JPH09202686A - Apparatus for producing single crystal and production of single crystal - Google Patents

Apparatus for producing single crystal and production of single crystal

Info

Publication number
JPH09202686A
JPH09202686A JP8010315A JP1031596A JPH09202686A JP H09202686 A JPH09202686 A JP H09202686A JP 8010315 A JP8010315 A JP 8010315A JP 1031596 A JP1031596 A JP 1031596A JP H09202686 A JPH09202686 A JP H09202686A
Authority
JP
Japan
Prior art keywords
single crystal
crucible
melt
inner cylinder
metal chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8010315A
Other languages
Japanese (ja)
Other versions
JP3750174B2 (en
Inventor
Shingo Kizaki
信吾 木崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Sitix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Sitix Corp filed Critical Sumitomo Sitix Corp
Priority to JP01031596A priority Critical patent/JP3750174B2/en
Publication of JPH09202686A publication Critical patent/JPH09202686A/en
Application granted granted Critical
Publication of JP3750174B2 publication Critical patent/JP3750174B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide both a production apparatus suitable for pulling up a single crystal having neither dislocation nor carbon contamination, excellent in low-carbon concentration characteristics, without impairing a precise control of oxygen concentration in the single crystal, by straightening an inert gas flow in the apparatus and a method for producing the single crystal. SOLUTION: (1) In this apparatus 1 for producing a single crystal equipped with a crucible 2 for housing a melt, a heater 3 for heating the melt, a pulling up means for growing the single crystal, a radiant heat shielding screen 8 for enclosing the circumference of a pulling up zone of the single crystal, a metal chamber 9 for housing these members and a means for supplying an inert gas, a straightening inner cylinder 21 to be laid outside the crucible 2 and inside or outside of the heater 3 and a means 22 for supplying the inert gas to a space formed by the straightening inner cylinder and the metal chamber are installed to give the objective apparatus for producing the single crystal. In this method for producing the single crystal by a Czochralski method using this production apparatus, the straightening inner cylinder is installed outside the crucible and inside or outside the heater and the inner gas is newly supplied to the space formed by the straightening inner cylinder and the metal chamber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、シリコン等の半導
体用単結晶の製造装置およびその装置を用いる単結晶の
製造方法に関し、さらに詳しくは、黒鉛部品からの炭素
汚染をなくし、低炭素濃度の特性に優れた単結晶を無転
位で製造するのに適する製造装置および製造方法を提供
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing a single crystal for semiconductors such as silicon and a method for producing a single crystal using the apparatus. More specifically, the present invention eliminates carbon contamination from graphite parts and reduces carbon concentration. The present invention provides a manufacturing apparatus and a manufacturing method suitable for manufacturing a single crystal having excellent characteristics without dislocation.

【0002】[0002]

【従来の技術】チョクラルスキー法によって製造された
単結晶は、石英製坩堝内のシリコン溶融液から引上げて
育成させるため、成長した結晶は坩堝の石英(SiO2)から
溶出した多くの酸素を含んでいる。このため、ICやL
SIの製造プロセスにおいて繰り返し熱処理を受けて
も、スリップや反りを発生しにくいという特徴がある。
さらに、内部の酸素析出物は、1000℃近傍の熱処理で高
密度欠陥層を形成し、ウエーハの表面領域に存在する不
純物を低減するという作用 (いわゆるイントリンシック
ゲッタリング) もある。このような特徴から、チョクラ
ルスキー法は半導体用単結晶の工業的な量産方式として
多用されている。
Single crystal produced by the Prior Art Czochralski method, in order to foster Te pulled from a silicon melt in the quartz crucible, the grown crystals more oxygen eluted from crucible quartz (SiO 2) Contains. For this reason, IC and L
The SI manufacturing process is characterized in that slip and warp are less likely to occur even if it is repeatedly subjected to heat treatment.
Furthermore, the oxygen precipitates inside also have a function of forming a high-density defect layer by heat treatment at around 1000 ° C. and reducing impurities existing in the surface region of the wafer (so-called intrinsic gettering). Due to such characteristics, the Czochralski method is widely used as an industrial mass production method for single crystals for semiconductors.

【0003】チョクラルスキー法による単結晶の引上げ
において、その引上速度は引上げられる単結晶の引上げ
方向における温度勾配と密接な関係があり、温度勾配を
大きくすることによって引上速度を速くすることができ
る。このため、工業的な量産を行う場合には、引き上げ
られる単結晶の周囲を囲繞するようにスクリーンを配設
し、坩堝、ヒーターおよび溶融液からの輻射熱を遮断
し、単結晶の引上げ方向における温度勾配を大きくする
方法が採用されている。
In pulling a single crystal by the Czochralski method, the pulling speed is closely related to the temperature gradient in the pulling direction of the pulled single crystal, and the pulling speed is increased by increasing the temperature gradient. You can For this reason, in the case of industrial mass production, a screen is placed so as to surround the circumference of the single crystal to be pulled, the radiant heat from the crucible, the heater and the melt is blocked, and the temperature in the pulling direction of the single crystal is increased. A method of increasing the gradient is adopted.

【0004】図4は、輻射熱遮断スクリーン(以下、単
に「輻射スクリーン」という)を配設してシリコン単結
晶をチョクラルスキー法によって製造する装置の縦断面
図である。通常、シリコン単結晶の製造に使用される坩
堝2は二重構造であって、内側の石英坩堝2aと、外側の
黒鉛坩堝2bとで構成される。坩堝2の外側には黒鉛製の
ヒーター3が設けられ、坩堝2内にはこのヒーターによ
って溶融されたシリコン溶融液4が収容される。単結晶
の引上げ手段として引上げワイヤー5が用いられ、その
先端に種結晶6が取り付けられる。溶融液4表面に種結
晶6の下端を接触させて上方へ引き上げることによっ
て、その下端に単結晶7を成長させる。このとき、溶融
液4上ではシリコン単結晶を囲繞するように輻射スクリ
ーン8が配設されている。この輻射スクリーン8によっ
てヒーター3および溶融液4からの輻射熱が遮断され、
引上げられる単結晶7の温度勾配が大きくなる。これら
の部品、部材は金属チャンバー9内に収納され、全体と
して単結晶製造装置1を構成している。
FIG. 4 is a vertical sectional view of an apparatus for manufacturing a silicon single crystal by the Czochralski method by disposing a radiant heat blocking screen (hereinafter, simply referred to as "radiant screen"). Usually, the crucible 2 used for producing a silicon single crystal has a double structure, and is composed of an inner quartz crucible 2a and an outer graphite crucible 2b. A heater 3 made of graphite is provided outside the crucible 2, and a silicon melt 4 melted by the heater is contained in the crucible 2. A pulling wire 5 is used as a pulling means for pulling a single crystal, and a seed crystal 6 is attached to the tip thereof. The lower end of the seed crystal 6 is brought into contact with the surface of the melt 4 and pulled up to grow the single crystal 7 at the lower end. At this time, a radiation screen 8 is arranged on the melt 4 so as to surround the silicon single crystal. Radiant heat from the heater 3 and the melt 4 is blocked by the radiant screen 8,
The temperature gradient of the pulled single crystal 7 becomes large. These parts and members are housed in the metal chamber 9 and constitute the single crystal manufacturing apparatus 1 as a whole.

【0005】単結晶の引上げ中は、金属チャンバー9の
上方の中央部から常時不活性ガスとして高純度のアルゴ
ンガスを供給して、ガス流れ31(図中では矢印で示す)
を形成させる。ガス流れ31は、坩堝に収納されるシリコ
ン溶融液4の表面から蒸発する一酸化珪素(SiO )およ
びこの一酸化珪素とヒーター3や黒鉛坩堝2b等の高温の
黒鉛部材との反応により生成される一酸化炭素(CO)な
どを伴って、ヒーター3の内外周面を下方に流れて排出
口10から排出される。このとき、金属チャンバー内でガ
ス流れが極端に変化する部位(例えば、図中のA部)に
おいて乱流、滞留、すなわちガス流れの淀みまたは渦流
等が発生し易い。
During the pulling of the single crystal, a high-purity argon gas is constantly supplied as an inert gas from the central portion above the metal chamber 9, and a gas flow 31 (indicated by an arrow in the figure).
Is formed. The gas stream 31 is generated by the reaction of silicon monoxide (SiO 2) evaporated from the surface of the silicon melt 4 stored in the crucible and this silicon monoxide with a high temperature graphite member such as the heater 3 or the graphite crucible 2b. Along with carbon monoxide (CO) and the like, it flows downward through the inner and outer peripheral surfaces of the heater 3 and is discharged from the discharge port 10. At this time, turbulent flow, stagnation, that is, stagnation or swirling of the gas flow is likely to occur at a portion (for example, a portion A in the figure) where the gas flow extremely changes in the metal chamber.

【0006】金属チャンバー9内で形成されるアルゴン
ガスの流れ31に乱流、滞留が発生した場合若しくはアル
ゴンガスの流れが不充分である場合には、一酸化珪素
(SiO)の析出物が輻射スクリーン8の下面や金属チャ
ンバー9の側面に層状または塊状に付着する。この析出
した一酸化珪素の微粉または塊が溶融液4の表面上に落
下し、これが結晶成長界面に取り込まれて、結晶の有転
位化の原因となる。また、一酸化炭素(CO)についても
適切に排出されず、金属チャンバー内に滞留してシリコ
ン溶融液を汚染し、単結晶中に混入して炭素濃度を上昇
させるとともに、単結晶の結晶欠陥を誘発する要因とな
る。
When turbulence or retention occurs in the argon gas flow 31 formed in the metal chamber 9, or when the argon gas flow is insufficient, silicon monoxide (SiO) precipitates radiate. It adheres to the lower surface of the screen 8 and the side surface of the metal chamber 9 in the form of layers or blocks. The fine particles or lumps of precipitated silicon monoxide fall on the surface of the melt 4, and are taken into the crystal growth interface, causing dislocations in the crystal. Also, carbon monoxide (CO) is not properly discharged, stays in the metal chamber and contaminates the silicon melt, mixes in the single crystal to increase the carbon concentration, and causes crystal defects in the single crystal. It becomes a factor to induce.

【0007】これらの対策として、アルゴンガスの流量
を増加させガス流速を速める方法が考えられるが、ガス
流量の増加には一定の制限がある。一般に、アルゴンガ
スの流速Vgは、ガス供給圧力Pg、ガス流量Qg、ガ
ス通過空間断面積Agおよび炉内圧力Pfに依存し、次
の(A)式によって表される。
As a countermeasure for these problems, a method of increasing the flow rate of argon gas to increase the gas flow velocity is conceivable, but there is a certain limit to the increase of gas flow rate. Generally, the flow velocity Vg of the argon gas depends on the gas supply pressure Pg, the gas flow rate Qg, the gas passage space cross-sectional area Ag, and the furnace pressure Pf, and is represented by the following equation (A).

【0008】 Vg=(Qg/Ag)×(Pg/Pf) ・・・(A) アルゴンガスの流量Qgを増加してガス流速Vgを速め
ることによって、一酸化珪素や一酸化炭素を排出する作
用が発揮されるので、これらが溶融液4に混入すること
を防止できる。しかし、単結晶の酸素濃度に関して、前
述のイントリンシックゲッタリングを効果的に行うに
は、単結晶中の酸素濃度を一定範囲内で精密に制御する
ことが要求され、この酸素濃度は前記のアルゴンガスの
流通状態に強く影響される。すなわち、図4において、
ガス流量Qgを増加させると、輻射スクリーン8の下端
と溶融液4の表面との隙間における流速Vgも大きくな
り、同時に円周方向における部分的な速度差が大きくな
るので、溶融液4の表面温度および溶融液4内の対流に
変化を生じさせることになり、結晶中の酸素濃度を前記
の一定範囲内に再現性よく精密制御することが難しくな
る。
Vg = (Qg / Ag) × (Pg / Pf) (A) The action of discharging silicon monoxide or carbon monoxide by increasing the flow rate Qg of the argon gas to accelerate the gas flow rate Vg. Is exerted, it is possible to prevent these from being mixed in the melt 4. However, regarding the oxygen concentration of the single crystal, in order to effectively perform the above-mentioned intrinsic gettering, it is necessary to precisely control the oxygen concentration in the single crystal within a certain range. It is strongly affected by the gas distribution. That is, in FIG.
When the gas flow rate Qg is increased, the flow velocity Vg in the gap between the lower end of the radiant screen 8 and the surface of the melt 4 also increases, and at the same time, the partial velocity difference in the circumferential direction increases, so that the surface temperature of the melt 4 increases. Further, the convection in the melt 4 is changed, and it becomes difficult to precisely control the oxygen concentration in the crystal within the above-mentioned fixed range with good reproducibility.

【0009】さらに、一定流量以上にガス流量Qgを増
加させると、輻射スクリーン8の下端と溶融液4の表面
との隙間における流速Vgが大きくなりすぎて、溶融液
4の表面に振動を発生させ、無転位の単結晶を引上げる
ことができない事態も発生する。このような点からも、
一酸化珪素や一酸化炭素を充分に排出させるためにアル
ゴンガスの流量Qgを増加させる方法を採用するには、
半導体用単結晶として要求される酸素濃度制御および無
転位引上げを確保するという前提において一定の制限が
ある。
Further, if the gas flow rate Qg is increased above a certain flow rate, the flow velocity Vg in the gap between the lower end of the radiant screen 8 and the surface of the melt 4 becomes too high, causing vibration on the surface of the melt 4. In some cases, a dislocation-free single crystal cannot be pulled up. From this point,
To adopt a method of increasing the flow rate Qg of argon gas in order to sufficiently discharge silicon monoxide and carbon monoxide,
There are certain restrictions on the assumption that oxygen concentration control and dislocation-free pulling required for a semiconductor single crystal are ensured.

【0010】[0010]

【発明が解決しようとする課題】従来の単結晶の製造装
置および製造方法では、前述の通り、半導体用単結晶に
要求される結晶中の酸素濃度の精密制御に対応しつつ、
炉内で発生した一酸化珪素や一酸化炭素を充分に排出
し、結晶の無転位引上げおよび黒鉛部品からの炭素汚染
を防止して低炭素濃度の単結晶を製造することが困難で
あるという問題を有していた。
As described above, the conventional apparatus and method for producing a single crystal are capable of precisely controlling the oxygen concentration in the crystal, which is required for a single crystal for a semiconductor.
The problem is that it is difficult to produce low-carbon-concentration single crystals by sufficiently discharging silicon monoxide and carbon monoxide generated in the furnace, preventing dislocation-free pulling of crystals and carbon contamination from graphite parts. Had.

【0011】本発明は、この問題に鑑み、アルゴンガス
の流れを整流して、結晶中の酸素濃度の精密制御性を損
なうことなく、無転位で、かつ炭素汚染のない低炭素濃
度の特性に優れた単結晶の引上げに好適な製造装置およ
び製造方法を提供することを目的とする。
In view of this problem, the present invention rectifies the flow of an argon gas to obtain a low carbon concentration characteristic without dislocation and without impairing the precise controllability of the oxygen concentration in the crystal. An object of the present invention is to provide a manufacturing apparatus and a manufacturing method suitable for pulling an excellent single crystal.

【0012】[0012]

【課題を解決するための手段】本発明は、下記の (1)の
シリコン単結晶製造装置、およびその装置を使用する下
記 (2)の単結晶製造方法を要旨とする。
SUMMARY OF THE INVENTION The gist of the present invention is a silicon single crystal manufacturing apparatus of the following (1) and a single crystal manufacturing method of the following (2) using the apparatus.

【0013】(1) 図1に示すように、成長させるべき単
結晶の原料溶融液を収容する坩堝2と、この溶融液を加
熱するヒーター3と、坩堝内の溶融液4の表面に種結晶
6を接触させて単結晶を成長させる引上げ手段5と、単
結晶の引上げ域の周囲を囲繞する輻射熱遮蔽スクリーン
8と、前記各部材を収容する金属チャンバー9と、前記
金属チャンバーの上部から不活性ガスを供給する手段と
を具備する単結晶製造装置1において、前記坩堝の外側
でかつ前記ヒーターの内側または外側に配置される整流
内筒21と、この整流内筒と前記金属チャンバーとが形成
する空間に新たに不活性ガスを供給する手段とが設けら
れていることを特徴とする単結晶製造装置。
(1) As shown in FIG. 1, a crucible 2 for containing a raw material melt of a single crystal to be grown, a heater 3 for heating the melt, and a seed crystal on the surface of the melt 4 in the crucible. 6, a pulling means 5 for growing a single crystal by contacting with each other, a radiant heat shielding screen 8 surrounding the pulling area of the single crystal, a metal chamber 9 for accommodating each member, and an inert gas from above the metal chamber. In a single crystal manufacturing apparatus 1 including a means for supplying gas, a rectifying inner cylinder 21 arranged outside the crucible and inside or outside the heater, and the rectifying inner cylinder and the metal chamber are formed. A device for producing a single crystal, characterized in that a means for newly supplying an inert gas to the space is provided.

【0014】ただし、図1においては、整流内筒21をヒ
ーター3の内側に配置する場合を示している。
However, FIG. 1 shows a case where the rectifying inner cylinder 21 is arranged inside the heater 3.

【0015】(2) 成長させるべき単結晶の原料溶融液を
収容する坩堝と、この溶融液を加熱するヒーターと、坩
堝内の溶融液の表面に種結晶を接触させて単結晶を成長
させる引上げ手段と、単結晶の引上げ域の周囲を囲繞す
る輻射熱遮蔽スクリーンと、前記各部材を収容する金属
チャンバーと、前記金属チャンバーの上部から不活性ガ
スを供給する手段とを具備する製造装置を使用するチョ
クラルスキー法による単結晶の製造方法において、整流
内筒を前記坩堝の外側でかつ前記ヒーターの内側または
外側に配置し、この整流内筒と前記金属チャンバーとが
形成する空間に新たに不活性ガスを供給することを特徴
とする単結晶の製造方法。
(2) A crucible for containing a raw material melt of a single crystal to be grown, a heater for heating the melt, and a puller for growing a single crystal by bringing a seed crystal into contact with the surface of the melt in the crucible A manufacturing apparatus comprising: a means, a radiant heat shielding screen surrounding a pulling region of a single crystal, a metal chamber for accommodating each member, and a means for supplying an inert gas from the upper part of the metal chamber are used. In the method for producing a single crystal by the Czochralski method, a rectifying inner cylinder is arranged outside the crucible and inside or outside the heater, and a new inert space is formed in a space formed by the rectifying inner cylinder and the metal chamber. A method for producing a single crystal, which comprises supplying a gas.

【0016】[0016]

【発明の実施の形態】以下、図面によって本発明の単結
晶製造装置および製造方法を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A single crystal production apparatus and a production method of the present invention will be described below with reference to the drawings.

【0017】図1は、本発明の単結晶製造装置を示す縦
断面図である。同図中の符号2は坩堝であり、内側を石
英坩堝2aとし、外側を黒鉛坩堝2bとした二重構造で構成
され、坩堝支持軸2c上に設置される。製造装置1の外観
を構成する金属チャンバー9は、単結晶の引上げ軸を中
心として配される円筒状の真空容器であり、その中央位
置に坩堝2が配設され、その外周にはこれを囲んで坩堝
内の溶融液4を加熱するヒーター3が配設されている。
一方、坩堝2の上方には、金属チャンバー9の上部の中
央から引上げ手段5(例えば、引上げワイヤー)が回転
および昇降可能に垂設され、その下端には種結晶6が装
着されている。種結晶6は引上げ手段5によって回転し
つつ上昇し、溶融液4との接触面である下端部に単結晶
7が成長する。
FIG. 1 is a vertical sectional view showing a single crystal production apparatus of the present invention. Reference numeral 2 in the figure is a crucible, which has a double structure including a quartz crucible 2a on the inner side and a graphite crucible 2b on the outer side, and is installed on the crucible support shaft 2c. The metal chamber 9 constituting the appearance of the manufacturing apparatus 1 is a cylindrical vacuum container arranged around the pulling axis of the single crystal, and the crucible 2 is arranged at the central position thereof, and the crucible 2 is surrounded on the outer periphery thereof. A heater 3 for heating the melt 4 in the crucible is provided.
On the other hand, above the crucible 2, a pulling means 5 (for example, a pulling wire) is vertically rotatably and vertically provided from the center of the upper part of the metal chamber 9, and a seed crystal 6 is attached to the lower end thereof. The seed crystal 6 rises while being rotated by the pulling means 5, and the single crystal 7 grows at the lower end portion which is the contact surface with the melt 4.

【0018】このとき、単結晶の引上速度を速め効率的
な成長を促すために、坩堝2の上方であって引き上げら
れる単結晶の周囲を囲繞するように輻射スクリーン8が
配設され、坩堝2、ヒーター3および溶融液4から単結
晶に照射される輻射熱が遮断される。また、金属チャン
バー9の雰囲気調整および析出物を排出させるために高
純度のアルゴンガスが、常時金属チャンバー9の上部か
ら供給される。供給されたアルゴンガスはガス流れ31を
構成するが、前述の通り、金属チャンバー9内でガス流
れ31が極端に変化する部位、例えば、輻射スクリーン8
の下方部位であって坩堝2およびヒーター3の上方部位
において、ガス流れ31に淀みや渦流といった乱流または
滞留が発生し易い。
At this time, in order to accelerate the pulling speed of the single crystal and promote efficient growth, the radiation screen 8 is arranged above the crucible 2 and surrounding the single crystal to be pulled, and the crucible is provided. 2, the radiant heat applied to the single crystal from the heater 3 and the melt 4 is blocked. Further, high-purity argon gas is constantly supplied from the upper part of the metal chamber 9 for adjusting the atmosphere of the metal chamber 9 and for discharging the precipitate. The supplied argon gas constitutes the gas flow 31, and as described above, a portion of the metal chamber 9 where the gas flow 31 changes extremely, for example, the radiation screen 8
At the lower portion of the gas and the upper portion of the crucible 2 and the heater 3, turbulent flow such as stagnation or swirl or retention is likely to occur in the gas flow 31.

【0019】本発明においては、上記のガス流れ31の乱
流または滞留を防止するため、坩堝2の外側でかつヒー
ター3の内側または外側に薄肉円筒形状の整流内筒21を
配置させるとともに、この整流内筒21と金属チャンバー
9とが形成する空間に新たにアルゴンガスをガス供給口
22を通して供給する手段を設けることとした。このよう
な構成を採用することによって、前記の部位に発生し易
いガス流れの乱流や滞留を防止できる。
In the present invention, in order to prevent the above-mentioned turbulent flow or retention of the gas flow 31, a thin-walled cylindrical rectifying inner cylinder 21 is arranged outside the crucible 2 and inside or outside the heater 3. Argon gas is newly supplied to the space formed by the rectifying inner cylinder 21 and the metal chamber 9.
It was decided to provide means for supplying through 22. By adopting such a configuration, it is possible to prevent turbulent flow and retention of the gas flow that are likely to occur at the above-mentioned portion.

【0020】図2は、整流内筒の構造を示す斜視図であ
るが、その側面の上部および下部にはいずれも金属チャ
ンバーの上部から供給されガス流れ31の通過孔となる主
吸引口23と副吸引口24が設けられている。本発明で採用
した整流内筒21は円筒形状であって、坩堝2の外側でか
つヒーター3の内側または外側に位置するように配置さ
せることによって、この整流内筒21と金属チャンバー9
とから空間が形成される。すなわち、坩堝2の外周に円
環状の空間が構成される。
FIG. 2 is a perspective view showing the structure of the rectifying inner cylinder. The upper side and the lower side of the rectifying inner cylinder are both main suction ports 23 supplied from the upper part of the metal chamber and serving as passage holes for the gas flow 31. An auxiliary suction port 24 is provided. The rectification inner cylinder 21 employed in the present invention has a cylindrical shape, and is arranged so as to be located outside the crucible 2 and inside or outside the heater 3, so that the rectification inner cylinder 21 and the metal chamber 9 are disposed.
A space is formed from and. That is, an annular space is formed on the outer circumference of the crucible 2.

【0021】上記の空間にガス供給口22から新たにアル
ゴンガスを供給して、排出口10に向かって下降するガス
流れ32を形成する。ガス流れ32が一定の流速を確保する
限り、主吸引口23および副吸引口24を通して吸引力が発
生する。そのため、図1において金属チャンバー9の上
部から供給され、輻射スクリーン8の下端と溶融液4の
表面との隙間を通過したガス流れ31は、ガス流れ32の吸
引力によって主吸引口23を通過して、整流内筒21と金属
チャンバー9とが形成する空間に吸引される。
Argon gas is newly supplied from the gas supply port 22 to the above space to form a gas flow 32 descending toward the discharge port 10. As long as the gas flow 32 secures a constant flow velocity, suction force is generated through the main suction port 23 and the auxiliary suction port 24. Therefore, the gas flow 31 supplied from the upper part of the metal chamber 9 in FIG. 1 and passing through the gap between the lower end of the radiation screen 8 and the surface of the molten liquid 4 passes through the main suction port 23 by the suction force of the gas flow 32. And is sucked into the space formed by the rectifying inner cylinder 21 and the metal chamber 9.

【0022】また、主吸引口23で吸引されず、整流内筒
に沿って下降したガス流れ31は、副吸引口24から吸引さ
れて排出口10から排出される。
The gas flow 31 which is not sucked by the main suction port 23 but descends along the straightening inner cylinder is sucked from the sub suction port 24 and discharged from the discharge port 10.

【0023】このガス流れ32の吸引作用によって、溶融
液4の表面上のガス流れ31を変化させることなく、輻射
スクリーン8の下方部位で発生し易いガス流れ31の乱流
や滞留を回避できる。したがって、図2に示す整流内筒
を配置することによって、結晶中の酸素濃度の精密制御
性を損なうことなく、無転位で、かつ炭素汚染のない低
炭素濃度の特性に優れた単結晶を製造することができ
る。また、本発明において整流内筒21はヒーター3の内
側または外側のいずれに配置しても良いが、黒鉛製のヒ
ーターからの炭素汚染を完全に防止するため、ヒーター
3の内側に配置するのが望ましい。
Due to the suction action of the gas flow 32, it is possible to avoid the turbulent flow and retention of the gas flow 31 which are likely to occur in the lower portion of the radiation screen 8 without changing the gas flow 31 on the surface of the melt 4. Therefore, by disposing the rectifying inner cylinder shown in FIG. 2, a single crystal excellent in characteristics of low carbon concentration without dislocation and without carbon contamination is produced without impairing the precision controllability of oxygen concentration in the crystal. can do. Further, in the present invention, the rectifying inner cylinder 21 may be arranged inside or outside the heater 3, but in order to completely prevent carbon contamination from the graphite heater, it is arranged inside the heater 3. desirable.

【0024】本発明で採用する整流内筒は黒鉛製であっ
て、その表面は炭化珪素(SiC)でコーティングするこ
とが望ましい。ここで整流内筒を黒鉛製とするのは、高
純度で製造することが可能であり、重金属等による引上
げ結晶の汚染のおそれが少ないからである。また、その
表面を炭化珪素(SiC)でコーティングすれば、黒鉛製
部材の気孔部からのガス放出を防止し、かつ溶融液5の
表面から蒸発した一酸化珪素と黒鉛製部材の反応も防止
することができる。
The rectifying inner cylinder employed in the present invention is preferably made of graphite, and the surface thereof is desirably coated with silicon carbide (SiC). The reason why the rectifying inner cylinder is made of graphite is that it can be manufactured with high purity and there is little risk of contamination of the pulled crystal by heavy metals or the like. Further, if the surface is coated with silicon carbide (SiC), gas release from the pores of the graphite member is prevented, and reaction between silicon monoxide evaporated from the surface of the melt 5 and the graphite member is also prevented. be able to.

【0025】また、本発明におけるアルゴンガスを供給
するには、一般に慣用されている手段で良く、原料とし
て液体アルゴンが用いられ、ガス化ののち金属チャンバ
ー内に供給される。
The argon gas used in the present invention may be supplied by any of the commonly used means. Liquid argon is used as a raw material and is supplied into the metal chamber after gasification.

【0026】[0026]

【実施例】本発明の効果を、実施例に基づいて具体的に
説明する。
EXAMPLES The effects of the present invention will be specifically described based on examples.

【0027】(本発明例)図1に示す単結晶製造装置を
用いて、直径8インチの大重量の単結晶を引上げた。直
径8インチ単結晶の引上には外径22インチ( 559mm)の
坩堝を用い、その条件は初期チャージ100Kg とし、引上
速度0.8mm 、結晶回転18rpm 、坩堝回転8rpm 〜16rpm
で、重量95Kgの単結晶を成長させた。このとき、金属チ
ャンバー内には常時アルゴンガスを流量10〜50リットル
/minの条件で供給した。
(Inventive Example) A large-sized single crystal having a diameter of 8 inches was pulled by using the single-crystal manufacturing apparatus shown in FIG. A 22-inch (559 mm) outer diameter crucible was used to pull up an 8-inch diameter single crystal. The conditions were an initial charge of 100 kg, a pulling rate of 0.8 mm, a crystal rotation of 18 rpm, and a crucible rotation of 8 rpm to 16 rpm.
A single crystal having a weight of 95 kg was grown. At this time, the flow rate of argon gas in the metal chamber is always 10 to 50 liters.
It was supplied under the condition of / min.

【0028】装置内に配置した整流内筒は外径 570mm、
高さ 700mm、厚み10mmの円筒形状であって、引上げ軸と
同心に坩堝の外側でかつヒーターの内側に位置するよう
に配置した。また、整流内筒と金属チャンバーとが形成
する空間には、アルゴンガスを流量20〜 100リットル/m
inの条件で供給した。
The rectifying inner cylinder arranged in the apparatus has an outer diameter of 570 mm,
It had a cylindrical shape with a height of 700 mm and a thickness of 10 mm, and was arranged concentrically with the pulling shaft so as to be located outside the crucible and inside the heater. Further, in the space formed by the rectifying inner cylinder and the metal chamber, the flow rate of argon gas is 20 to 100 liter / m 2.
Supplied under in condition.

【0029】(比較例)比較のため、図4に示す単結晶
製造装置を用いて、直径8インチの大重量の単結晶を引
上げた。このときの引上条件は本発明例の場合と同様と
し、装置内へのアルゴンガスの供給は、金属チャンバー
の上部から流量10〜50リットル/minの条件とした。
Comparative Example For comparison, a single crystal manufacturing apparatus shown in FIG. 4 was used to pull up a heavy single crystal having a diameter of 8 inches. The pulling conditions at this time were the same as in the case of the present invention, and the argon gas was supplied into the apparatus at a flow rate of 10 to 50 l / min from the upper part of the metal chamber.

【0030】(比較結果)図3は、本発明例および比較
例によって引上げられた単結晶中の酸素濃度と炭素濃度
の分布を示す図である。図中の結晶固化率は、引上げ単
結晶重量/初期チャージ重量を示しており、結晶固化率
0は結晶のトップ部を表し、結晶固化率が1.0 に近似す
る程結晶のボトム部に近くなることを表している。
(Comparison Results) FIG. 3 is a diagram showing distributions of oxygen concentration and carbon concentration in the single crystals pulled by the examples of the present invention and the comparative examples. The crystal solidification rate in the figure indicates the weight of the pulled single crystal / initial charge weight, and the crystal solidification rate 0 represents the top part of the crystal, and the closer the crystal solidification rate is to 1.0, the closer to the bottom part of the crystal. Is represented.

【0031】図3から明らかなように、酸素濃度に関し
ては本発明例、比較例ともほぼ同様の分布状況を示して
いる。これは、いずれも溶融液の表面上における酸素蒸
発量に差がなかったことを示している。一方、炭素濃度
に関しては、比較例では結晶固化率の増加にともなって
著しく濃度が高くなるのに対し、本発明例では単結晶の
全長にわたり低濃度であり、優れた低炭素濃度の特性を
示している。また、無転位引上に関しては、比較例に比
べ本発明例では、20%程度改善されることを確認してい
る。
As is clear from FIG. 3, the oxygen concentration shows almost the same distribution in the present invention and the comparative example. This indicates that there was no difference in the amount of oxygen evaporated on the surface of the molten liquid. On the other hand, regarding the carbon concentration, in the comparative example, the concentration is remarkably increased with the increase of the crystal solidification rate, whereas in the present invention example, the concentration is low over the entire length of the single crystal, which shows excellent low carbon concentration characteristics. ing. Further, it has been confirmed that in the present invention example, the dislocation-free pulling is improved by about 20% as compared with the comparative example.

【0032】さらに、単結晶中の酸素濃度分布、炭素濃
度分布および金属不純物の含有状況の総合的な判断手法
として、引上げられた単結晶のライフタイムをマイクロ
PCD法(P型 4.5 〜 6.0Ωcm)によって測定した。
その結果は、比較例では510.2 μsec であるのに対し、
本発明例では615.5 μsec であり、本発明例では優れた
特性を示すことが分かる。
Further, as a comprehensive judgment method of oxygen concentration distribution, carbon concentration distribution and content of metal impurities in the single crystal, the lifetime of the pulled single crystal is measured by the micro PCD method (P type 4.5 to 6.0 Ωcm). Measured by
The result is 510.2 μsec in the comparative example, while
It is 615.5 μsec in the example of the present invention, and it can be seen that the example of the present invention exhibits excellent characteristics.

【0033】[0033]

【発明の効果】本発明の単結晶製造装置および製造方法
によれば、単結晶の引上領域における不活性ガスの流れ
を整流して、結晶中の酸素濃度の精密制御性を損なうこ
となく、無転位で、かつ炭素汚染のない低炭素濃度の特
性に優れた単結晶を製造することができる。
According to the apparatus and method for producing a single crystal of the present invention, the flow of the inert gas in the pulling region of the single crystal is rectified without impairing the precision controllability of the oxygen concentration in the crystal. It is possible to produce a single crystal that is dislocation-free and has excellent characteristics of low carbon concentration without carbon contamination.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の単結晶製造装置を示す縦断面図であ
る。
FIG. 1 is a vertical cross-sectional view showing a single crystal manufacturing apparatus of the present invention.

【図2】本発明で採用する整流内筒の構造を示す斜視図
である
FIG. 2 is a perspective view showing a structure of a straightening inner cylinder used in the present invention.

【図3】本発明例および比較例における引上げられた単
結晶中の酸素濃度と炭素濃度の分布を示す図である。
FIG. 3 is a diagram showing distributions of oxygen concentration and carbon concentration in pulled single crystals in Examples of the present invention and Comparative Examples.

【図4】従来の単結晶製造装置であって、輻射スクリー
ンを配設してシリコン単結晶をチョクラルスキー法によ
って製造する装置の縦断面図である。
FIG. 4 is a vertical cross-sectional view of a conventional single crystal manufacturing apparatus that is provided with a radiation screen and that manufactures a silicon single crystal by the Czochralski method.

【符号の説明】[Explanation of symbols]

1…単結晶製造装置 2…坩堝、 2a…石英製坩堝、 2b…黒鉛製坩堝、 2c
…坩堝支持軸 3…ヒーター、 4…溶融液、 5…引上げ手段(引上
げワイヤー) 6…種結晶、 7…単結晶、 8…輻射スクリーン、
9…金属チャンバー 10…排出口 21…整流内筒、 22…ガス供給口、 23…主吸引口、
24…副吸引口 31、32…ガス流れ
1 ... Single crystal manufacturing apparatus 2 ... Crucible, 2a ... Quartz crucible, 2b ... Graphite crucible, 2c
... crucible support shaft 3 ... heater, 4 ... melt, 5 ... pulling means (pulling wire) 6 ... seed crystal, 7 ... single crystal, 8 ... radiation screen,
9 ... Metal chamber 10 ... Discharge port 21 ... Straightening inner cylinder, 22 ... Gas supply port, 23 ... Main suction port,
24 ... Sub suction port 31, 32 ... Gas flow

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】成長させるべき単結晶の原料溶融液を収容
する坩堝と、この溶融液を加熱するヒーターと、坩堝内
の溶融液の表面に種結晶を接触させて単結晶を成長させ
る引上げ手段と、単結晶の引上げ域の周囲を囲繞する輻
射熱遮蔽スクリーンと、前記各部材を収容する金属チャ
ンバーと、前記金属チャンバーの上部から不活性ガスを
供給する手段とを具備する単結晶製造装置において、前
記坩堝の外側でかつ前記ヒーターの内側または外側に配
置される整流内筒と、この整流内筒と前記金属チャンバ
ーとが形成する空間に新たに不活性ガスを供給する手段
とが設けられていることを特徴とする単結晶製造装置。
1. A crucible for containing a raw material melt of a single crystal to be grown, a heater for heating the melt, and a pulling means for growing a single crystal by bringing a seed crystal into contact with the surface of the melt in the crucible. And a radiant heat shielding screen surrounding the periphery of the pulling region of the single crystal, a metal chamber accommodating each member, and a single crystal manufacturing apparatus comprising means for supplying an inert gas from the upper part of the metal chamber, A rectifying inner cylinder arranged outside the crucible and inside or outside the heater, and means for newly supplying an inert gas to a space formed by the rectifying inner cylinder and the metal chamber are provided. A single crystal manufacturing apparatus characterized by the above.
【請求項2】成長させるべき単結晶の原料溶融液を収容
する坩堝と、この溶融液を加熱するヒーターと、坩堝内
の溶融液の表面に種結晶を接触させて単結晶を成長させ
る引上げ手段と、単結晶の引上げ域の周囲を囲繞する輻
射熱遮蔽スクリーンと、前記各部材を収容する金属チャ
ンバーと、前記金属チャンバーの上部から不活性ガスを
供給する手段とを具備する製造装置を使用するチョクラ
ルスキー法による単結晶の製造方法において、整流内筒
を前記坩堝の外側でかつ前記ヒーターの内側または外側
に配置し、この整流内筒と前記金属チャンバーとが形成
する空間に新たに不活性ガスを供給することを特徴とす
る単結晶の製造方法。
2. A crucible for containing a raw material melt of a single crystal to be grown, a heater for heating the melt, and a pulling means for growing a single crystal by bringing a seed crystal into contact with the surface of the melt in the crucible. , A radiant heat shielding screen surrounding the pulling region of the single crystal, a metal chamber accommodating each of the members, and means for supplying an inert gas from the upper part of the metal chamber. In the method for producing a single crystal by the Larsky method, a rectifying inner cylinder is arranged outside the crucible and inside or outside the heater, and a new inert gas is newly provided in a space formed by the rectifying inner cylinder and the metal chamber. A method for producing a single crystal, which comprises:
JP01031596A 1996-01-24 1996-01-24 Single crystal manufacturing apparatus and manufacturing method Expired - Fee Related JP3750174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01031596A JP3750174B2 (en) 1996-01-24 1996-01-24 Single crystal manufacturing apparatus and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01031596A JP3750174B2 (en) 1996-01-24 1996-01-24 Single crystal manufacturing apparatus and manufacturing method

Publications (2)

Publication Number Publication Date
JPH09202686A true JPH09202686A (en) 1997-08-05
JP3750174B2 JP3750174B2 (en) 2006-03-01

Family

ID=11746819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01031596A Expired - Fee Related JP3750174B2 (en) 1996-01-24 1996-01-24 Single crystal manufacturing apparatus and manufacturing method

Country Status (1)

Country Link
JP (1) JP3750174B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001081661A1 (en) * 2000-04-25 2001-11-01 Shin-Etsu Handotai Co.,Ltd. Silicon single-crystal wafer, method for producing silicon single crystal, and method for fabricating silicon single-crystal wafer
JP2004521056A (en) * 2000-12-26 2004-07-15 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Method and apparatus for producing single crystal silicon having a low iron concentration substantially free of aggregated intrinsic point defects
JP2009001489A (en) * 2008-08-28 2009-01-08 Sumco Techxiv株式会社 Apparatus and method for producing single crystal
WO2009140406A3 (en) * 2008-05-13 2010-02-18 Applied Materials, Inc. Crystal growth apparatus for solar cell manufacturing
JP2012201564A (en) * 2011-03-25 2012-10-22 Covalent Materials Corp Silicon single crystal pulling apparatus, and method of pulling silicon single crystal using the same
WO2019154729A1 (en) * 2018-02-06 2019-08-15 Siltronic Ag Method and device for drawing a single crystal, single crystal, and semiconductor wafer
CN110408991A (en) * 2018-04-27 2019-11-05 胜高股份有限公司 The manufacturing method of silicon single crystal and the pulling apparatus of silicon single crystal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61158890A (en) * 1984-12-28 1986-07-18 Fujitsu Ltd Crystal growth apparatus
JPH05319976A (en) * 1992-03-19 1993-12-03 Fujitsu Ltd Ultra-low-carbon crystal growing apparatus and production of silicon single crystal
JPH07223894A (en) * 1994-02-10 1995-08-22 Komatsu Electron Metals Co Ltd Apparatus for production of semiconductor single crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61158890A (en) * 1984-12-28 1986-07-18 Fujitsu Ltd Crystal growth apparatus
JPH05319976A (en) * 1992-03-19 1993-12-03 Fujitsu Ltd Ultra-low-carbon crystal growing apparatus and production of silicon single crystal
JPH07223894A (en) * 1994-02-10 1995-08-22 Komatsu Electron Metals Co Ltd Apparatus for production of semiconductor single crystal

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001081661A1 (en) * 2000-04-25 2001-11-01 Shin-Etsu Handotai Co.,Ltd. Silicon single-crystal wafer, method for producing silicon single crystal, and method for fabricating silicon single-crystal wafer
JP4096557B2 (en) * 2000-04-25 2008-06-04 信越半導体株式会社 Silicon single crystal wafer, silicon single crystal manufacturing method, and silicon single crystal wafer manufacturing method
JP2004521056A (en) * 2000-12-26 2004-07-15 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Method and apparatus for producing single crystal silicon having a low iron concentration substantially free of aggregated intrinsic point defects
WO2009140406A3 (en) * 2008-05-13 2010-02-18 Applied Materials, Inc. Crystal growth apparatus for solar cell manufacturing
JP2009001489A (en) * 2008-08-28 2009-01-08 Sumco Techxiv株式会社 Apparatus and method for producing single crystal
JP2012201564A (en) * 2011-03-25 2012-10-22 Covalent Materials Corp Silicon single crystal pulling apparatus, and method of pulling silicon single crystal using the same
WO2019154729A1 (en) * 2018-02-06 2019-08-15 Siltronic Ag Method and device for drawing a single crystal, single crystal, and semiconductor wafer
CN110408991A (en) * 2018-04-27 2019-11-05 胜高股份有限公司 The manufacturing method of silicon single crystal and the pulling apparatus of silicon single crystal

Also Published As

Publication number Publication date
JP3750174B2 (en) 2006-03-01

Similar Documents

Publication Publication Date Title
KR100415860B1 (en) Single Crystal Manufacturing Equipment and Manufacturing Method
EP0229322A2 (en) Method and apparatus for Czochralski single crystal growing
JP5169814B2 (en) Method for growing silicon single crystal and silicon single crystal grown by the method
KR101563221B1 (en) Single crystal manufacturing apparatus and manufacturing method
JPH09202686A (en) Apparatus for producing single crystal and production of single crystal
JP2580197B2 (en) Single crystal pulling device
JPH0639351B2 (en) Apparatus and method for manufacturing single crystal ingot
WO1994028206A1 (en) Apparatus and method for manufacturing single-crystal material
JP2003221296A (en) Apparatus and method for producing single crystal
JP3129187B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP2009001489A (en) Apparatus and method for producing single crystal
JP2952733B2 (en) Silicon single crystal manufacturing method
WO1991017288A1 (en) Silicon single crystal manufacturing apparatus
JPH09235190A (en) Device for producing single crystal and production of the single crystal
JP2835769B2 (en) Crucible for Si single crystal production
JP3835063B2 (en) Single crystal pulling device
JP2557003B2 (en) Silicon single crystal manufacturing equipment
JPH0543381A (en) Apparatus for growing single crystal by molten layer process and method for controlling oxygen concentration in single crystal using the apparatus
JP2567312B2 (en) Silicon single crystal manufacturing apparatus and manufacturing method
JPS63319288A (en) Flanged quartz crucible
JP2710433B2 (en) Single crystal pulling device
JP2633057B2 (en) Silicon single crystal manufacturing equipment
JP3760680B2 (en) Single crystal pulling device
JP3744053B2 (en) Graphite crucible and method for producing silicon single crystal by using Czochralski method
JP2504875B2 (en) Single crystal manufacturing equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees