JPH0412085A - Apparatus for producting silicon single crystal - Google Patents

Apparatus for producting silicon single crystal

Info

Publication number
JPH0412085A
JPH0412085A JP11452090A JP11452090A JPH0412085A JP H0412085 A JPH0412085 A JP H0412085A JP 11452090 A JP11452090 A JP 11452090A JP 11452090 A JP11452090 A JP 11452090A JP H0412085 A JPH0412085 A JP H0412085A
Authority
JP
Japan
Prior art keywords
single crystal
silicon
raw material
crucible
silicon single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11452090A
Other languages
Japanese (ja)
Other versions
JP2633057B2 (en
Inventor
Yasumitsu Nakahama
中濱 泰光
Kenji Araki
健治 荒木
Makoto Suzuki
真 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2114520A priority Critical patent/JP2633057B2/en
Publication of JPH0412085A publication Critical patent/JPH0412085A/en
Application granted granted Critical
Publication of JP2633057B2 publication Critical patent/JP2633057B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve the productivity of silicon single crystal by making a plurality of holes in the cylindrical part of a graphite crucible at positions within a specific range above and below the liquid level of molten Si. CONSTITUTION:An Si raw material is continuously supplied from a raw material feeding apparatus 14 to a quartz crucible 1 placed in a graphite crucible 2 supported by a rotating pedestal 4. A partition member 8 made of quartz glass is concentrically placed in the quartz crucible 1 and molten Si melted in a raw material melting part is supplied to a single crystal growing part through a small hole 10 opened at the lower part of the partition member. Heat is directly supplied from an electric resistance heater 3 to the molten Si 7 through plural holes 22 opened in the cylindrical part of the graphite crucible 2 within a range between 50mm above the molten Si level and 20mm below the molten Si level to prevent the solidification of the molten Si from the part contacting with the partition member 8. An Si single crystal 5 is pulled up at a prescribed rate.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、チョクラルスキー法による大直径シリコン単
結晶の製造装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an apparatus for producing large diameter silicon single crystals using the Czochralski method.

[従来の技術] LSI分野ではシリコン単結晶に要求される直径は年々
大きくなっている。今日、最新鋭デバイスでは直径6イ
ンチのシリコン単結晶が使われている。将来直径10イ
ンチあるいはそれ以上の直径のシリコン単結晶、例えば
直径12インチのシリコン単結晶が必要になるといわれ
ている。
[Prior Art] In the LSI field, the diameter required for silicon single crystals is increasing year by year. Today, cutting-edge devices use silicon single crystals that are 6 inches in diameter. It is said that silicon single crystals with a diameter of 10 inches or more, for example, silicon single crystals with a diameter of 12 inches, will be needed in the future.

チョクラルスキー法(CZ法)によるシリコン単結晶の
製造方法には2通りの方法がある。るつぼを回転させる
方法と回転させない方法である。
There are two methods for manufacturing silicon single crystals using the Czochralski method (CZ method). There are two methods: rotating the crucible and not rotating it.

今日ではLSI用に用いられる全てのシリコン単結晶は
、るつぼの回転とシリコン単結晶の回転とを互いに逆方
向に回転させ、かつ、るつぼの側面を取り囲む電気抵抗
加熱体によりるつぼを加熱することにより製造されてい
る。多くの試みにも関わらず、るつぼを回転させない方
法、あるいは上記以外の加熱方法(電気抵抗加熱体)で
直径5インチ以上のシリコン単結晶が今までに作られた
ことはないし、今後とも作られることはない。この理由
は、るつぼの回転なしでは、あるいは電磁誘導加熱やる
つぼの底面からの電気抵抗加熱等の上記以外の加熱方法
では、シリコン単結晶の成長するに対して同心円状の温
度分布完全が得られないからである。シリコン単結晶の
成長は温度に関してきわめて敏感なのである。
Today, all silicon single crystals used for LSI are produced by rotating the crucible and the silicon single crystal in opposite directions, and by heating the crucible with an electric resistance heating element surrounding the sides of the crucible. Manufactured. Despite many attempts, silicon single crystals with a diameter of more than 5 inches have never been made, and will never be made, by a method that does not rotate the crucible or by a heating method other than the above (electrical resistance heating). Never. The reason for this is that without rotation of the crucible, or with heating methods other than those mentioned above, such as electromagnetic induction heating or electrical resistance heating from the bottom of the crucible, a complete concentric temperature distribution cannot be obtained for the growing silicon single crystal. That's because there isn't. The growth of silicon single crystals is extremely sensitive to temperature.

るつぼが回転するCZ法(以下通常のCZ法という)で
は、るつぼ回転と電気抵抗側面加熱によりシリコン溶融
液に強い対流が発生し、シリコン溶融液が良く攪拌され
る。この結果直径5インチ以上の大直径シリコン単結晶
の育成は望ましい。
In the CZ method in which the crucible rotates (hereinafter referred to as the normal CZ method), strong convection is generated in the silicon melt due to the crucible rotation and electric resistance side heating, and the silicon melt is well stirred. As a result, it is desirable to grow large diameter silicon single crystals with a diameter of 5 inches or more.

即ち均一なそしてシリコン単結晶に対して完全に同心円
状の溶融液表面温度分布が得られる。
That is, a uniform and completely concentric melt surface temperature distribution with respect to the silicon single crystal is obtained.

上記のように、通常のCZ法と他のC7法ではシリコン
溶融液の流れに大きな違いがある。この違いは結果とし
てシリコン単結晶の成長条件の大きな違いとなる。又、
炉内部品(例えばホットゾーン、るつぼ、仕切り部材等
)の作用も両者では大きく異なる。シリコン単結晶育成
に対する考え方が両者では全く異なるのである。
As mentioned above, there is a big difference in the flow of silicon melt between the normal CZ method and other C7 methods. This difference results in a major difference in the growth conditions for silicon single crystals. or,
The functions of the furnace parts (for example, hot zone, crucible, partition members, etc.) are also significantly different between the two. The two approaches to silicon single crystal growth are completely different.

通常のC2法ではシリコン単結晶の成長とともにるつぼ
内のシリコン溶融液が減少する。そしてシリコン単結晶
の成長とともにシリコン単結晶中のドーパント濃度が上
昇し、酸素濃度が低下する。即ちシリコン単結晶の性質
がその成長方向に変動する。LSIの高密度化にともな
いシリコン単結晶に要求される品質が年々きびしくなっ
て°きている。
In the normal C2 method, the amount of silicon melt in the crucible decreases as the silicon single crystal grows. As the silicon single crystal grows, the dopant concentration in the silicon single crystal increases and the oxygen concentration decreases. That is, the properties of the silicon single crystal vary in the direction of its growth. As the density of LSI increases, the quality required of silicon single crystals becomes stricter year by year.

この問題を解決する手段として、通常のC2法の石英る
つぼ内のシリコン溶融液を小孔を有する円筒状の石英製
仕切り部材で仕切り、この仕切り部材の外側に原料シリ
コンを供給しながら、仕切り部材の内側で円柱状のシリ
コン単結晶を育成する方法が知られている(例えば、特
許公報 昭40−10184 PI L20−L35 
) 。
As a means to solve this problem, the silicon melt in the quartz crucible of the ordinary C2 method is partitioned by a cylindrical quartz partition member having small holes, and while raw silicon is supplied to the outside of this partition member, A method of growing a cylindrical silicon single crystal inside the is known (for example, Patent Publication No. 40-10184 PI L20-L35).
).

この方法の大きな問題点は特開昭62−241889号
公報(P2 L12−L16)にも指摘されている通り
、仕切り部材の内側で仕切り部材を起点としてシリコン
溶融液の凝固が発生しやすい、この原因は次の通りであ
る1石英製である仕切り部材は光ファイバーに使われて
いることからも明らかなように、輻射により熱をよく伝
達する。即ちシリコン溶融液中の熱は光として仕切り部
材中を上方に伝達し、仕切り部材のシリコン溶融液面上
に露出している部分より放散される。従って仕切り部材
近傍ではシリコン溶融液温度が大きく低下している6更
に、通常のCZ法では、シリコン溶融液の強い攪拌によ
りシリコン溶融液の表面温度は均一でしかも凝固温度の
直上である。この二つのことが重なり仕切り部材に接触
しているシリコン溶融液表面は非常に凝固しやすい状態
になっている。特開昭62−241889号公報はこの
問題を避けるため、仕切り部材を使用しない方法を提案
したものである。しかしこの方法はNFl溶解部が狭い
なめ、原料溶解能力が極めて小さく、シリコン単結晶の
弓き」二げ量に見合う量の原料シリコンを供給すること
ができない。
A major problem with this method is that, as pointed out in JP-A No. 62-241889 (P2 L12-L16), the molten silicon tends to solidify inside the partition member starting from the partition member. The causes are as follows: 1. As is clear from the fact that quartz partition members are used in optical fibers, heat is transferred well through radiation. That is, the heat in the silicon melt is transmitted upward through the partition member as light, and is radiated from the portion of the partition member exposed above the surface of the silicon melt. Therefore, the temperature of the silicon melt is greatly reduced in the vicinity of the partition member6.Furthermore, in the normal CZ method, the surface temperature of the silicon melt is uniform due to strong stirring of the silicon melt, and is just above the solidification temperature. As a result of these two factors, the surface of the silicon melt that is in contact with the partition member is in a state where it is very easy to solidify. In order to avoid this problem, Japanese Patent Laid-Open No. 62-241889 proposes a method that does not use partition members. However, in this method, the NFl melting zone is narrow, so the raw material melting capacity is extremely small, and it is not possible to supply raw material silicon in an amount corresponding to the bowing amount of the silicon single crystal.

シリコン単結晶の引き上げ量に見合う量の原料シリコン
を供給可能にするため、仕切り部材を用い、かつそれか
らの凝固の発生を防止する方法を提案したものとして特
開平1−153589号公報がある。この特許は仕切り
部材を熱遮蔽部材で完全に覆うことを提案している。こ
の方法により仕切り部材からの熱の放散は防止できる。
Japanese Patent Laid-Open No. 1-153589 proposes a method that uses a partition member and prevents solidification in order to supply raw silicon in an amount commensurate with the amount of silicon single crystal pulled. This patent proposes to completely cover the partition member with a heat shielding member. This method can prevent heat from dissipating from the partition member.

従ってシリコン単結晶の引き上げ量に見合う量の原料シ
リコンを供給し、なおかつ凝固の発生を防止している。
Therefore, raw material silicon is supplied in an amount commensurate with the amount of silicon single crystal pulled, and at the same time, solidification is prevented.

[発明が解決しようとする課M] 特開平1−153589号公報の方法によれば、シリコ
ン単結晶の引き上げ量に見合う量の原料シリコンを供給
し、なおかつ凝固の発生を防止できる。しかし生産性の
向上のため結晶引き上げ速度を速くすると、それにとも
なって原料シリコン供給量も多くしなければならない、
原料シリコン供給量を大きくすればするほど原料溶解部
の温度は下がるので、シリコン単結晶の引き上げ量に見
合う量の原料を供給しながらシリコン単結、晶を育成す
る方法では、引き上げ速度に自ずから上限がある。この
引き上げ速度の上限値はシリコン単結晶装置の構成によ
り異なるが、発明者らが検討したところ、特開平1.−
153!589の方法では直径6インチの結晶で引き上
げ速度を1mm/sin以上にすると原料溶解部の温度
低下により仕切り部材の外側がら凝固が発生することが
わかった。従って特開平1−153589の方法では、
結晶引き上げ速度を11a/sin以上に保持するため
にはなんらかの手段が効じなければならない。
[Problem M to be Solved by the Invention] According to the method disclosed in Japanese Unexamined Patent Application Publication No. 1-153589, raw material silicon can be supplied in an amount commensurate with the amount of silicon single crystal pulled, and at the same time, solidification can be prevented. However, if the crystal pulling speed is increased to improve productivity, the amount of raw silicon supplied must also be increased.
The larger the amount of raw material silicon supplied, the lower the temperature of the raw material melting zone, so in the method of growing silicon single crystals and crystals while supplying the amount of raw material commensurate with the amount of silicon single crystal pulled, the pulling rate naturally has an upper limit. There is. The upper limit of this pulling rate differs depending on the configuration of the silicon single crystal device, but the inventors have investigated it and found that it is as described in Japanese Unexamined Patent Application Publication No. 1999. −
In the method of No. 153!589, it was found that when the pulling speed was set to 1 mm/sin or more for a crystal with a diameter of 6 inches, solidification occurred from the outside of the partition member due to the temperature drop in the raw material melting zone. Therefore, in the method of JP-A-1-153589,
Some means must be effective in order to maintain the crystal pulling rate at 11a/sin or higher.

この発明は係る事情に鑑みてなされたものであり、連続
的にシリコン単結晶の引き上げ量に見合う量の原料シリ
コンを供給するシリコン単結晶製造装置において、従来
の装置に比べ、仕切り部材からの凝固発生を防止し、結
晶引き上げ速度の上限値を向上させることを目的とする
This invention has been made in view of the above circumstances, and in a silicon single crystal production apparatus that continuously supplies raw silicon in an amount corresponding to the amount of silicon single crystal pulled, it is possible to reduce the amount of solidification from the partition member compared to conventional equipment. The purpose is to prevent this occurrence and improve the upper limit of the crystal pulling rate.

[課題を解決するための手段] 本発明に係るシリコン単結晶製造装置は、シリコン溶融
液を内蔵する自転型石英るつぼと、前記石英るつぼを支
持する黒鉛製るつぼと、前記黒鉛製るつぼを側面から加
熱する電気抵抗加熱体と、前記石英るつぼ内でシリコン
溶融液を単結晶育成部と原料溶解部とに分割しかつシリ
コン溶融液が流通できる小孔を有する石英製るつぼ部材
と、前記仕切り部材と前記原料溶解部を覆う保温カバー
と、前記原料溶解部に原料シリコンを連続的に供給する
原料供給装置と、を有するシリコン単結晶製造装置にお
いて、前記黒鉛製るつぼの円筒部分のシリコン溶融液面
上方50■■に相当する位置より、シリコン溶融液面下
方20mmに相当する位置までの範囲に、複数個以上の
開口部を設けることを特徴とする。
[Means for Solving the Problems] A silicon single crystal manufacturing apparatus according to the present invention includes a rotating quartz crucible containing a silicon melt, a graphite crucible that supports the quartz crucible, and a graphite crucible that can be opened from the side. an electric resistance heating element for heating; a quartz crucible member that divides the silicon melt into a single crystal growth section and a raw material melting section in the quartz crucible and has a small hole through which the silicon melt can flow; and the partition member; In the silicon single crystal manufacturing apparatus, which includes a heat insulating cover that covers the raw material melting section and a raw material supply device that continuously supplies raw silicon to the raw material melting section, above the surface of the silicon melt in the cylindrical portion of the graphite crucible. It is characterized in that a plurality or more openings are provided in a range from a position corresponding to 50 mm to a position corresponding to 20 mm below the surface of the silicon melt.

[作用] 原料シリコンの供給量を多くした時、仕切り部材の外側
、即ち原料溶解部で凝固発生が起こるのは、シリコン溶
融液のるつぼ半径方向の温度勾配が小さくなっているた
めである。これはシリコン溶融液の側方より火熱した熱
エネルギーが、供給された原料シリコンに奪われ、原料
溶解部の温度が下がることによる。
[Operation] When the supply amount of raw material silicon is increased, solidification occurs outside the partition member, that is, in the raw material melting part, because the temperature gradient of the silicon melt in the radial direction of the crucible is reduced. This is because the heat energy heated from the sides of the silicon melt is absorbed by the supplied raw material silicon, and the temperature of the raw material melting part decreases.

シリコン単結晶の引き上げ速度は、シリコン溶@液内の
側部方向と下部力・向から結晶凝固界面に到達する総熱
量がどれだけあるかにより決まる。
The pulling speed of a silicon single crystal is determined by the total amount of heat that reaches the crystal solidification interface from the side and lower forces in the silicon solution.

従って、同じ引き上げ速度の場合、シリコン溶融液内の
側部方向からの入熱の比率を大きくした方が、即ち、る
つぼ半径方向の温度勾配が大きくなるようにした方が、
仕切り部材からの凝固は起こりにくい0本発明に係るシ
リコン単結晶の製造装置では、シリコン溶融液面付近に
相当する部分の黒鉛るつぼに、複数個以上の開口部を設
けているので、シリコン溶融液に対して電気抵抗加熱体
がらの直接入熱がおこなわれ、側部入熱の比率が大きく
なる。このため従来の装置に比べて、仕切り部材からの
凝固が起こりに<<、結晶引き上げ速度を速くすること
ができる。
Therefore, for the same pulling speed, it is better to increase the ratio of heat input from the side in the silicon melt, that is, to increase the temperature gradient in the radial direction of the crucible.
Solidification from the partition member is unlikely to occur.In the silicon single crystal production apparatus according to the present invention, a plurality of openings are provided in the graphite crucible in the vicinity of the silicon melt surface, so that the silicon melt Direct heat input from the electric resistance heating element is performed against the heat source, and the ratio of side heat input increases. Therefore, compared to conventional devices, solidification from the partition member does not occur and the crystal pulling speed can be increased.

黒船るつぼに開口部がない場合よりも、原料溶解部に対
する火熱効率を上げることのできる開口部の上下方向の
範囲を調べるため、高さ方向の幅lO龍の狭い幅の開口
部をシリコン溶融液面に対して様々な位置に配置し、シ
リコン単結晶の育成実験を行った。第3図がら明らがな
ように、仕切り部材からの凝固を防止しつつ引き上げる
ことのできる最大引き上げ速度は、シリコン溶融1液面
下方20II11より下では開口がない場合よりも小さ
くなる。これは開口部がシリコン溶融液面に対して下方
位置になるに従って、シリコン溶融液に対する電気抵抗
加熱体からの入熱が側方入熱傾向がら下方入熱傾向とな
るためである。即ち、るつぼ半径方向の温度勾配が小さ
くなり、仕切り部材からの凝固が起こりやすくなる。ま
た開口による最大引き上げ速度の向上に対する寄与は 
シリコン溶融液面に相当する付近の開口部で最も大きく
、シリコン溶融液面上方50+u+より上ではあまり効
果のないことがわかった。
In order to investigate the vertical range of the opening that can increase the thermal efficiency for the raw material melting zone compared to the case where there is no opening in the Kurofune crucible, a narrow opening with a width of 1 in the height direction was used for melting silicon melt. We conducted experiments on growing silicon single crystals by placing them at various positions relative to the surface. As is clear from FIG. 3, the maximum pulling speed that can be pulled up while preventing solidification from the partition member is smaller below the molten silicon 1 liquid level 20II11 than in the case where there is no opening. This is because the heat input from the electrical resistance heating element to the silicon melt changes from a lateral heat input tendency to a downward heat input tendency as the opening becomes lower with respect to the silicon melt surface. That is, the temperature gradient in the radial direction of the crucible becomes smaller, making it easier for solidification to occur from the partition member. Also, the contribution of the opening to the improvement of the maximum pulling speed is
It was found that the effect is greatest at the opening near the silicon melt level, and is not very effective above 50+u+ above the silicon melt level.

[実施例] 本発明の実施例を図面を参照して説明する。[Example] Embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の実施例の直径6インチのシリコン単結
晶の製造装置を示す縦断面図で、第2図は本発明の実施
例の黒鉛製るつぼの複数個以上の開口部を示す斜視図で
、(a)は本発明の一実施例を示す図で、(b)は本発
明の他の一実施例でのる、1は直径20インチの石英る
つぼで、黒鉛るつぼ2の中にセットされている。黒鉛る
つぼ2の円筒部に複数の開口部22がある。この開口部
22はシリコン溶融液面より上方40龍以下、シリコン
溶融液面より下方5龍以上の範囲に相当する大きさであ
る。即ち直径45+amΦの開口部で、個数は20であ
る。この開口部22によりシリコン溶融液7に対して電
気抵抗加熱体からの直接入熱が行なわれ、るつぼ側方の
入熱が大きくなる。
FIG. 1 is a longitudinal cross-sectional view showing an apparatus for manufacturing a silicon single crystal with a diameter of 6 inches according to an embodiment of the present invention, and FIG. 2 is a perspective view showing a plurality of openings in a graphite crucible according to an embodiment of the present invention. In the figures, (a) is a diagram showing one embodiment of the present invention, and (b) is a diagram showing another embodiment of the present invention. 1 is a quartz crucible with a diameter of 20 inches, and a graphite crucible 2 is placed inside. It is set. There are a plurality of openings 22 in the cylindrical portion of the graphite crucible 2 . The opening 22 has a size corresponding to an area of 40 degrees or less above the silicon melt level and 5 degrees or more below the silicon melt level. That is, there are 20 openings with a diameter of 45+amΦ. This opening 22 allows direct heat input from the electric resistance heating element to the silicon melt 7, increasing the heat input to the sides of the crucible.

黒鉛るつぼ2はベデイスタル4で支えられている。ベデ
ィスタル4は炉外で電動モーターに結合されており、黒
鉛るつぼ2に回転運動(10rp■)を与える働きをす
る。7はるつぼ1内に入れられたシリコン溶融液である
。これから柱状のシリコン単結晶5が回転(20rp朧
)しながら1.2am/ginの速度で引き上げられる
。3は黒鉛るつぼを取り囲む電気抵抗加熱体である。
The graphite crucible 2 is supported by a Bedestar 4. The bedstone 4 is connected to an electric motor outside the furnace, and serves to provide rotational motion (10 rpm) to the graphite crucible 2. 7 is a silicon melt placed in the crucible 1. Thereafter, the columnar silicon single crystal 5 is pulled up at a speed of 1.2 am/gin while rotating (20 rpm). 3 is an electric resistance heating element surrounding the graphite crucible.

雰囲気ガスは引き上げチャンバー内20から炉内に導入
され最終的に炉底の排出口1つから減圧装置(図示せず
)により排出される。
Atmospheric gas is introduced into the furnace from inside the pulling chamber 20 and finally exhausted from one exhaust port at the bottom of the furnace by a pressure reducing device (not shown).

炉内(チャンバー上116.およびチャンバー胴17内
)の圧力は0.01−0.03気圧である0以上は通常
のC2法によるシリコン単結晶の製造装置と同じである
The pressure inside the furnace (upper chamber 116 and inside the chamber body 17) is 0.01 to 0.03 atm, which is the same as in a silicon single crystal manufacturing apparatus using the ordinary C2 method.

8はるつぼ1内にこれと同心円に配置された高純度気泡
入り石英ガラスからなる仕切り部材である。その直径は
35C11である。この仕切り部材8には小孔10が開
けられており、原料溶解部のシリコン溶融液はこの小孔
10を通って単結晶育成部に流入する。この仕切り部材
の下縁部はるつぼ1とあらかじめ融着されているか、又
は、原料シリコンを溶解する際の熱により融着している
Reference numeral 8 denotes a partition member made of high-purity bubble-filled quartz glass that is arranged concentrically within the crucible 1. Its diameter is 35C11. A small hole 10 is formed in this partition member 8, and the silicon melt in the raw material melting section flows into the single crystal growth section through this small hole 10. The lower edge of this partition member is either fused to the crucible 1 in advance, or fused by the heat generated when the raw silicon is melted.

14は原料供給袋!で、原料溶解部の上部に開口を持っ
ており1粒状の原料シリコンはこの供給装置を通って原
料溶解部に供給される。供給割合は、シリコン結晶化量
と等しい量、即ち約52g/sinである。この原料供
給装置14はチャンバー上蓋16の外部に設けた原料供
給チャンバー(図示せず)に連結されており、原料シリ
コンを連続的に供給する。
14 is the raw material supply bag! There is an opening at the top of the raw material melting section, and a grain of raw silicon is supplied to the raw material melting section through this supply device. The supply rate is equal to the amount of silicon crystallized, ie, about 52 g/sin. This raw material supply device 14 is connected to a raw material supply chamber (not shown) provided outside the chamber upper lid 16, and continuously supplies raw material silicon.

15は保温カバーであり、板厚0.2mmのタンタル板
で構成されている。これは仕切り部材8および原料溶解
部からの熱の放散を抑制する。
Reference numeral 15 denotes a heat insulation cover, which is made of a tantalum plate with a thickness of 0.2 mm. This suppresses heat dissipation from the partition member 8 and the raw material melting section.

上記のように構成した本発明の一実施例であるシリコン
単結晶の製造装置において、シリコン単結晶の育成実験
を行なったところ、直径6インチのシリコン単結晶に関
し、黒鉛るつぼに開口部がない場合、仕切り部材からの
凝固のため引き上げ速度を1■■/■in以上にできな
かったのに対して、黒鉛るつぼに開口部がある場合は仕
切り部材からの凝固を防止しでき、シリコン単結晶の引
き上げ速度を1.1〜1.3mm/朧inにすることが
できた。
When a silicon single crystal growth experiment was conducted using the silicon single crystal production apparatus which is an embodiment of the present invention configured as described above, it was found that a silicon single crystal with a diameter of 6 inches had no opening in the graphite crucible. However, if the graphite crucible has an opening, solidification from the partition member can be prevented, and the pulling speed cannot be increased above 1 ■■/■in due to solidification from the partition member. The pulling speed could be set to 1.1 to 1.3 mm/in.

また、第2図(b)本発明における別の実施例である。Further, FIG. 2(b) shows another embodiment of the present invention.

この開口部22はシリコン溶融液面より上方4.0 a
m 、シリコン溶融液面より下方5 mmの範囲に相当
する大きさである。即ち、矩形45×200關の開口部
で、個数は6である。この実施例においても、第2図(
a)の場合と同様の効果が得られた。
This opening 22 is located 4.0 a above the silicon melt surface.
m, which corresponds to a range of 5 mm below the silicon melt surface. That is, the number of openings is 6, with a rectangular size of 45×200 dimensions. In this example as well, FIG.
The same effect as in case a) was obtained.

「発明の効果] 本発明は以上のように構成したので、シリコン単結晶の
引き上げ量に見合う量の原料シリコンを連続的にを供給
し、なおかつ凝固の発生を防止し、直径6インチのシリ
コン単結晶を引き上げ速度1.1+n/■1n以上の高
速引き上げができるようになった。本発明は生産性の向
上、シリコン単結晶の育成条件の広範囲化による結晶品
質特性の多様化など効果大である。
[Effects of the Invention] Since the present invention is constructed as described above, it is possible to continuously supply raw material silicon in an amount commensurate with the amount of silicon single crystal pulled, to prevent the occurrence of coagulation, and to obtain a silicon single crystal with a diameter of 6 inches. It is now possible to pull a crystal at a high speed of 1.1+n/■1n or more.The present invention has great effects such as improving productivity and diversifying crystal quality characteristics by widening the range of growth conditions for silicon single crystals. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のシリコン単結晶の製造装置を示す断面
図、第2図は本発明の黒鉛るつぼの斜視図で、(a)は
一実施例の斜視図、(b)は別の実施例の斜視図、第3
図は本発明の実験例で、シリコン溶融液面からの上方位
置とシリコン単結晶の引き上げ速度を示すグラフ図であ
る。 1・・・石英るつぼ、2・・・黒鉛るつぼ、3・・・電
気抵抗加熱体、4・・・ベディスタル、5・・・シリコ
ン単結晶、7・・・シリコン溶融液、8・・・仕切り部
材、10・・・小孔、14・・・シリコン供給袋!、1
5・・・保温カバー、16・・・チャンバー上蓋、17
・・チャンバー胴、19・・・排出口、20・・引き上
げチャンバー内、22・・・黒鉛るつぼの開口部。
FIG. 1 is a cross-sectional view showing a silicon single crystal manufacturing apparatus of the present invention, and FIG. 2 is a perspective view of a graphite crucible of the present invention, where (a) is a perspective view of one embodiment, and (b) is a perspective view of another embodiment. Example perspective view, 3rd
The figure is an experimental example of the present invention, and is a graph showing the position above the silicon melt surface and the pulling rate of the silicon single crystal. DESCRIPTION OF SYMBOLS 1... Quartz crucible, 2... Graphite crucible, 3... Electric resistance heating element, 4... Vedistal, 5... Silicon single crystal, 7... Silicon melt, 8... Partition Components, 10...Small hole, 14...Silicon supply bag! ,1
5...Heat insulation cover, 16...Chamber top lid, 17
...Chamber body, 19...Discharge port, 20...Inside of pulling chamber, 22...Opening of graphite crucible.

Claims (1)

【特許請求の範囲】[Claims]  シリコン溶融液を内蔵する自転型石英るつぼと、前記
石英るつぼを支持する黒鉛製るつぼと、前記黒鉛製るつ
ぼを側面から加熱する電気抵抗加熱体と、前記石英るつ
ぼ内でシリコン溶融液を単結晶育成部と原料溶解部とに
分割しかつシリコン溶融液が流通できる小孔を有する石
英製るつぼ部材と、前記仕切り部材と前記原料溶解部を
覆う保温カバーと、前記原料溶解部に原料シリコンを連
続的に供給する原料供給装置とを有するシリコン単結晶
製造装置において、前記黒鉛製るつぼの円筒部分のシリ
コン溶融液面上方50mmに相当する位置より、シリコ
ン溶融液面下方20mmに相当する位置までの範囲に、
複数個以上の開口部を設けることを特徴とするシリコン
単結晶の製造装置。
A rotating quartz crucible containing a silicon melt, a graphite crucible supporting the quartz crucible, an electric resistance heating element heating the graphite crucible from the side, and growing a single crystal of the silicon melt in the quartz crucible. a quartz crucible member that is divided into a part and a raw material melting part and has a small hole through which silicon melt can flow; a heat insulation cover that covers the partition member and the raw material melting part; In a silicon single crystal manufacturing apparatus having a raw material supply device for supplying raw materials to ,
A silicon single crystal manufacturing device characterized by providing a plurality or more openings.
JP2114520A 1990-04-27 1990-04-27 Silicon single crystal manufacturing equipment Expired - Fee Related JP2633057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2114520A JP2633057B2 (en) 1990-04-27 1990-04-27 Silicon single crystal manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2114520A JP2633057B2 (en) 1990-04-27 1990-04-27 Silicon single crystal manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH0412085A true JPH0412085A (en) 1992-01-16
JP2633057B2 JP2633057B2 (en) 1997-07-23

Family

ID=14639808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2114520A Expired - Fee Related JP2633057B2 (en) 1990-04-27 1990-04-27 Silicon single crystal manufacturing equipment

Country Status (1)

Country Link
JP (1) JP2633057B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106591945A (en) * 2016-11-30 2017-04-26 安徽电气集团股份有限公司 Polycrystalline silicon re-feeding method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102277615A (en) * 2011-09-05 2011-12-14 镇江大成新能源有限公司 Crucible capable of making melt concentration uniform
KR101389162B1 (en) * 2012-08-20 2014-04-25 주식회사 엘지실트론 Single crystal grower and apparatus and method for supplying raw material to it

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116194A (en) * 1982-12-23 1984-07-04 Agency Of Ind Science & Technol Manufacture of compound semiconductor single crystal
JPS6418987A (en) * 1987-07-14 1989-01-23 Sony Corp Single crystal growth unit
JPH01153589A (en) * 1987-12-08 1989-06-15 Nkk Corp Pulling of single crystal and apparatus therefor
JPH01106575U (en) * 1988-01-12 1989-07-18

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116194A (en) * 1982-12-23 1984-07-04 Agency Of Ind Science & Technol Manufacture of compound semiconductor single crystal
JPS6418987A (en) * 1987-07-14 1989-01-23 Sony Corp Single crystal growth unit
JPH01153589A (en) * 1987-12-08 1989-06-15 Nkk Corp Pulling of single crystal and apparatus therefor
JPH01106575U (en) * 1988-01-12 1989-07-18

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106591945A (en) * 2016-11-30 2017-04-26 安徽电气集团股份有限公司 Polycrystalline silicon re-feeding method
CN106591945B (en) * 2016-11-30 2019-03-19 安徽电气集团股份有限公司 A kind of polysilicon throws method again

Also Published As

Publication number Publication date
JP2633057B2 (en) 1997-07-23

Similar Documents

Publication Publication Date Title
SU1433420A3 (en) Cold crucible
KR100415860B1 (en) Single Crystal Manufacturing Equipment and Manufacturing Method
US3798007A (en) Method and apparatus for producing large diameter monocrystals
KR930003044B1 (en) Method and apparatus for manufacturing silicon single crystal
KR930005408B1 (en) Apparatus for manufacturing silicon single crystals
KR20110094025A (en) Upper heater for manufacturing single crystal, single crystal manufacturing apparatus and single crystal manufacturing method
US5047113A (en) Method for directional solidification of single crystals
JPH03295891A (en) Device for producing silicon single crystal
US5824152A (en) Semiconductor single-crystal pulling apparatus
KR101275382B1 (en) Single Crystal Cooling Apparatus and Single Crystal Grower including the same
JP2709310B2 (en) Single crystal pulling device
JPS6153187A (en) Device for growing single crystal
JPH0825833B2 (en) Method for producing silicon single crystal
JPH0412085A (en) Apparatus for producting silicon single crystal
JP2670548B2 (en) Silicon single crystal manufacturing equipment
WO2023051693A1 (en) Nitrogen dopant feeding apparatus and method, and system for manufacturing nitrogen-doped monocrystalline silicon rod
JPS6168389A (en) Apparatus for growing single crystal
KR960006262B1 (en) Apparatus for making silicon single crystal
WO2004024998A1 (en) Heater for crystal formation, apparatus for forming crystal and method for forming crystal
JP2681115B2 (en) Single crystal manufacturing method
JPH046195A (en) Production apparatus for silicon single crystal
JP3640940B2 (en) Semiconductor single crystal manufacturing equipment
KR20190088653A (en) Method and apparatus for silicon single crystal growth
JP2547352B2 (en) Silicon single crystal manufacturing equipment
JPH01317188A (en) Production of single crystal of semiconductor and device therefor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees