JP2633057B2 - Silicon single crystal manufacturing equipment - Google Patents

Silicon single crystal manufacturing equipment

Info

Publication number
JP2633057B2
JP2633057B2 JP2114520A JP11452090A JP2633057B2 JP 2633057 B2 JP2633057 B2 JP 2633057B2 JP 2114520 A JP2114520 A JP 2114520A JP 11452090 A JP11452090 A JP 11452090A JP 2633057 B2 JP2633057 B2 JP 2633057B2
Authority
JP
Japan
Prior art keywords
silicon
single crystal
raw material
silicon single
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2114520A
Other languages
Japanese (ja)
Other versions
JPH0412085A (en
Inventor
泰光 中濱
健治 荒木
真 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2114520A priority Critical patent/JP2633057B2/en
Publication of JPH0412085A publication Critical patent/JPH0412085A/en
Application granted granted Critical
Publication of JP2633057B2 publication Critical patent/JP2633057B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、チョクラルスキー法による大直径シリコン
単結晶の製造装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to an apparatus for producing a large-diameter silicon single crystal by the Czochralski method.

[従来の技術] LSI分野ではシリコン単結晶に要求される直径は年々
大きくなっている。今日、最新鋭デバイスでは直径6イ
ンチのシリコン単結晶が使われている。将来直径10イン
チあるいはそれ以上の直径のシリコン単結晶、例えば直
径12インチのシリコン単結晶が必要になるといわれてい
る。
[Prior Art] In the LSI field, the diameter required for silicon single crystals is increasing year by year. Today, state-of-the-art devices use silicon single crystals with a diameter of 6 inches. It is said that a silicon single crystal having a diameter of 10 inches or more, for example, a silicon single crystal having a diameter of 12 inches will be required in the future.

チョクラルスキー法(CZ法)によるシリコン単結晶の
製造方法には2通りの方法がある。るつぼを回転させる
方法と回転させない方法である。今日ではLSI用に用い
られる全てのシリコン単結晶は、るつぼの回転とシリコ
ン単結晶の回転とを互いに逆方向に回転させ、かつ、る
つぼの側面を取り囲む電気抵抗加熱体によりるつぼを加
熱することにより製造されている。多くの試みにも関わ
らず、るつぼを回転させない方法、あるいは上記以外の
加熱方法(電気抵抗加熱体)で直径5インチ以上のシリ
コン単結晶が今までに作られたことはないし、今後とも
作られることはない。この理由は、るつぼの回転なしで
は、あるいは電磁誘導加熱やるつぼの底面からの電気抵
抗加熱等の上記以外の加熱方法では、シリコン単結晶の
成長するに対して同心円状の温度分布完全が得られない
からである。シリコン単結晶の成長は温度に関してきわ
めて敏感なのである。
There are two methods for producing a silicon single crystal by the Czochralski method (CZ method). A method of rotating the crucible and a method of not rotating the crucible. Today, all silicon single crystals used for LSI are manufactured by rotating the crucible and the silicon single crystal in opposite directions, and heating the crucible with an electric resistance heater surrounding the side of the crucible. Being manufactured. Despite many attempts, silicon single crystals with a diameter of 5 inches or more have never been made by a method that does not rotate the crucible, or a heating method other than the above (electric resistance heating body), and will be made in the future Never. The reason is that without the rotation of the crucible, or by other heating methods such as electromagnetic induction heating or electric resistance heating from the bottom of the crucible, a complete concentric temperature distribution can be obtained for the growth of the silicon single crystal. Because there is no. Silicon single crystal growth is very sensitive to temperature.

るつぼが回転するCZ法(以下通常のCZ法という)で
は、るつぼ回転と電気抵抗側面加熱によりシリコン溶融
液に強い対流が発生し、シリコン溶融液が良く撹拌され
る。この結果直径5インチ以上の大直径シリコン単結晶
の育成は望ましい、即ち均一なそしてシリコン単結晶に
対して完全に同心円状の溶融液表面温度分布が得られ
る。
In the CZ method in which the crucible rotates (hereinafter referred to as a normal CZ method), strong convection occurs in the silicon melt due to the crucible rotation and electric resistance side heating, and the silicon melt is well stirred. As a result, it is desirable to grow large diameter silicon single crystals having a diameter of 5 inches or more, ie, a uniform and completely concentric melt surface temperature distribution with respect to the silicon single crystal is obtained.

上記のように、通常のCZ法と他のCZ法ではシリコン溶
融液の流れに大きな違いがある。この違いは結果として
シリコン単結晶の成長条件の大きな違いとなる。又、炉
内部品(例えばホットゾーン、るつぼ、仕切り部材等)
の作用も両者では大きく異なる。シリコン単結晶育成に
対する考え方が両者では全く異なるのである。
As described above, there is a great difference in the flow of the silicon melt between the normal CZ method and other CZ methods. This difference results in a large difference in the growth conditions of the silicon single crystal. Furnace parts (eg hot zone, crucible, partition member, etc.)
Also differs greatly between the two. The concept of silicon single crystal growth is completely different between the two.

通常のCZ法ではシリコン単結晶の成長とともにるつぼ
内のシリコン溶融液が減少する。そしてシリコン単結晶
の成長とともにシリコン単結晶中のドーパント濃度が上
昇し、酸素濃度が低下する。即ちシリコン単結晶の性質
がその成長方向に変動する。LSIの高密度化にともない
シリコン単結晶に要求される品質が年々きびしくなって
きている。
In the ordinary CZ method, the silicon melt in the crucible decreases as the silicon single crystal grows. Then, as the silicon single crystal grows, the dopant concentration in the silicon single crystal increases, and the oxygen concentration decreases. That is, the properties of the silicon single crystal fluctuate in the growth direction. As the density of LSIs increases, the quality required for silicon single crystals has become more stringent year by year.

この問題を解決する手段として、通常のCZ法の石英る
つぼ内のシリコン溶融液を小孔を有する円筒状の石英製
仕切り部材で仕切り、この仕切り部材の外側に原料シリ
コンを供給しながら、仕切り部材の内側で円柱状のシリ
コン単結晶を育成する方法が知られている(例えば、特
許公報 昭40−10184 P1 L20−L35)。
As means for solving this problem, the silicon melt in a quartz crucible of the ordinary CZ method is partitioned by a cylindrical quartz partition member having small holes, and while the raw material silicon is supplied to the outside of the partition member, the partition member is separated. There is known a method of growing a columnar silicon single crystal inside a substrate (for example, Patent Publication 40-40184 P1 L20-L35).

この方法の大きな問題点は特開昭62−241889号公報
(P2 L12−L16)にも指摘されている通り、仕切り部材
の内側で仕切り部材を起点としてシリコン溶融液の凝固
が発生しやすい。この原因は次の通りである。石英製で
ある仕切り部材は光ファイバーに使われていることから
も明らかなように、輻射により熱をよく伝達する。即ち
シリコン溶融液中の熱は光として仕切り部材中を上方に
伝達し、仕切り部材のシリコン溶融液面上に露出してい
る部分より放散される。従って仕切り部材近傍ではシリ
コン溶融液温度が大きく低下している。更に、通常のCZ
法では、シリコン溶融液の強い撹拌によりシリコン溶融
液の表面温度は均一でしかも凝固温度の直上である。こ
の二つのことが重なり仕切り部材に接触しているシリコ
ン溶融液表面は非常に凝固しやすい状態になっている。
特開昭62−241889号公報はこの問題を避けるため、仕切
り部材を使用しない方法を提案したものである。しかし
この方法は原料溶解部が狭いため、原料溶解能力が極め
て小さく、シリコン単結晶の引き上げ量に見合う量の原
料シリコンを供給することができない。
As pointed out in Japanese Patent Application Laid-Open No. 62-241889 (P2 L12-L16), a major problem of this method is that solidification of the silicon melt easily occurs inside the partition member starting from the partition member. The cause is as follows. As is clear from the fact that the partition member made of quartz is used for an optical fiber, heat is well transmitted by radiation. That is, the heat in the silicon melt is transmitted upward through the partition member as light, and is radiated from a portion of the partition member exposed on the silicon melt surface. Therefore, in the vicinity of the partition member, the temperature of the silicon melt is greatly reduced. In addition, normal CZ
In the method, the surface temperature of the silicon melt is uniform and directly above the solidification temperature due to strong stirring of the silicon melt. These two things overlap and the surface of the silicon melt in contact with the partition member is in a state of being very easily solidified.
Japanese Patent Laid-Open Publication No. Sho 62-241889 proposes a method that does not use a partition member in order to avoid this problem. However, in this method, since the raw material melting portion is narrow, the raw material melting ability is extremely small, and it is impossible to supply the raw material silicon in an amount corresponding to the amount of silicon single crystal pulled.

シリコン単結晶の引き上げ量に見合う量の原料シリコ
ンを供給可能にするため、仕切り部材を用い、かつそれ
からの凝固の発生を防止する方法を提案したものとして
特開平1−153589号公報がある。この特許は仕切り部材
を熱遮蔽部材で完全に覆うことを提案している。この方
法により仕切り部材からの熱の放散は防止できる。従っ
てシリコン単結晶の引き上げ量に見合う量の原料シリコ
ンを供給し、なおかつ凝固の発生を防止している。
Japanese Unexamined Patent Publication No. 1-153589 proposes a method of using a partition member and preventing solidification therefrom in order to be able to supply the raw material silicon in an amount corresponding to the amount of silicon single crystal pulled. This patent proposes to completely cover the partition member with a heat shielding member. With this method, heat dissipation from the partition member can be prevented. Therefore, the raw material silicon is supplied in an amount corresponding to the amount of silicon single crystal pulled, and solidification is prevented from occurring.

[発明が解決しようとする課題] 特開平1−153589号公報の方法によれば、シリコン単
結晶の引き上げ量に見合う量の原料シリコンを供給し、
なおかつ凝固の発生を防止できる。しかし生産性の向上
のため結晶引き上げ速度を速くすると、それにともなっ
て原料シリコン供給量も多くしなければならない。原料
シリコン供給量を大きくすればするほど原料溶解部の温
度は下がるので、シリコン単結晶の引き上げ量に見合う
量の原料を供給しながらシリコン単結晶を育成する方法
では、引き上げ速度に自ずから上限がある。この引き上
げ速度の上限値はシリコン単結晶装置の構成により異な
るが、発明者らが検討したところ、特開平1−153589の
方法では直径6インチの結晶で引き上げ速度を1mm/min
以上にすると原料溶解部の温度低下により仕切り部材の
外側から凝固が発生することがわかった。従って、特開
平1−153589の方法では、結晶引き上げ速度を1mm/min
以上に保持するためにはなんらかの手段が効じなければ
ならない。
[Problems to be Solved by the Invention] According to the method of Japanese Patent Application Laid-Open No. 1-153589, an amount of raw material silicon is supplied in an amount corresponding to the amount of silicon single crystal pulled,
In addition, the occurrence of solidification can be prevented. However, when the crystal pulling speed is increased to improve the productivity, the supply amount of the raw material silicon must be increased accordingly. Since the temperature of the raw material melting section decreases as the raw material silicon supply amount increases, the method of growing the silicon single crystal while supplying the raw material in an amount corresponding to the pulling amount of the silicon single crystal has an upper limit naturally in the pulling speed. . Although the upper limit of the pulling speed varies depending on the configuration of the silicon single crystal apparatus, the inventors have studied and found that in the method of JP-A-1-153589, the pulling speed was 1 mm / min for a crystal having a diameter of 6 inches.
As described above, it was found that solidification occurs from the outside of the partition member due to a decrease in the temperature of the raw material melting section. Therefore, in the method of JP-A-1-153589, the crystal pulling speed is 1 mm / min.
In order to maintain the above, some means must work.

この発明は係る事情に鑑みてなされたものであり、連
続的にシリコン単結晶の引き上げ量に見合う量の原料シ
リコンを供給するシリコン単結晶製造装置において、従
来の装置に比べ、仕切り部材からの凝固発生を防止し、
結晶引き上げ速度の上限値を向上させることを目的とす
る。
The present invention has been made in view of the above circumstances, and in a silicon single crystal manufacturing apparatus that continuously supplies an amount of raw material silicon corresponding to the amount of silicon single crystal pulled up, solidification from a partition member compared to a conventional apparatus. Prevent occurrence,
It is intended to improve the upper limit of the crystal pulling speed.

[課題を解決するための手段] 本発明に係るシリコン単結晶製造装置は、シリコン溶
融液を内蔵する自転型石英るつぼと、前記石英るつぼを
支持する黒鉛製るつぼと、前記黒鉛製るつぼを側面から
加熱する電気抵抗加熱体と、前記石英るつぼ内でシリコ
ン溶融液を単結晶育成部と原料溶解部とに分割しかつシ
リコン溶融液が流通できる小孔を有する石英製るつぼ部
材と、前記仕切り部材と前記原料溶解部を覆う保温カバ
ーと、前記原料溶解部に原料シリコンを連続的に供給す
る原料供給装置と、を有するシリコン単結晶製造装置に
おいて、前記黒鉛製るつぼの円筒部分のシリコン溶融液
面上方50mmに相当する位置より、シリコン溶融液面下方
20mmに相当する位置までの範囲に、複数個以上の開口部
を設けることを特徴とする。
[Means for Solving the Problems] A silicon single crystal manufacturing apparatus according to the present invention includes a rotating quartz crucible containing a silicon melt, a graphite crucible supporting the quartz crucible, and a side view of the graphite crucible. An electric resistance heating body to be heated, a quartz crucible member having a small hole through which a silicon melt is divided into a single crystal growing section and a raw material melting section in the quartz crucible and a silicon melt can flow, and the partition member; In a silicon single crystal manufacturing apparatus having a heat retaining cover for covering the raw material melting section and a raw material supply apparatus for continuously supplying raw silicon to the raw material melting section, a silicon molten liquid level above a cylindrical portion of the graphite crucible is provided. From the position corresponding to 50 mm below the silicon melt surface
A plurality of openings are provided in a range up to a position corresponding to 20 mm.

[作用] 原料シリコンの供給量を多くした時、仕切り部材の外
側、即ち原料溶解部で凝固発生が起こるのは、シリコン
溶融液のるつぼ半径方向の温度勾配が小さくなっている
ためである。これはシリコン溶融液の側方より入熱した
熱エネルギーが、供給された原料シリコンに奪われ、原
料溶解部の温度が下がることによる。
[Operation] When the supply amount of the raw material silicon is increased, the solidification occurs outside the partition member, that is, at the raw material melting portion, because the temperature gradient of the silicon melt in the crucible radial direction is small. This is because the heat energy input from the side of the silicon melt is taken by the supplied raw silicon, and the temperature of the raw material melting section is lowered.

シリコン単結晶の引き上げ速度は、シリコン溶融液内
の側部方向と下部方向から結晶凝固界面に到達する総熱
量がどれだけあるかにより決まる。従って、同じ引き上
げ速度の場合、シリコン溶融液内の側部方向からの入熱
の比率を大きくした方が、即ち、るつぼ半径方向の温度
勾配が大きくなるようにした方が、仕切り部材からの凝
固は起こりにくい。本発明に係るシリコン単結晶の製造
装置では、シリコン溶融液面付近に相当する部分の黒鉛
るつぼに、複数個以上の開口部を設けているので、シリ
コン溶融液に対して電気抵抗加熱体からの直接入熱がお
こなわれ、側部入熱の比率が大きくなる。このため従来
の装置に比べて、仕切り部材からの凝固が起こりにく
く、結晶引き上げ速度を速くすることができる。
The pulling speed of the silicon single crystal is determined by the total amount of heat reaching the crystal solidification interface from the lateral direction and the lower direction in the silicon melt. Therefore, in the case of the same lifting speed, it is better to increase the ratio of the heat input from the side direction in the silicon melt, that is, to increase the temperature gradient in the crucible radial direction, so that the solidification from the partition member Is unlikely to occur. In the apparatus for manufacturing a silicon single crystal according to the present invention, the graphite crucible in a portion corresponding to the vicinity of the silicon melt surface is provided with a plurality of openings or more. Direct heat input occurs, increasing the percentage of side heat input. Therefore, solidification from the partition member is less likely to occur than in the conventional apparatus, and the crystal pulling speed can be increased.

黒鉛るつぼに開口部がない場合よりも、原料溶解部に
対する入熱効率を上げることのできる開口部の上下方向
の範囲を調べるため、高さ方向の幅10mmの狭い幅の開口
部をシリコン溶融液面に対して様々な位置に配置し、シ
リコン単結晶の育成実験を行った。第3図から明らかな
ように、仕切り部材からの凝固を防止しつつ引き上げる
ことのできる最大引き上げ速度は、シリコン溶融液面下
方20mmより下では開口がない場合よりも小さくなる。こ
れは開口部がシリコン溶融液面に対して下方位置になる
に従って、シリコン溶融液に対する電気抵抗加熱体から
の入熱が側方入熱傾向から下方入熱傾向となるためであ
る。即ち、るつぼ半径方向の温度勾配が小さくなり、仕
切り部材からの凝固が起こりやすくなる。また開口によ
る最大引き上げ速度の向上に体する寄与は、シリコン溶
融液面に相当する付近の開口部で最も大きく、シリコン
溶融液面上方50mmより上ではあまり効果のないことがわ
かった。
In order to examine the vertical range of the opening that can increase the heat input efficiency to the raw material melting part compared to the case where there is no opening in the graphite crucible, a narrow opening with a width of 10 mm in the height direction was set Were placed at various positions, and a silicon single crystal growing experiment was performed. As is apparent from FIG. 3, the maximum pulling speed that can be lifted while preventing solidification from the partition member is smaller than 20 mm below the silicon molten liquid level as compared with the case where there is no opening. This is because the heat input from the electric resistance heating body to the silicon melt changes from the side heat input trend to the downward heat input trend as the opening is positioned lower with respect to the silicon melt surface. That is, the temperature gradient in the crucible radial direction is reduced, and solidification from the partition member is likely to occur. It was also found that the opening contributed to the improvement of the maximum pulling speed at the opening near the surface of the silicon melt, and had little effect above 50 mm above the surface of the silicon melt.

[実施例] 本発明の実施例を図面を参照して説明する。Example An example of the present invention will be described with reference to the drawings.

第1図は本発明の実施例の直径6インチのシリコン単
結晶の製造装置を示す縦断面図で、第2図は本発明の実
施例の黒鉛製るつぼの複数個以上の開口部を示す斜視図
で、(a)は本発明の一実施例を示す図で、(b)は本
発明の他の一実施例である。1は直径20インチの石英る
つぼで、黒鉛るつぼ2の中にセットされている。黒鉛る
つぼ2の円筒部に複数の開口部22がある。この開口部22
はシリコン溶融液面より上方40mm以下、シリコン溶融液
面より下方5mm以上の範囲に相当する大きさである。即
ち直径45mmΦの開口部で、個数は20である。この開口部
22によりシリコン溶融液7に対して電気抵抗加熱体から
の直接入熱が行なわれ、るつぼ側方の入熱が大きくな
る。黒鉛るつぼ2はペディスタル4で支えられている。
ペディスタル4は炉外で電動モーターに結合されてお
り、黒鉛るつぼ2に回転運動(10rpm)を与える働きを
する。7はるつぼ1内に入れられたシリコン溶融液であ
る。これから柱状のシリコン単結晶5が回転(20rpm)
しながら1.2mm/minの速度で引き上げられる。3は黒鉛
るつぼを取り囲む電気抵抗加熱体である。
FIG. 1 is a longitudinal sectional view showing an apparatus for manufacturing a silicon single crystal having a diameter of 6 inches according to an embodiment of the present invention, and FIG. 2 is a perspective view showing a plurality of openings of a graphite crucible according to an embodiment of the present invention. In the drawings, (a) is a diagram showing one embodiment of the present invention, and (b) is another embodiment of the present invention. 1 is a quartz crucible having a diameter of 20 inches, which is set in a graphite crucible 2. The cylindrical portion of the graphite crucible 2 has a plurality of openings 22. This opening 22
Has a size corresponding to a range of 40 mm or less above the silicon melt surface and 5 mm or more below the silicon melt surface. That is, the number of the openings is 20 at an opening having a diameter of 45 mmΦ. This opening
22 directly inputs heat from the electric resistance heating body to the silicon melt 7, and the heat input to the side of the crucible increases. The graphite crucible 2 is supported by a pedestal 4.
The pedestal 4 is connected to an electric motor outside the furnace, and serves to impart a rotational movement (10 rpm) to the graphite crucible 2. Reference numeral 7 denotes a silicon melt placed in the crucible 1. From now on, the columnar silicon single crystal 5 rotates (20 rpm)
While being pulled up at a speed of 1.2 mm / min. Reference numeral 3 denotes an electric resistance heating body surrounding the graphite crucible.

雰囲気ガスは引き上げチャンバー内20から炉内に導入
され最終的に炉底の排出口19から減圧装置(図示せず)
により排出される。
Atmospheric gas is introduced into the furnace from the lifting chamber 20 and finally decompressed by a discharge port 19 at the furnace bottom (not shown).
Is discharged by

炉内(チャンバー上蓋16、およびチャンバー胴17内)
の圧力は0.01−0.03気圧である。以上は通常のCZ法によ
るシリコン単結晶の製造装置と同じである。
Inside the furnace (inside the chamber top lid 16 and chamber body 17)
Is 0.01-0.03 atm. The above is the same as that of an apparatus for manufacturing a silicon single crystal by a normal CZ method.

8はるつぼ1内にこれと同心円に配置された高純度気
泡入り石英ガラスからなる仕切り部材である。その直径
は35cmである。この仕切り部材8には小孔10が開けられ
ており、原料溶解部のシリコン溶融液はこの小孔10を通
って単結晶育成部に流入する。この仕切り部材の下縁部
はるつぼ1とあらかじめ融着されているか、又は、原料
シリコンを溶解する際の熱により融着している。14は原
料供給装置で、原料溶解部の上部に開口を持っており、
粒状の原料シリコンはこの供給装置を通って原料溶解部
に供給される。供給割合は、シリコン結晶化量と等しい
量、即ち約52g/minである。この原料供給装置14はチャ
ンバー上蓋16の外部に設けた原料供給チャンバー(図示
せず)に連結されており、原料シリコンを連続的に供給
する。
Reference numeral 8 denotes a partition member made of quartz glass containing high-purity bubbles which is arranged concentrically in the crucible 1. Its diameter is 35cm. A small hole 10 is formed in the partition member 8, and the silicon melt in the raw material melting section flows into the single crystal growing section through the small hole 10. The lower edge of this partition member is fused to the crucible 1 in advance, or is fused by heat when melting the raw material silicon. 14 is a raw material supply device, which has an opening at the top of the raw material melting section,
Granular raw material silicon is supplied to the raw material melting section through this supply device. The supply rate is an amount equal to the silicon crystallization amount, that is, about 52 g / min. The raw material supply device 14 is connected to a raw material supply chamber (not shown) provided outside the chamber upper lid 16, and continuously supplies raw material silicon.

15は保温カバーであり、板厚0.2mmのタンタル板で構
成されている。これは仕切り部材8および原料溶解部か
らの熱の放散を抑制する。
Reference numeral 15 denotes a heat insulating cover, which is made of a tantalum plate having a thickness of 0.2 mm. This suppresses the dissipation of heat from the partition member 8 and the raw material melting section.

上記のように構成した本発明の一実施例であるシリコ
ン単結晶の製造装置において、シリコン単結晶の育成実
験を行なったところ、直径6インチのシリコン単結晶に
関し、黒鉛るつぼに開口部がない場合、仕切り部材から
の凝固のため引き上げ速度を1mm/min以上にできなかっ
たのに対して、黒鉛るつぼに開口部がある場合は仕切り
部材からの凝固を防止しでき、シリコン単結晶の引き上
げ速度を1.1〜1.3mm/minにすることができた。
In a silicon single crystal manufacturing apparatus according to an embodiment of the present invention configured as described above, a silicon single crystal growth experiment was performed. As for a silicon single crystal having a diameter of 6 inches, the graphite crucible had no opening. In contrast, when the graphite crucible has an opening, solidification from the partition member can be prevented, and the pulling speed of the silicon single crystal can be reduced, while the pulling speed cannot be increased to 1 mm / min or more due to solidification from the partition member. 1.1 to 1.3 mm / min.

また、第2図(b)本発明における別の実施例であ
る。この開口部22はシリコン溶融液面より上方40mm、シ
リコン溶融液面より下方5mmの範囲に相当する大きさで
ある。即ち、矩形45×200mmの開口部で、個数は6であ
る。この実施例においても、第2図(a)の場合と同様
の効果が得られた。
FIG. 2 (b) shows another embodiment of the present invention. The opening 22 has a size corresponding to a range of 40 mm above the silicon melt surface and 5 mm below the silicon melt surface. That is, the number of the openings is 6 in a rectangular 45 × 200 mm opening. Also in this embodiment, the same effect as in the case of FIG. 2A was obtained.

「発明の効果] 本発明は以上のように構成したので、シリコン単結晶
の引き上げ量に見合う量の原料シリコンを連続的にを供
給し、なおかつ凝固の発生を防止し、直径6インチのシ
リコン単結晶を引き上げ速度1.1mm/min以上の高速引き
上げができるようになった。本発明は生産性の向上、シ
リコン単結晶の育成条件の広範囲化による結晶品質特性
の多様化など効果大である。
[Effects of the Invention] Since the present invention is configured as described above, an amount of raw silicon corresponding to the amount of silicon single crystal pulled is continuously supplied, solidification is prevented from occurring, and a silicon single crystal having a diameter of 6 inches is prevented. The present invention has enabled high-speed pulling of a crystal at a pulling speed of 1.1 mm / min or more, and the present invention has great effects such as improvement of productivity and diversification of crystal quality characteristics by widening growing conditions of silicon single crystal.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明のシリコン単結晶の製造装置を示す断面
図、第2図は本発明の黒鉛るつぼの斜視図で、(a)は
一実施例の斜視図、(b)は別の実施例の斜視図、第3
図は本発明の実験例で、シリコン溶融液面からの上方位
置とシリコン単結晶の引き上げ速度を示すグラフ図であ
る。 1……石英るつぼ、2……黒鉛るつぼ、3……電気抵抗
加熱体、4……ペディスタル、5……シリコン単結晶、
7……シリコン溶融液、8……仕切り部材、10……小
孔、14……シリコン供給装置、15……保温カバー、16…
…チャンバー上蓋、17……チャンバー胴、19……排出
口、20……引き上げチャンバー内、22……黒鉛るつぼの
開口部。
FIG. 1 is a cross-sectional view showing a silicon single crystal manufacturing apparatus of the present invention, FIG. 2 is a perspective view of a graphite crucible of the present invention, (a) is a perspective view of one embodiment, and (b) is another embodiment. Example perspective view, third
The figure is a graph showing the position above the silicon melt surface and the pulling speed of the silicon single crystal in an experimental example of the present invention. 1 ... quartz crucible, 2 ... graphite crucible, 3 ... electric resistance heater, 4 ... pedistal, 5 ... silicon single crystal,
7: Silicon melt, 8: Partition member, 10: Small hole, 14: Silicon supply device, 15: Heat insulating cover, 16 ...
... chamber lid, 17 ... chamber body, 19 ... outlet, 20 ... pulling-up chamber, 22 ... opening of graphite crucible.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】十分な深さのシリコン溶融液を内蔵する自
転型石英るつぼと、該石英るつぼを支持する黒鉛製るつ
ぼと、該黒鉛製るつぼを側面から加熱する電気抵抗加熱
体と、前記石英るつぼ内でシリコン溶融液を単結晶育成
部と原料溶解部とに分割し、且つシリコン溶融液が流通
できる小孔を有する石英製仕切り部材と、該仕切り部材
と前記原料溶解部を覆う保温カバーと、前記原料溶解部
にシリコン溶融液表面が一定のレベルを保つように原料
を連続的に供給する原料供給装置とを有する直径6″以
上のシリコン単結晶を引き上げるためのシリコン単結晶
製造装置において、 シリコン引き上げ速度を1.1〜1.3m/minにするために、
前記黒鉛製るつぼの円筒部分のシリコン溶融液面上方50
mmに相当する位置からシリコン溶融液面下方20mmに相当
する位置にわたった開口部を円周方向に複数個設けるこ
とを特徴とするシリコン単結晶製造装置。
1. A rotating quartz crucible containing a silicon melt having a sufficient depth, a graphite crucible supporting the quartz crucible, an electric resistance heater for heating the graphite crucible from a side, and the quartz In the crucible, the silicon melt is divided into a single crystal growing section and a raw material melting section, and a quartz partition member having small holes through which the silicon melt can flow, a heat insulating cover covering the partition member and the raw material melting section, A silicon single crystal manufacturing apparatus for pulling a silicon single crystal having a diameter of 6 ″ or more, comprising: a raw material supply device that continuously supplies a raw material such that the surface of the silicon molten liquid is maintained at a constant level in the raw material melting section In order to raise the silicon pulling speed to 1.1-1.3m / min,
50 above the silicon melt surface of the cylindrical part of the graphite crucible
An apparatus for producing a silicon single crystal, characterized by providing a plurality of openings in a circumferential direction from a position corresponding to mm to a position corresponding to 20 mm below the silicon melt surface.
JP2114520A 1990-04-27 1990-04-27 Silicon single crystal manufacturing equipment Expired - Fee Related JP2633057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2114520A JP2633057B2 (en) 1990-04-27 1990-04-27 Silicon single crystal manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2114520A JP2633057B2 (en) 1990-04-27 1990-04-27 Silicon single crystal manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH0412085A JPH0412085A (en) 1992-01-16
JP2633057B2 true JP2633057B2 (en) 1997-07-23

Family

ID=14639808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2114520A Expired - Fee Related JP2633057B2 (en) 1990-04-27 1990-04-27 Silicon single crystal manufacturing equipment

Country Status (1)

Country Link
JP (1) JP2633057B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102277615A (en) * 2011-09-05 2011-12-14 镇江大成新能源有限公司 Crucible capable of making melt concentration uniform
WO2014030866A1 (en) * 2012-08-20 2014-02-27 주식회사 엘지실트론 Single crystal growing device, and raw material supplying device and raw material supplying method applied to same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106591945B (en) * 2016-11-30 2019-03-19 安徽电气集团股份有限公司 A kind of polysilicon throws method again

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018637B2 (en) * 1982-12-23 1985-05-11 工業技術院長 Method for manufacturing compound semiconductor single crystal
JPS6418987A (en) * 1987-07-14 1989-01-23 Sony Corp Single crystal growth unit
JPH0633218B2 (en) * 1987-12-08 1994-05-02 日本鋼管株式会社 Silicon single crystal manufacturing equipment
JPH01106575U (en) * 1988-01-12 1989-07-18

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102277615A (en) * 2011-09-05 2011-12-14 镇江大成新能源有限公司 Crucible capable of making melt concentration uniform
WO2014030866A1 (en) * 2012-08-20 2014-02-27 주식회사 엘지실트론 Single crystal growing device, and raw material supplying device and raw material supplying method applied to same

Also Published As

Publication number Publication date
JPH0412085A (en) 1992-01-16

Similar Documents

Publication Publication Date Title
KR100415860B1 (en) Single Crystal Manufacturing Equipment and Manufacturing Method
CA1261715A (en) Apparatus and process for growing monocrystals of semiconductor materials from shallow crucibles by czochralski technique
KR930003044B1 (en) Method and apparatus for manufacturing silicon single crystal
JPH01153589A (en) Pulling of single crystal and apparatus therefor
JPH02133389A (en) Production device of silicon single crystal
JP2585123B2 (en) Method for producing silicon single crystal
KR930005408B1 (en) Apparatus for manufacturing silicon single crystals
JPH1029894A (en) Method for regulating specific resistance of single crystal silicon and apparatus for producing single crystal silicon
JP2633057B2 (en) Silicon single crystal manufacturing equipment
JPH0825833B2 (en) Method for producing silicon single crystal
JP2709310B2 (en) Single crystal pulling device
JP2670548B2 (en) Silicon single crystal manufacturing equipment
JPS6168389A (en) Apparatus for growing single crystal
KR960006262B1 (en) Apparatus for making silicon single crystal
JP2681115B2 (en) Single crystal manufacturing method
JPH09202686A (en) Apparatus for producing single crystal and production of single crystal
JPS6046073B2 (en) Manufacturing method of semiconductor single crystal
KR20190088653A (en) Method and apparatus for silicon single crystal growth
JPH04305087A (en) Method and device for producing single crystal
JP6658421B2 (en) Method for producing silicon single crystal
JP2001240485A (en) Single crystal pulling-up method and single crystal pulling-up equipment
JPH046195A (en) Production apparatus for silicon single crystal
JP2001019592A (en) Device for pulling single crystal
JPH0656571A (en) Method for controlling oxygen concentration of single crystal at pulling up of single crystal and apparatus for growing single crystal used in this method
JPH09183692A (en) Apparatus for producing silicon single crystal and method therefor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees