amount of adjustment of the flow rate of the argon gas introduced into the gas injection pipe 9, and the adjustment timing are determined by the single crystal manufacturing apparatus. It shall be determined individually based on specifications, required quality of single crystal, etc.

【0011】単結晶製造装置に上記ガス噴射管を取り付
け、直径6インチのシリコン単結晶を引き上げた。この
とき使用した石英るつぼの直径は16インチで、シリコ
ンナゲットのチャージ量は45kgである。融液面とガ
ス噴射管の下面との間隔を20mmとし、引き上げ炉内
圧力を10mbarに保った。プルチャンバ上方から3
0リットル/分のアルゴンガスを導入し、ガス供給管に
は10リットル/分のアルゴンガスを導入した。この方
法で長さ800mmのシリコン単結晶を得た。この単結
晶の酸素濃度は、前記ガス噴射管を装着しない場合に比
べて1.0×1017atoms/cc低くなった。ま
た、単結晶のトップ側とボトム側との酸素濃度の差は
1.5×1017atoms/ccであった。
The above gas injection tube was attached to a single crystal manufacturing apparatus, and a silicon single crystal having a diameter of 6 inches was pulled up. The diameter of the quartz crucible used at this time is 16 inches, and the charge amount of the silicon nugget is 45 kg. The distance between the melt surface and the lower surface of the gas injection tube was set to 20 mm, and the pressure in the pulling furnace was maintained at 10 mbar. 3 from the top of the pull chamber
An argon gas of 0 liter / min was introduced, and an argon gas of 10 liter / min was introduced into the gas supply pipe. In this manner, a silicon single crystal having a length of 800 mm was obtained. The oxygen concentration of this single crystal was lower by 1.0 × 10 17 atoms / cc than when the gas injection tube was not mounted. The difference in oxygen concentration between the top side and the bottom side of the single crystal was 1.5 × 10 17 atoms / cc.

【0012】上記方法において、ガス噴射管から吹き出
すアルゴンガスの流量を変化させてシリコン単結晶の引
き上げを行った。すなわち、引き上げ初期のアルゴンガ
ス流量を10リットル/分とし、引き上げ後期において
は3リットル/分まで徐々に流量を減少させた。得られ
た単結晶の、トップ側とボトム側とにおける酸素濃度の
差は0.8×1017atoms/ccであり、軸方向
にほぼ均一な酸素濃度分布とすることができた。
In the above method, the silicon single crystal was pulled by changing the flow rate of the argon gas blown from the gas injection tube. That is, the flow rate of the argon gas in the initial stage of the pulling was 10 liter / min, and the flow rate was gradually reduced to 3 liter / min in the latter stage of the pulling. The difference in oxygen concentration between the top side and the bottom side of the obtained single crystal was 0.8 × 10 17 atoms / cc, and a substantially uniform oxygen concentration distribution could be obtained in the axial direction.

【0013】以上説明したように本実施例によれば、C
Z法によるシリコン単結晶製造装置において、固液界面
とその近傍に不活性ガス噴射機構を設け、単結晶引き上
げ時に固液界面、融液面および単結晶の外周面に前記不
活性ガスを直接吹き付けるので、酸化珪素や重金属が単
結晶外面に付着するのを防止し、また単結晶外面近傍に
あるこれらの不純物ガスをチャンバ外に排出できる。し
たがって、アッパチャンバ上部内壁や黒鉛るつぼから融
液面に落下する酸化珪素、重金属等の粉塵を排除できる
ので、従来から問題となっていた多結晶化を防止でき、
効率的に単結晶を製造できる。また成長中の単結晶の冷
却を早めることができるので、工業的にシリコン単結晶
の生産効率を向上させることができる。更に本実施例に
より、融液中の酸素濃度を制御できるので、酸素濃度の
均一な高品質のシリコン単結晶の生産が可能となる。
As described above, according to this embodiment, C
In a silicon single crystal manufacturing apparatus using the Z method, an inert gas injection mechanism is provided at and near the solid-liquid interface, and the inert gas is directly blown onto the solid-liquid interface, the melt surface, and the outer peripheral surface of the single crystal when pulling the single crystal. Therefore, it is possible to prevent silicon oxide and heavy metals from adhering to the outer surface of the single crystal, and to discharge these impurity gases near the outer surface of the single crystal to the outside of the chamber. Accordingly, since dust such as silicon oxide and heavy metal that falls onto the melt surface from the upper inner wall of the upper chamber or the graphite crucible can be eliminated, polycrystallization, which has been a problem, can be prevented.
A single crystal can be manufactured efficiently. Further, since the cooling of the growing single crystal can be accelerated, the production efficiency of the silicon single crystal can be industrially improved. Further, according to the present embodiment, since the oxygen concentration in the melt can be controlled, it is possible to produce a high-quality silicon single crystal having a uniform oxygen concentration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ガス噴射管を備えたシリコン単結晶製造装置の
概略構成を示す部分断面説明図である。
FIG. 1 is a partial cross-sectional explanatory view showing a schematic configuration of a silicon single crystal manufacturing apparatus provided with a gas injection tube.

【図2】図1のP部拡大部分断面図である。FIG. 2 is an enlarged partial sectional view of a part P in FIG.

【符号の説明】[Explanation of symbols]

1 メインチャンバ 1a アッパチャンバ 4 シリコン融液 5 シリコン単結晶 9 ガス噴射管 9a,9b,9c ガス吹き出し孔 10 ガス供給管 DESCRIPTION OF SYMBOLS 1 Main chamber 1a Upper chamber 4 Silicon melt 5 Silicon single crystal 9 Gas injection pipe 9a, 9b, 9c Gas blowing hole 10 Gas supply pipe

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 るつぼ内の融液に種結晶を浸漬して引き
上げるシリコン単結晶の下部外周を取り巻きかつガス吹
き出し孔を設けた環状のガス噴射管を有し、シリコン単
結晶の引き上げ中にガス吹き出し孔から不活性ガスを噴
射してシリコン単結晶を製造するシリコン単結晶製造
において、 不活性ガスを融液面に向けて噴射すると共に、この融液
面に向けて噴射する不活性ガスの噴射量を制御すること
により融液面から発生する酸素量を間接的に制御するこ
とを特徴とするシリコン単結晶製造方法。
1. A has a melt seed crystal silicon pulled by immersing single crystals annular gas injection pipe provided with a lower periphery of the surrounds and the gas blow openings in the crucible, a gas during the pulling of the silicon single crystal Silicon single crystal manufacturing method to produce silicon single crystal by injecting inert gas from blow-out hole
In the method , the amount of oxygen generated from the melt surface is indirectly controlled by injecting the inert gas toward the melt surface and controlling the amount of the inert gas injected toward the melt surface. A method for producing a silicon single crystal.
JP29776092A 1992-10-09 1992-10-09 Silicon single crystal manufacturing method Expired - Lifetime JP2952733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29776092A JP2952733B2 (en) 1992-10-09 1992-10-09 Silicon single crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29776092A JP2952733B2 (en) 1992-10-09 1992-10-09 Silicon single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JPH06122587A JPH06122587A (en) 1994-05-06
JP2952733B2 true JP2952733B2 (en) 1999-09-27

Family

ID=17850821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29776092A Expired - Lifetime JP2952733B2 (en) 1992-10-09 1992-10-09 Silicon single crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP2952733B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4442829A1 (en) * 1994-12-01 1996-06-05 Wacker Siltronic Halbleitermat Device and method for producing a single crystal
JP4349493B2 (en) * 2005-09-27 2009-10-21 Sumco Techxiv株式会社 Single crystal silicon pulling apparatus, silicon melt contamination prevention method, and silicon melt contamination prevention apparatus
JP6119565B2 (en) * 2013-11-11 2017-04-26 信越半導体株式会社 Single crystal manufacturing method
KR101644315B1 (en) * 2015-04-13 2016-08-01 (주)에스테크 Gas injection structure and ingot growing apparatus having the same
EP3835463A1 (en) * 2019-12-13 2021-06-16 Siltronic AG Method and device for producing a single crystal of silicon doped with n-type dopant
CN111690979A (en) * 2020-07-27 2020-09-22 邢台晶龙电子材料有限公司 Cleaning device for water-cooling heat shield

Also Published As

Publication number Publication date
JPH06122587A (en) 1994-05-06

Similar Documents

Publication Publication Date Title
JP4097729B2 (en) Semiconductor single crystal manufacturing equipment
US6143073A (en) Methods and apparatus for minimizing white point defects in quartz glass crucibles
JP2952733B2 (en) Silicon single crystal manufacturing method
JP2619611B2 (en) Single crystal manufacturing apparatus and manufacturing method
JPH10167892A (en) Method for pulling silicon single crystal
JP3750174B2 (en) Single crystal manufacturing apparatus and manufacturing method
JPH06183874A (en) Device for producing silicon single crystal and method for producing silicon single crystal
JP2937109B2 (en) Single crystal manufacturing apparatus and manufacturing method
JP3129187B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JPH07223894A (en) Apparatus for production of semiconductor single crystal
JP3640940B2 (en) Semiconductor single crystal manufacturing equipment
JP3123155B2 (en) Single crystal pulling device
JP2504875B2 (en) Single crystal manufacturing equipment
JP2007031235A (en) Apparatus for manufacturing single crystal
JPH11246294A (en) Single crystal pulling-up equipment
JP2558171Y2 (en) Heat shield for single crystal pulling
JPH08133886A (en) Production of single crystal
JP2567312B2 (en) Silicon single crystal manufacturing apparatus and manufacturing method
JPH07172971A (en) Apparatus for pulling up semiconductor single crystal
JPH0543381A (en) Apparatus for growing single crystal by molten layer process and method for controlling oxygen concentration in single crystal using the apparatus
JPH04198086A (en) Process for growing single crystal
JP2500875B2 (en) Single crystal manufacturing equipment
JPH06340493A (en) Apparatus for growing single crystal and growing method
JP2939603B2 (en) Manufacturing method of semiconductor single crystal
JPH03177389A (en) Pulling device of silicon single crystal