JPH0543381A - Apparatus for growing single crystal by molten layer process and method for controlling oxygen concentration in single crystal using the apparatus - Google Patents

Apparatus for growing single crystal by molten layer process and method for controlling oxygen concentration in single crystal using the apparatus

Info

Publication number
JPH0543381A
JPH0543381A JP6288591A JP6288591A JPH0543381A JP H0543381 A JPH0543381 A JP H0543381A JP 6288591 A JP6288591 A JP 6288591A JP 6288591 A JP6288591 A JP 6288591A JP H0543381 A JPH0543381 A JP H0543381A
Authority
JP
Japan
Prior art keywords
single crystal
crucible
melt
oxygen concentration
layer method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6288591A
Other languages
Japanese (ja)
Inventor
Shunji Miyahara
俊二 宮原
Toshiyuki Fujiwara
俊幸 藤原
Takayuki Kubo
高行 久保
Hideki Fujiwara
秀樹 藤原
Shuichi Inami
修一 稲見
Yoshihiro Akashi
義弘 明石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Osaka Titanium Co Ltd
Original Assignee
Osaka Titanium Co Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Co Ltd , Sumitomo Metal Industries Ltd filed Critical Osaka Titanium Co Ltd
Priority to JP6288591A priority Critical patent/JPH0543381A/en
Publication of JPH0543381A publication Critical patent/JPH0543381A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To increase the oxygen content of a grown single crystal while suppressing the segregation of impurities by a moltenlayer process. CONSTITUTION:The objective single crystal growing apparatus 10 for molten- layer process is provided with a crucible 11 containing a raw material, a heater 14 placed around the crucible 11, etc. The surface of the molten liquid 17 is almost completely covered with a ring-shaped cover 21 placed near and above the surface of the molten liquid 17 in the crucible 11. An introducing part 20 having inverted truncated conical shape is expanded upward from the inner edge of the ring-shaped cover 21. A flow-straightening jig 19 composed of the cover 21 and the introducing part 20 is placed above the crucible 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は溶融層法用単結晶成長装
置及び該装置を用いた単結晶中の酸素濃度制御方法、よ
り詳細には原料を収容したるつぼ及び該るつぼの周囲に
配設されたヒータ等を備えた溶融層法用単結晶成長装置
および該装置を用いた単結晶中の酸素濃度制御方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal growth apparatus for a melt layer method and a method for controlling oxygen concentration in a single crystal using the apparatus, and more particularly to a crucible containing raw materials and a crucible surrounding the crucible. And a method for controlling the oxygen concentration in a single crystal using the apparatus, the apparatus for growing a single crystal using a melted layer method.

【0002】[0002]

【従来の技術】単結晶を成長させるには種々の方法があ
るが、半導体等の材料に使用されるシリコン単結晶は、
チョクラルスキー法(CZ法)やフロートゾーン法と呼
ばれる引き上げ方法によって作製される。
2. Description of the Related Art There are various methods for growing a single crystal, but a silicon single crystal used for a material such as a semiconductor is
It is produced by a pulling method called Czochralski method (CZ method) or float zone method.

【0003】上記CZ法では図4に示したような成長炉
40が用いられる。この成長炉40は主にメインチャン
バー41とプルチャンバー42とから構成され、メイン
チャンバー41とプルチャンバー42の間にはゲートバ
ルブ43が介装されている。メインチャンバー41内に
はシリコンの溶融液37が充填されたるつぼ31が配設
されるとともに、るつぼ31の外周近傍にはヒータ34
が周設される一方、プルチャンバー42の上方からは単
結晶36を引き上げるためのワイヤ35が吊設されてい
る。またメインチャンバー41及びプルチャンバー42
の上部にはそれぞれアルゴンガス等を供給するためのガ
ス供給管44が接続され、メインチャンバー41の下部
には真空ポンプ(図示せず)に接続される吸引管45が
固着されている。
In the CZ method, a growth furnace 40 as shown in FIG. 4 is used. The growth furnace 40 is mainly composed of a main chamber 41 and a pull chamber 42, and a gate valve 43 is interposed between the main chamber 41 and the pull chamber 42. A crucible 31 filled with a silicon melt 37 is provided in the main chamber 41, and a heater 34 is provided near the outer periphery of the crucible 31.
On the other hand, a wire 35 for pulling up the single crystal 36 is hung from above the pull chamber 42. In addition, the main chamber 41 and the pull chamber 42
A gas supply pipe 44 for supplying an argon gas or the like is connected to the upper part of each, and a suction pipe 45 connected to a vacuum pump (not shown) is fixed to the lower part of the main chamber 41.

【0004】図5は従来のCZ法で使用される単結晶成
長装置の模式的要部拡大断面図であり、図中31はるつ
ぼを示している。るつぼ31は有底円筒状の石英製の内
層容器32とこの内層容器32の外側に嵌合された、同
じく有底円筒状の黒鉛製の外層容器33とから構成され
ており、るつぼ31の外側にはヒータ34が同心円筒状
に配設されている。るつぼ31内にはこのヒータ34に
より溶融させた原料の溶融液37が充填されており、る
つぼ31の中心軸上に引き上げ軸35が配設されて、こ
の引き上げ軸35の先には種結晶(図示せず)が取り付
けられている。
FIG. 5 is a schematic enlarged sectional view of an essential part of a single crystal growth apparatus used in the conventional CZ method, in which 31 is a crucible. The crucible 31 includes a bottomed cylindrical quartz inner layer container 32 and a bottomed cylindrical graphite outer layer container 33 fitted to the outside of the inner layer container 32. A heater 34 is arranged in a concentric cylindrical shape. The crucible 31 is filled with a melt 37 of the raw material melted by the heater 34, a pulling shaft 35 is arranged on the central axis of the crucible 31, and a seed crystal ( (Not shown) is attached.

【0005】単結晶36を成長させる際には、種結晶を
溶融液37の表面に接触させて引き上げ軸35を引き上
げていくことにより、溶融液37が凝固して形成される
単結晶を成長させている。
When the single crystal 36 is grown, the seed crystal is brought into contact with the surface of the melt 37 and the pulling shaft 35 is pulled up to grow the single crystal formed by solidifying the melt 37. ing.

【0006】ところで、半導体単結晶をこの方法で成長
させる場合、単結晶36の引き上げ前に溶融液37中に
不純物元素を添加することが多い。この際、添加した不
純物が単結晶36の結晶成長方向に沿って偏析するとい
う現象が生じ、その結果、結晶成長方向に均一な電気的
特性を有する単結晶が得られず、歩留まりが低いという
問題があった。
When a semiconductor single crystal is grown by this method, an impurity element is often added to the melt 37 before the single crystal 36 is pulled up. At this time, a phenomenon occurs in which the added impurities segregate along the crystal growth direction of the single crystal 36, and as a result, a single crystal having uniform electrical characteristics in the crystal growth direction cannot be obtained, and the yield is low. was there.

【0007】上記不純物の偏析を抑制しながら結晶を成
長させる方法として、溶融層法がある。溶融層法は図6
に示したごとく、図5に示したものと同様に構成された
るつぼ11内の原料の上部のみをヒータ14にて溶融さ
せることにより、上部には溶融液層17、下部には固体
層18を形成して、単結晶16を成長させる。
As a method for growing a crystal while suppressing the segregation of the impurities, there is a melt layer method. The melt layer method is shown in Fig. 6.
As shown in FIG. 5, by melting only the upper portion of the raw material in the crucible 11 configured as shown in FIG. 5 with the heater 14, the molten liquid layer 17 is formed in the upper portion and the solid layer 18 is formed in the lower portion. Once formed, the single crystal 16 is grown.

【0008】このように構成された装置を操作する場合
は、固体層18を溶融させながら、溶融液層17に種結
晶(図示せず)の下端を浸漬し、引き上げ軸15を回転
させながら引き上げることによって種結晶の下端から不
純物濃度が一定の単結晶16を成長させることができ
る。
When operating the apparatus constructed as described above, the lower end of the seed crystal (not shown) is immersed in the molten liquid layer 17 while melting the solid layer 18 and pulled up while rotating the pulling shaft 15. As a result, the single crystal 16 having a constant impurity concentration can be grown from the lower end of the seed crystal.

【0009】また、例えば特公昭57−40119号公
報には、CZ法において、結晶及びるつぼ内壁に付着す
るSiOが溶融液にもどって起こる多結晶化を防止する
とともに、石英るつぼ及び溶融液から結晶への熱輻射を
低減し、結晶の冷却を促すことにより引き上げ速度を向
上させる方法が提案されている。
Further, for example, in Japanese Patent Publication No. 57-40119, in the CZ method, the SiO adhering to the crystal and the inner wall of the crucible is prevented from being polycrystallized by returning to the melt and crystallized from the quartz crucible and the melt. A method has been proposed in which the pulling rate is improved by reducing the heat radiation to the crystal and promoting the cooling of the crystal.

【0010】[0010]

【発明が解決しようとする課題】通常CZ法において
は、使用目的に応じて12〜17×1017/cm3 の酸
素濃度を有する単結晶が引き上げられている。CZ法お
よび溶融層法による単結晶16、36中の酸素濃度の調
整は、るつぼ11、31の回転及び種結晶の回転を変更
することにより行なわれており、溶融液17、37への
酸素の供給は内層容器12、32のSiO2 の溶け出し
により行なわれる。溶融液17、37へ供給された酸素
の大部分は溶融液17、37表面より出ていくが、その
一部が単結晶16、36に取り入れられる。
In the CZ method, a single crystal having an oxygen concentration of 12 to 17 × 10 17 / cm 3 is usually pulled up according to the purpose of use. The oxygen concentration in the single crystals 16 and 36 is adjusted by the CZ method and the molten layer method by changing the rotation of the crucibles 11 and 31 and the rotation of the seed crystal. The supply is performed by melting out SiO 2 from the inner layer containers 12 and 32. Most of the oxygen supplied to the melts 17 and 37 goes out from the surfaces of the melts 17 and 37, but a part of the oxygen is taken into the single crystals 16 and 36.

【0011】ところが、上記した溶融層法においては、
歩留まりは高いが溶融液17が内層容器12と接触する
面積が固体層18によって減少して約半分程度となる結
果、溶融液17への酸素の供給量が減少して高酸素化が
実現しにくくなるという課題があった。
However, in the above-mentioned fused layer method,
Although the yield is high, the area in which the melt 17 contacts the inner layer container 12 is reduced by the solid layer 18 to about half, and as a result, the amount of oxygen supplied to the melt 17 is reduced and it is difficult to achieve high oxygenation. There was a problem of becoming.

【0012】本発明はこのような課題に鑑み発明された
ものであって、形成された単結晶の高酸素化を図ること
ができる溶融層法用単結晶成長装置及び該装置を用いた
単結晶中の酸素濃度制御方法を提供することを目的とし
ている。
The present invention has been made in view of the above problems, and it is an apparatus for growing a single crystal for a melt layer method capable of increasing the oxygen content of a formed single crystal and a single crystal using the apparatus. It is an object of the present invention to provide a method for controlling the oxygen concentration in the inside.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る溶融層法用単結晶成長装置は、原料を収
容したるつぼ及び該るつぼの周囲に配設されたヒータ等
を備えた溶融層法用単結晶成長装置において、前記るつ
ぼ内の溶融液面の上方近傍に配設されて該溶融液面の略
全面を覆うリング形状の蓋体と、該蓋体の内側端部から
上方に向かって拡開した逆円錐台形状の導入部とからな
る整流治具が、前記るつぼの上方に配設されていること
を特徴としている。
In order to achieve the above object, a single crystal growth apparatus for a melt layer method according to the present invention comprises a crucible containing a raw material and a heater arranged around the crucible. In a single crystal growth apparatus for a melt layer method, a ring-shaped lid body which is disposed in the vicinity of the melting liquid surface in the crucible and covers substantially the entire melting liquid surface, and an inner end portion of the lid body A rectifying jig, which is composed of an inverted frustoconical introduction portion that widens toward, is disposed above the crucible.

【0014】また、本発明に係る単結晶中の酸素濃度制
御方法は上記溶融層法用単結晶成長装置を用い、前記導
入部から不活性ガスを溶融液面に供給することを特徴と
している。
The method for controlling the oxygen concentration in a single crystal according to the present invention is characterized in that the above-mentioned single crystal growth apparatus for a melt layer method is used, and an inert gas is supplied to the melt surface from the introduction part.

【0015】[0015]

【作用】上記した構成によれば、原料を収容したるつぼ
及び該るつぼの周囲に配設されたヒータ等を備えた溶融
層法用単結晶成長装置において、前記るつぼ内の溶融液
面の上方近傍に配設されて該溶融液面の略全面を覆うリ
ング形状の蓋体と、該蓋体の内側端部から上方に向かっ
て拡開した逆円錐台形状の導入部とからなる整流治具
が、前記るつぼの上方に配設されているので、溶融液表
面からのSiOの蒸発が抑制され、単結晶中への酸素供
給量が増大する。
According to the above construction, in the single crystal growing apparatus for the melt layer method, which is equipped with the crucible containing the raw material and the heater disposed around the crucible, in the vicinity of the upper part of the melt surface in the crucible. A rectifying jig consisting of a ring-shaped lid body that is disposed in the cover and covers almost the entire melt surface, and an inverted frustoconical introduction portion that widens upward from the inner end portion of the lid body. Since it is arranged above the crucible, evaporation of SiO from the surface of the melt is suppressed and the amount of oxygen supplied to the single crystal is increased.

【0016】また、上記した方法によれば上記溶融層法
用単結晶成長装置を用い、前記導入部から不活性ガスを
溶融液面に供給するので、SiOが溶融液表面から蒸発
してるつぼ内壁等に付着し、溶融液に落下して単結晶化
を阻害することが防止される。
Further, according to the above method, since the inert gas is supplied from the introduction part to the melt surface using the single crystal growth apparatus for the melt layer method, SiO evaporates from the melt surface, and the inner wall of the crucible is evaporated. It is prevented that they adhere to the like and fall into the melt to hinder single crystallization.

【0017】[0017]

【実施例】以下、本発明に係る溶融層法用単結晶成長装
置及び該装置を用いた単結晶中の酸素濃度制御方法の実
施例を図面に基づいて説明する。なお、整流治具を除い
た溶融層法用単結晶成長装置の構成は従来のものと同一
であるため、その説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the apparatus for growing a single crystal for a melt layer method and the method for controlling the oxygen concentration in a single crystal using the apparatus according to the present invention will be described below with reference to the drawings. The configuration of the single crystal growth apparatus for a melt layer method except for the rectifying jig is the same as the conventional one, and thus the description thereof is omitted.

【0018】図1は本発明に係る溶融層法用単結晶成長
装置の模式的断面図であり、図中11はるつぼを示して
いる。るつぼ11の上方には、引き上げ軸15が垂設さ
れており、引き上げ軸15の下端には単結晶16が形成
されている。また、単結晶16の周囲には整流治具19
が配設されており、るつぼ11内の溶融液17面の上方
近傍に配設されて溶融液17面の略全面を覆うリング形
状の蓋体21と、蓋体21の内側端部から上方に向かっ
て拡開した逆円錐台形状の導入部20とによって整流治
具19は構成されている。
FIG. 1 is a schematic sectional view of a single crystal growth apparatus for a melt layer method according to the present invention, in which 11 is a crucible. A pulling shaft 15 is vertically provided above the crucible 11, and a single crystal 16 is formed at a lower end of the pulling shaft 15. In addition, a rectifying jig 19 is provided around the single crystal 16.
Is disposed in the crucible 11 in the vicinity of the surface of the melt 17 in the crucible 11 and covers a substantially entire surface of the melt 17 and a ring-shaped lid 21 is provided upward from the inner end of the lid 21. The rectifying jig 19 is configured by the inverted frustoconical introduction portion 20 that widens toward the side.

【0019】整流治具19の材質はカーボンで、図2に
示したように、導入部20の内面は逆円錐形状、外面は
下部が円柱形状、上部が逆円錐形状となっている。蓋体
21と溶融液17との間隔Lは15mmで、蓋体21は
内径D1 が190mm、外径D2 が320mmのリング
形状となっている。
The material of the rectifying jig 19 is carbon, and as shown in FIG. 2, the inner surface of the introducing portion 20 has an inverted conical shape, the outer surface has a lower cylindrical shape, and the upper portion has an inverted conical shape. The distance L between the lid 21 and the melt 17 is 15 mm, and the lid 21 has a ring shape with an inner diameter D 1 of 190 mm and an outer diameter D 2 of 320 mm.

【0020】上記した溶融層法用単結晶成長装置10を
使用して直径6インチのシリコン単結晶の引き上げを行
ない整流治具19による高酸素化への影響を調べた。こ
の場合の溶融層法用単結晶成長装置10におけるヒータ
14は長さが150mm、るつぼ11は内径D3 が39
0mm、厚さが10mm、高さが355mmのものを用
い炉内圧は10Torr、アルゴン流量は30l/mi
n(標準状態1気圧、0℃)、シリコン原料は65k
g、引き上げ速度は1.0mm/minの条件で成長を
行なわせ、ドーパントとしてはリンを用いた。
Using the above-described single crystal growth apparatus 10 for the molten layer method, a silicon single crystal having a diameter of 6 inches was pulled up, and the effect of the rectifying jig 19 on the high oxygen content was examined. In this case, the heater 14 in the single crystal growth apparatus 10 for the melt layer method has a length of 150 mm, and the crucible 11 has an inner diameter D 3 of 39 mm.
0 mm, thickness 10 mm, height 355 mm, furnace pressure 10 Torr, argon flow 30 l / mi
n (standard state 1 atm, 0 ° C), silicon raw material is 65 k
g, and the pulling rate was 1.0 mm / min, and the growth was performed, and phosphorus was used as a dopant.

【0021】このようにして引き上げた単結晶16の酸
素濃度分布と抵抗率分布を図3に示した。
The oxygen concentration distribution and resistivity distribution of the single crystal 16 thus pulled up are shown in FIG.

【0022】図3より明らかなように、酸素濃度につい
ては、単結晶1000mm全長にわたり17×1017
cm3 以上を実現することができた。このことは、本実
施例に係る装置及び方法によれば通常の溶融層法による
酸素濃度(15×1017/cm3 以下)を顕著に増加さ
せ、CZ法による酸素濃度(12〜17×1017/cm
3 )を溶融層法により実現できることを示している。ま
た、抵抗率分布に関しては、単結晶1000mm全長で
1:1.3の範囲に入り問題のないことが分かった。
[0022] Figure 3 As is apparent, the oxygen concentration, 17 over the single-crystal 1000mm total length × 10 17 /
We were able to achieve cm 3 and above. This remarkably increases the oxygen concentration (15 × 10 17 / cm 3 or less) obtained by the usual melted layer method according to the apparatus and method according to the present embodiment, and the oxygen concentration (12-17 × 10 3 ) obtained by the CZ method. 17 / cm
It is shown that 3 ) can be realized by the melt layer method. Further, regarding the resistivity distribution, it was found that there was no problem in the range of 1: 1.3 in the total length of the single crystal of 1000 mm.

【0023】このように溶融層法によって作製される単
結晶の高酸素化を実現することができ、現在使用されて
いるウェハの酸素濃度範囲(12〜17×1017/cm
3 )を溶融層法によっても満足させることができた。従
って、溶融層法による不純物の偏析が少ない結晶を成長
させながら、使用目的に応じて単結晶中の酸素濃度を調
整することができる。
As described above, it is possible to realize the high oxygen content of the single crystal produced by the melt layer method, and the oxygen concentration range of the currently used wafer (12 to 17 × 10 17 / cm 2).
3 ) could also be satisfied by the melt layer method. Therefore, the oxygen concentration in the single crystal can be adjusted according to the purpose of use while growing the crystal with less segregation of impurities by the melt layer method.

【0024】[0024]

【発明の効果】以上詳述したように本発明に係る溶融層
法用単結晶成長装置にあっては、原料を収容したるつぼ
及び該るつぼの周囲に配設されたヒータ等を備えた溶融
層法用単結晶成長装置において、前記るつぼ内の溶融液
面の上方近傍に配設されて該溶融液面の略全面を覆うリ
ング形状の蓋体と、該蓋体の内側端部から上方に向かっ
て拡開した逆円錐台形状の導入部とからなる整流治具
が、前記るつぼの上方に配設されているので、前記整流
治具が溶融液表面からのSiOの蒸発を抑制し、単結晶
への酸素供給量を増加させることができる。
As described in detail above, in the apparatus for growing a single crystal for a melt layer method according to the present invention, a melt layer including a crucible containing a raw material and a heater arranged around the crucible. In a single crystal growth apparatus for method, a ring-shaped lid is provided in the vicinity of an upper portion of the molten liquid surface in the crucible and covers substantially the entire molten liquid surface, and an upper end from an inner end portion of the lid member. Since the rectifying jig consisting of the inverted frusto-conical shaped introducing portion that is widened and arranged is disposed above the crucible, the rectifying jig suppresses evaporation of SiO from the surface of the melt, and the single crystal It is possible to increase the amount of oxygen supplied to the.

【0025】また、本発明に係る単結晶中の酸素濃度制
御方法にあっては、上記溶融層法用単結晶成長装置を用
い、前記導入部から不活性ガスを溶融液面に供給するの
で、SiOが溶融液表面から蒸発してるつぼ内壁等に付
着し、SiOの液滴が溶融液に落下して単結晶化を阻害
することを防止することができる。
Further, in the method for controlling oxygen concentration in a single crystal according to the present invention, the above single crystal growth apparatus for the melt layer method is used, and the inert gas is supplied to the melt surface from the introduction part. It is possible to prevent SiO from evaporating from the surface of the melt and adhering to the inner wall of the crucible or the like, and causing droplets of SiO to fall into the melt and impede single crystallization.

【0026】従って、溶融層法による不純物の偏析が少
ない結晶を成長させながら、しかも作製される単結晶の
高酸素化を実現することができ、使用目的に応じた単結
晶中の酸素濃度を調整することができる。
Therefore, it is possible to grow a crystal with less segregation of impurities by the melt layer method and to realize high oxygen content of the produced single crystal, and adjust the oxygen concentration in the single crystal according to the purpose of use. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る溶融層法用単結晶成長装置を示す
模式的断面図である。
FIG. 1 is a schematic cross-sectional view showing a single crystal growth apparatus for a melt layer method according to the present invention.

【図2】整流治具の構成を説明するための要部拡大断面
図である。
FIG. 2 is an enlarged sectional view of an essential part for explaining the configuration of a rectifying jig.

【図3】溶融層法用単結晶成長装置を用いて作製した単
結晶中の酸素濃度分布及び抵抗率分布を示すグラフであ
る。
FIG. 3 is a graph showing an oxygen concentration distribution and a resistivity distribution in a single crystal produced by using a single crystal growth apparatus for a melt layer method.

【図4】従来のCZ法による単結晶成長装置を示す部分
断面図である。
FIG. 4 is a partial cross-sectional view showing a conventional single crystal growth apparatus by the CZ method.

【図5】従来のCZ法による単結晶成長装置を示す要部
の拡大断面図である。
FIG. 5 is an enlarged cross-sectional view of a main part showing a conventional single crystal growth apparatus by the CZ method.

【図6】従来の溶融層法による単結晶成長装置を示す要
部の拡大断面図である。
FIG. 6 is an enlarged cross-sectional view of a main part showing a conventional single crystal growth apparatus by a melt layer method.

【符号の説明】[Explanation of symbols]

10 溶融層法用単結晶成長装置 11 るつぼ 14 ヒータ 17 溶融液 19 整流治具 20 導入部 21 蓋体 10 Single Crystal Growth Device for Melt Layer Method 11 Crucible 14 Heater 17 Melt Liquid 19 Rectifying Jig 20 Introductory Part 21 Lid

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久保 高行 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (72)発明者 藤原 秀樹 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (72)発明者 稲見 修一 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (72)発明者 明石 義弘 兵庫県尼崎市東浜町1番地 大阪チタニウ ム製造株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takayuki Kubo 4-53-3 Kitahama, Chuo-ku, Osaka City, Osaka Prefecture Sumitomo Metal Industries, Ltd. (72) Hideki Fujiwara 4-chome, Kitahama, Chuo-ku, Osaka City, Osaka Prefecture 5-33 Sumitomo Metal Industries, Ltd. (72) Inventor Shuichi Inami 4-53-3 Kitahama, Chuo-ku, Osaka City, Osaka Prefecture (72) Inventor Yoshihiro Akashi 1 Higashihama-cho, Amagasaki-shi, Hyogo Within Osaka Titanium Manufacturing Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原料を収容したるつぼ及び該るつぼの周
囲に配設されたヒータ等を備えた溶融層法用単結晶成長
装置において、前記るつぼ内の溶融液面の上方近傍に配
設されて該溶融液面の略全面を覆うリング形状の蓋体
と、該蓋体の内側端部から上方に向かって拡開した逆円
錐台形状の導入部とからなる整流治具が、前記るつぼの
上方に配設されていることを特徴とする溶融層法用単結
晶成長装置。
1. A single crystal growth apparatus for a melt layer method, comprising a crucible containing a raw material, a heater arranged around the crucible, and the like. A rectifying jig consisting of a ring-shaped lid that covers substantially the entire melt surface and an inverted frusto-conical introduction that widens upward from the inner end of the lid is provided above the crucible. A single crystal growth apparatus for a melt layer method, characterized in that
【請求項2】 請求項1記載の溶融層法用単結晶成長装
置を用い、導入部から不活性ガスを溶融液面に供給する
単結晶中の酸素濃度制御方法。
2. A method for controlling the oxygen concentration in a single crystal, which comprises using the apparatus for growing a single crystal for a melt layer method according to claim 1 and supplying an inert gas to a melt surface from an introduction part.
JP6288591A 1991-03-27 1991-03-27 Apparatus for growing single crystal by molten layer process and method for controlling oxygen concentration in single crystal using the apparatus Pending JPH0543381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6288591A JPH0543381A (en) 1991-03-27 1991-03-27 Apparatus for growing single crystal by molten layer process and method for controlling oxygen concentration in single crystal using the apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6288591A JPH0543381A (en) 1991-03-27 1991-03-27 Apparatus for growing single crystal by molten layer process and method for controlling oxygen concentration in single crystal using the apparatus

Publications (1)

Publication Number Publication Date
JPH0543381A true JPH0543381A (en) 1993-02-23

Family

ID=13213162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6288591A Pending JPH0543381A (en) 1991-03-27 1991-03-27 Apparatus for growing single crystal by molten layer process and method for controlling oxygen concentration in single crystal using the apparatus

Country Status (1)

Country Link
JP (1) JPH0543381A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5462058A (en) * 1994-02-14 1995-10-31 Fujitsu Limited Ultrasonic diagnostic system
KR100411571B1 (en) * 2000-11-27 2003-12-18 주식회사 실트론 Growing apparatus of a single crystal ingot
JP2007031235A (en) * 2005-07-28 2007-02-08 Toshiba Ceramics Co Ltd Apparatus for manufacturing single crystal
JP2009173503A (en) * 2008-01-28 2009-08-06 Covalent Materials Corp Single crystal pulling device and method for manufacturing single crystal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5462058A (en) * 1994-02-14 1995-10-31 Fujitsu Limited Ultrasonic diagnostic system
KR100411571B1 (en) * 2000-11-27 2003-12-18 주식회사 실트론 Growing apparatus of a single crystal ingot
JP2007031235A (en) * 2005-07-28 2007-02-08 Toshiba Ceramics Co Ltd Apparatus for manufacturing single crystal
JP2009173503A (en) * 2008-01-28 2009-08-06 Covalent Materials Corp Single crystal pulling device and method for manufacturing single crystal

Similar Documents

Publication Publication Date Title
JPH04317493A (en) Producing device for silicon single crystal
US5895527A (en) Single crystal pulling apparatus
KR940004639B1 (en) Apparatus for manufacturing silicon single crystals
EP0162467A2 (en) Device for growing single crystals of dissociative compounds
JPH03115188A (en) Production of single crystal
JPH0543381A (en) Apparatus for growing single crystal by molten layer process and method for controlling oxygen concentration in single crystal using the apparatus
US5840116A (en) Method of growing crystals
JP4063904B2 (en) Semiconductor single crystal pulling method
JP2952733B2 (en) Silicon single crystal manufacturing method
JP3129187B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JPH09202686A (en) Apparatus for producing single crystal and production of single crystal
JPH0524969A (en) Crystal growing device
JP4144060B2 (en) Method for growing silicon single crystal
JP2606046B2 (en) Control method of single crystal oxygen concentration during single crystal pulling
JP2783049B2 (en) Method and apparatus for manufacturing single crystal silicon rod
JP2640315B2 (en) Method for producing silicon single crystal
JPH0543380A (en) Apparatus for growing single crystal by molten layer process and method for controlling oxygen concentration in single crystal using the apparatus
JPH07277875A (en) Method for growing crystal
JPH07330482A (en) Method and apparatus for growing single crystal
JPH05117077A (en) Apparatus for pulling up single crystal
JP2500875B2 (en) Single crystal manufacturing equipment
JP4801869B2 (en) Single crystal growth method
WO2024090073A1 (en) Quartz glass crucible for silicon single-crystal pulling, and silicon single-crystal manufacturing method utilizing same
JPH05294784A (en) Single crystal growth device
JPH04198086A (en) Process for growing single crystal