JPH01317188A - Production of single crystal of semiconductor and device therefor - Google Patents

Production of single crystal of semiconductor and device therefor

Info

Publication number
JPH01317188A
JPH01317188A JP14819388A JP14819388A JPH01317188A JP H01317188 A JPH01317188 A JP H01317188A JP 14819388 A JP14819388 A JP 14819388A JP 14819388 A JP14819388 A JP 14819388A JP H01317188 A JPH01317188 A JP H01317188A
Authority
JP
Japan
Prior art keywords
crucible
semiconductor
single crystal
melt
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14819388A
Other languages
Japanese (ja)
Inventor
Shigetoshi Horie
堀江 重豪
Makoto Suzuki
真 鈴木
Yasumitsu Nakahama
中浜 泰光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP14819388A priority Critical patent/JPH01317188A/en
Publication of JPH01317188A publication Critical patent/JPH01317188A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase growth rate of single crystal pulled up by covering upper parts from an outer crucible to the inside of an inner crucible with a heat insulating plate and maintaining temperature of liquid level of semiconductor melt in the outer crucible higher than that of liquid level of semiconductor melt in the inner crucible. CONSTITUTION:A double crucible 1 consisting of an outer crucible 2 and an inner crucible 3 having a flow hole 4 at the bottom is set in a graphite crucible 7 vertically removably and rotatably supported on a pedestal 8 and semiconductor lump blended with a donor or acceptor impurities is put in the crucible 1. Then a heat insulating plate 12 consisting of a disc flange 13 having a hole at the central part and a flannel-shaped part or cylindrical part 14 is arranged at the upper part of the crucible 1 in such a way that the cylindrical part 14 is set close to the upper part of inner wall of the crucible 3. Then the semiconductor lump is heated and melted by heaters 9 and 10, temperature of liquid level of semiconductor melt between the crucible 3 and the crucible 2 is maintained higher than that of liquid level of semiconductor melt 5 in the crucible 2 and single crystal 6 of semiconductor is pulled up by seed crystal 15.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、二重るつぼによる半導体単結晶の製造方法及
び装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for manufacturing a semiconductor single crystal using a double crucible.

[従来の技術] 周知のように、各種の半導体素子の製造には単結晶の半
導体材料を使用しているが、半導体素子の特性は結晶構
造に敏感であるため、半導体単結晶の製造にあたっては
結晶の完全性が最大の要件となっている。このようなこ
とから従来より各種の半導体単結晶の製造方法が提案さ
れており、中でもチョクラルスキー法は単結晶の成長が
容易であるため、広く利用されている。この方法は、通
常、減圧、常圧又は加圧下の不活性ガス雰囲気中で溶融
した半導体原料から種結晶の周囲に結晶を付着成長させ
ながら引上げるようにしたもので、シリコン、ゲルマニ
ウムなどの単結晶を製造する場合に用いられている。
[Prior Art] As is well known, single-crystal semiconductor materials are used to manufacture various semiconductor devices, but since the characteristics of semiconductor devices are sensitive to the crystal structure, it is difficult to manufacture semiconductor single crystals. Crystal integrity is the primary requirement. For this reason, various methods for manufacturing semiconductor single crystals have been proposed in the past, and among them, the Czochralski method is widely used because it allows easy growth of single crystals. In this method, crystals are grown around a seed crystal from a molten semiconductor raw material in an inert gas atmosphere under reduced pressure, normal pressure, or pressurized. It is used when manufacturing crystals.

このような半導体単結晶の製造にあたっては、所望の抵
抗率を得るために不純物の添加が行なわれているが、上
記のチョクラルスキー法においては、偏析により結晶成
長にしたがってるつぼ内に不純物が変化するため、これ
に伴なって成長方向の不純物の濃度分布も変化し、均一
な濃度分布をもつ大きな単結晶を得ることはできなかっ
た。このような問題を改善するため、例えば二重構造の
るつほを用いる半導体単結晶の製造方法が提案されてい
る。
In manufacturing such semiconductor single crystals, impurities are added to obtain the desired resistivity, but in the Czochralski method described above, impurities change in the crucible as the crystal grows due to segregation. Therefore, the concentration distribution of impurities in the growth direction changes accordingly, making it impossible to obtain a large single crystal with a uniform concentration distribution. In order to improve these problems, a method of manufacturing a semiconductor single crystal using, for example, a double-structured crystal has been proposed.

この方法は第6図に示すように、成長した半導体単結晶
6を引上げるにつれて、内側のるっぽ3の底部又は側壁
の下部に設けた流通孔4を介して、内側のるつぼ3と外
側のるっぽ2との間の融液(引上げられる単結晶6に取
り込まれる不純物濃度と同じ濃度の不純物を含んでいる
)か内側のるつぼ3内に一方的に流入するため、内側の
るつは3内の不純物濃度は、単結晶の成長にかかわらす
一定に保たれる。
As shown in FIG. 6, in this method, as the grown semiconductor single crystal 6 is pulled up, it is connected to the inner crucible 3 and the outer side through the communication hole 4 provided at the bottom of the inner crucible 3 or the lower part of the side wall. The melt (containing impurities with the same concentration as that taken into the single crystal 6 being pulled) flows unilaterally into the inner crucible 3. The impurity concentration within 3 is kept constant regardless of the growth of the single crystal.

このように、二重るつほを用いた半導体単結晶の製造方
法によれば、単結晶内の不純物濃度を均一化することが
てき、また内側のるっぽ3の存在により融液の熱対流が
低減されるので、均一な品質の単結晶6を得ることが可
能になる。さらに、例えばシリコン単結晶を製造する場
合は、単結晶の成長に伴なう原料融液の減少に対して、
内側のるつぼ3を内部の融液の深さが一定になるように
下降させながら単結晶の育成を行なうことにより、シリ
コン単結晶に取り込まれる酸素濃度を均一にすることが
できる。
In this way, according to the method of manufacturing a semiconductor single crystal using a double rutsuho, the impurity concentration within the single crystal can be made uniform, and the presence of the inner rutsuho 3 can reduce the heat of the melt. Since convection is reduced, it becomes possible to obtain a single crystal 6 of uniform quality. Furthermore, when manufacturing silicon single crystals, for example, in response to the decrease in raw material melt accompanying the growth of the single crystal,
By growing the single crystal while lowering the inner crucible 3 so that the depth of the internal melt remains constant, the oxygen concentration taken into the silicon single crystal can be made uniform.

[発明が解決しようとする課題] 上述のような二重構造のるつぼをチョクラルスキー法の
装置にそのまま適用すると、次のような問題があった。
[Problems to be Solved by the Invention] When the double-structure crucible as described above is directly applied to a Czochralski method apparatus, the following problems occur.

即ち、内側のるっぽ3の周壁が融液面より露出している
ため、内側のるっぽ3より輻射によって抜熱し、内側の
るっぽ3の近傍で融液温度が急激に低下している(第4
図参照)。そのため内側のるつぼ3の周壁からフリーズ
と呼ばれる異常凝固か発生し、単結晶の育成を阻害する
That is, since the peripheral wall of the inner Luppo 3 is exposed from the melt surface, heat is removed from the inner Luppor 3 by radiation, and the melt temperature drops rapidly near the inner Luppor 3. (4th
(see figure). Therefore, abnormal solidification called freezing occurs from the peripheral wall of the inner crucible 3, which inhibits the growth of single crystals.

また、フリーズの発生を防止するために外側のるつぼ2
の周壁から大きな熱量を投入すると、結晶育成を行なっ
ている内側のるっぽ3の中心部付近の融液温度も上昇し
、その結果、単結晶育成速度がきわめて遅くなり゛、生
産性の低下を招くばかりでなく、品質にも悪影響を与え
る。
In addition, to prevent freezing, the outer crucible 2
When a large amount of heat is input from the peripheral wall of the molten metal, the temperature of the melt near the center of the inner Ruppo 3, where crystal growth is performed, also rises, resulting in extremely slow single crystal growth rate and a decrease in productivity. This not only causes problems, but also has a negative impact on quality.

[発明の目的] 本発明は、上記の課題を解決するためになされたもので
、二重構造のるつぼを使用して半導体単結晶を製造する
場合において、フリーズが発生するおそれがなく、しか
も引上げ方向の品質が均一な半導体単結晶を製造するこ
とのできる方法及び装置を得ることを目的としたもので
ある。
[Purpose of the Invention] The present invention has been made to solve the above-mentioned problems, and there is no fear of freezing when producing a semiconductor single crystal using a double-structured crucible, and moreover, it can be pulled easily. The object of the present invention is to obtain a method and apparatus capable of manufacturing a semiconductor single crystal with uniform directional quality.

[課題を解決するための手段] 本発明は、外側のるつぼ内に下方に流通孔を有する内側
のるつぼが配設された二重構造のるつぼを有し、該るつ
ぼ内に入れられた半導体融液を引上げて半導体単結晶を
製造する方法において、前記外側のるつぼから少なくと
も内側のるつぼの内側までの上方を保温板で覆い、これ
により前記外側のるつぼと内側のるつぼの間の半導体融
液液面の温度を前記内側のるつぼ内の半導体融液液面の
温度より高温に保持して、前記内側のるつほから半導体
単結晶を引上げるようにした半導体単結晶の製造方法。
[Means for Solving the Problems] The present invention has a double-structured crucible in which an inner crucible having a downward flow hole is disposed within an outer crucible, and a semiconductor melt placed in the crucible. In a method for producing a semiconductor single crystal by pulling up a liquid, the upper part from the outer crucible to at least the inside of the inner crucible is covered with a heat insulating plate, whereby the semiconductor melt between the outer crucible and the inner crucible is A method for producing a semiconductor single crystal, wherein the semiconductor single crystal is pulled from the inner crucible while maintaining the temperature of the surface higher than the temperature of the surface of the semiconductor melt in the inner crucible.

及び、この方法を実施するための、 二重構造のるつぼの上方に外側のるつぼから少なくとも
内側のるつぼの内側までを覆う保温板を設けた半導体単
結晶の製造装置。並びに、二重構造のるつぼの下方に、
該二重構造のるつほの側方に設けたヒータとは独立して
制御されるヒータを設けた半導体単結晶の製造装置を提
供するものである。
and a semiconductor single crystal manufacturing apparatus for carrying out this method, which includes a heat insulating plate provided above a double-structured crucible to cover from the outer crucible to at least the inside of the inner crucible. In addition, below the double-structured crucible,
The present invention provides an apparatus for manufacturing a semiconductor single crystal, which is provided with a heater that is controlled independently of the heater provided on the side of the double-structured melting hole.

[作 用] 二重るつほの融液内に降ろした種結晶を徐々に引上げて
、半導体単結晶を育成する。このとき、保温板により内
側のるつぼの中心部はほぼ所定の温度に維持され、外側
になるにしたがって高温になる。したがって外側のるつ
ぼの周壁近傍は高温になっているのでフリーズが発生す
るおそれがない。単結晶の引上げに伴なって、内側のる
つほと外側のるつぼの間の融液が流通孔から僅かずつ流
入するため、内側のるつぼ内の融液量及び不純物濃度は
ほぼ一定に維持される。
[Operation] The seed crystal dropped into the melt of the double melt is gradually pulled up to grow a semiconductor single crystal. At this time, the center of the inner crucible is maintained at approximately a predetermined temperature by the heat insulating plate, and the temperature increases toward the outside. Therefore, since the vicinity of the peripheral wall of the outer crucible is at a high temperature, there is no risk of freezing. As the single crystal is pulled, the melt between the inner crucible and the outer crucible gradually flows in through the flow holes, so the amount of melt and impurity concentration in the inner crucible are maintained almost constant. Ru.

[発明の実施例コ 第1図は本発明実施例の要部を模式的に示した断面図で
ある。図において、1は外側のるつぼ2と内側のるつぼ
3とによって構成された二重構造のるつぼ(以下二重る
つぼという)で、ペデスタル8上に上下動及び回転可能
に支持された黒鉛るつは7内にセットされている。内側
のるつは3の下部(底部又は側壁の下部)には流通孔4
が設けられており、融液5がこの流通孔4を介して流動
できるようになっている。実施例では、外側のるつぼ2
の直径は50cm、内側のるつぼ3の直径は25amで
、流通孔4は2個所に設けられ、その直径は何れも5 
++uaであった。
Embodiment of the Invention FIG. 1 is a sectional view schematically showing the main parts of an embodiment of the invention. In the figure, 1 is a double-structure crucible (hereinafter referred to as a double crucible) composed of an outer crucible 2 and an inner crucible 3, and the graphite crucible is supported on a pedestal 8 so as to be able to move up and down and rotate. It is set within 7. There is a communication hole 4 at the bottom of the inner melting hole 3 (bottom or bottom of the side wall).
are provided so that the melt 5 can flow through the flow holes 4. In the example, the outer crucible 2
The diameter of the crucible 3 is 50 cm, the diameter of the inner crucible 3 is 25 am, and the communication holes 4 are provided in two places, both of which have a diameter of 50 cm.
It was ++ua.

9.10は黒鉛るつぼ7の外側に設置された例えば抵抗
発熱体の如きヒータで、それぞれ独立して制御しうるよ
うに構成されており、二重るつぼ1内に装入された原料
を溶解し、原料融液5を所定の温度に保持する。11は
ヒータ9,10を取り囲むホットゾーン断熱材である。
9.10 is a heater such as a resistance heating element installed outside the graphite crucible 7, which is configured to be independently controllable, and melts the raw material charged into the double crucible 1. , the raw material melt 5 is maintained at a predetermined temperature. 11 is a hot zone insulation material surrounding the heaters 9 and 10.

12は保温板で、例えば第2図及び第3図にその一例を
示すように、中心部に穴を有する円板状のフランジ13
と、この穴に整合しフランジ13に一体的に固定された
漏斗状部又は円筒状部(以下筒状部という)14とから
なり、二重るつぼ1の上方に、筒状部14が内側のるつ
ぼ3の内壁上部に近接して位置するように配置され、フ
ランジI3をホットゾーン断熱材12に固定したもので
ある。なお、この保温板12は黒鉛製で、汚染を防止す
るため外面を石英ガラスで被覆しである。
Reference numeral 12 denotes a heat insulating plate, for example, as shown in FIGS. 2 and 3, a disk-shaped flange 13 with a hole in the center is provided.
and a funnel-shaped part or cylindrical part (hereinafter referred to as the cylindrical part) 14 aligned with this hole and integrally fixed to the flange 13. It is arranged so as to be located close to the upper part of the inner wall of the crucible 3, and the flange I3 is fixed to the hot zone heat insulating material 12. The heat insulating plate 12 is made of graphite, and its outer surface is coated with quartz glass to prevent contamination.

次に、上記のように構成した装置により、シリコン単結
晶を製造する実施例により本発明の詳細な説明する。先
ず、二重るつは1にドナー又はアクセプタ不純物を添加
したシリコン多結晶塊を装入し、ヒータ9.10により
加熱・溶解した。このとき、内側のるつは3と外側のる
つぼ2内のシリコン融液の液面は同一レベルに保たれて
おり、保温板12の筒状部14の下端部はシリコン融液
の液面より僅かに上方にある。
Next, the present invention will be explained in detail with reference to an example in which a silicon single crystal is manufactured using the apparatus configured as described above. First, a polycrystalline silicon mass doped with donor or acceptor impurities was charged into double melt 1 and heated and melted using heaters 9 and 10. At this time, the liquid level of the silicon melt in the inner crucible 3 and the outer crucible 2 are kept at the same level, and the lower end of the cylindrical part 14 of the heat insulating plate 12 is lower than the liquid level of the silicon melt. It's slightly above.

ついで、結晶方位<100>の種結晶15を取り付けた
ワイヤ16を下降させ、シリコン融液5となじませて絞
り込みを行なった。絞り込み条件は、直径的3nun、
成長速度2,4〜3.0mm/m+n程度であった。
Next, the wire 16 to which the seed crystal 15 with the <100> crystal orientation was attached was lowered to blend with the silicon melt 5 to perform narrowing. The narrowing conditions are 3nun in diameter,
The growth rate was about 2.4 to 3.0 mm/m+n.

その後シリコン単結晶6の直径を15cmまで拡大して
定径単結晶の引上げを行なったところ、成長速度は05
〜1.0mm/m+nの範囲であった。
After that, when the diameter of the silicon single crystal 6 was expanded to 15 cm and a constant diameter single crystal was pulled, the growth rate was 0.5 cm.
It was in the range of ~1.0 mm/m+n.

第4図は保温板12を使用した場合と、使用しない場合
における二重るつぼ1内のシリコン融液の液面温度を測
定した結果を示す線図で、縦軸に融液液面の温度を、横
軸に二重るつぼの直径方向の位置を示す。図に示すよう
に、保温板12がある場合は、二重るつは1の中心部(
シリコン単結晶6の育成部)のシリコン融液の液面は所
定の温度に維持され、外側になるにしたがって高温にな
る温度勾配を示している。このため内側のるつは3の周
壁近傍にフリーズが発生するおそれは全くない。
FIG. 4 is a diagram showing the results of measuring the surface temperature of the silicon melt in the double crucible 1 with and without the heat insulating plate 12, and the vertical axis represents the temperature of the melt surface. , the horizontal axis indicates the diametrical position of the double crucible. As shown in the figure, if there is a heat insulating plate 12, the double joint is in the center of 1 (
The liquid level of the silicon melt in the silicon single crystal 6 growth area) is maintained at a predetermined temperature, and exhibits a temperature gradient in which the temperature increases toward the outside. Therefore, there is no possibility that freezing will occur near the peripheral wall of the inner crucible 3.

一方、保温板12がない場合は、内側のるつぼ3内のシ
リコン融液の液面の温度はほぼ所定の温度に維持されて
いるが、内側のるつぼ3の周壁付近において急激に温度
が低下している。したがって、この部分からフリーズが
発生することは明らかである。
On the other hand, when there is no heat insulating plate 12, the temperature of the surface of the silicon melt in the inner crucible 3 is maintained at approximately a predetermined temperature, but the temperature drops rapidly near the peripheral wall of the inner crucible 3. ing. Therefore, it is clear that freezing occurs from this part.

上記の測定結果からも明らかなように、本発明によれば
シリコン多結晶の製造過程で内側のるつぼ3の壁その他
からのフリーズの発生はなく、シリコン単結晶を正常に
引上げることができた。
As is clear from the above measurement results, according to the present invention, no freezing occurred from the walls of the inner crucible 3 or other parts during the silicon polycrystal manufacturing process, and the silicon single crystal could be pulled normally. .

なお、本実施例においては、それぞれ独立して制御可能
な2系統のヒータ9,10を設けたので、熱環境に応じ
たヒータの制御範囲が広がり、二重るつは1内の融液の
精密な温度分布の制御が可能になるばかりでなく、ヒー
タ10により二重るつぼ1の下方から加熱することがで
きるため、電力効率を約2%向上させることができた。
In addition, in this embodiment, two systems of heaters 9 and 10 that can be controlled independently are provided, so the control range of the heaters according to the thermal environment is expanded, and the double melt is Not only was it possible to precisely control the temperature distribution, but also the heater 10 could heat the double crucible 1 from below, making it possible to improve power efficiency by about 2%.

なお、ヒータは二重るつほの側方のみに設けてもよく、
あるいは側方と下方にそれぞれ独立して設けてもよい。
In addition, the heater may be installed only on the side of the double roof.
Alternatively, they may be provided independently on the sides and below.

第5図は本発明の他の実施例を模式的に示した断面図で
ある。本発明は外側のるつぼ2内に、流通孔4を有する
円筒状の内側のるつは3aを配設した二重るつは1の上
方に保温板12を設けたもので、その作用、効果は第1
図の実施例の場合とほぼ同様である。
FIG. 5 is a sectional view schematically showing another embodiment of the present invention. The present invention has a heat insulating plate 12 above a double crucible 1 in which a cylindrical inner crucible 3a having a flow hole 4 is disposed inside an outer crucible 2, and its functions and effects. is the first
This is almost the same as the embodiment shown in the figure.

なお、前述の実施例では、本発明によりシリコン単結晶
を製造する場合を例示したが、他の半導体の製造にも本
発明を実施しうろことは云う迄もない。
In the above-mentioned embodiments, the case where a silicon single crystal is manufactured according to the present invention was exemplified, but it goes without saying that the present invention can also be applied to the manufacture of other semiconductors.

[発明の効果] 以上の説明から明らかなように、本発明は二重構造のる
つほの上方に保温板を配設してるつぼ周壁からの奪熱を
防止し、融液液面に温度勾配を持たせるようにしたので
、フリーズが発生するおそれがなく、適正な成長速度で
単結晶を引上げることができる。
[Effects of the Invention] As is clear from the above description, the present invention prevents heat removal from the crucible peripheral wall by disposing a heat insulating plate above the double-structured crucible, and increases the temperature at the melt surface. Since a gradient is provided, there is no risk of freezing, and the single crystal can be pulled at an appropriate growth rate.

また、本発明によれば、保温板により融液液面、ヒータ
等から引上げ単結晶に加えられる輻射熱を遮断するため
、引上げ単結晶の冷却を促進して成長速度を速め、生産
性の向上による製造コストの低減をはかれる等の効果が
得られる。
Further, according to the present invention, since the heat insulating plate blocks radiant heat applied to the pulled single crystal from the melt surface, heater, etc., cooling of the pulled single crystal is promoted, the growth rate is accelerated, and productivity is improved. Effects such as reduction in manufacturing costs can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例を模式的に示した断面図、第2図
、第3図は本発明の要部をなす保温板の実施例を示すも
ので、それぞれ(a)は斜視図、(b)は断面図である
。第4図は保温板を使用した場合と使用しない場合にお
けるシリコン融液の液面温度を示す線図、第5図は本発
明の他の実施例を模式的に示した断面図、第6図は従来
の二重構造のるつぼによる半導体製造装置の一例を示す
断面図である。 1、La+二重るつぼ、2:外側のるつぼ、3゜3a:
内側のるつぼ、4:流通穴、6:半導体単結晶、7:黒
鉛るつぼ、9,10:ヒータ。
FIG. 1 is a cross-sectional view schematically showing an embodiment of the present invention, and FIGS. 2 and 3 show embodiments of a heat insulating plate which is a main part of the present invention, and (a) is a perspective view, and FIG. (b) is a sectional view. Fig. 4 is a diagram showing the liquid surface temperature of silicon melt with and without a heat insulating plate, Fig. 5 is a sectional view schematically showing another embodiment of the present invention, and Fig. 6 1 is a cross-sectional view showing an example of a semiconductor manufacturing apparatus using a conventional double-structured crucible. 1. La+double crucible, 2: Outer crucible, 3°3a:
Inner crucible, 4: Distribution hole, 6: Semiconductor single crystal, 7: Graphite crucible, 9, 10: Heater.

Claims (3)

【特許請求の範囲】[Claims] (1)外側のるつぼ内に下部に流通孔を有する内側のる
つぼが配設された二重構造のるつぼを有し、該るつぼ内
に入れられた半導体融液を引上げて半導体単結晶を製造
する方法において、 前記外側のるつぼから少なくとも内側のるつぼの内側ま
での上方を保温板で覆い、これにより前記外側のるつぼ
と内側のるつぼの間の半導体融液液面の温度を前記内側
のるつぼ内の半導体融液液面の温度より高温に保持し、
前記内側のるつぼから半導体単結晶を引上げることを特
徴とする半導体単結晶の製造方法。
(1) It has a double-structured crucible in which an inner crucible with a flow hole at the bottom is disposed inside an outer crucible, and a semiconductor single crystal is produced by pulling up the semiconductor melt placed in the crucible. In the method, the upper part of the outer crucible to at least the inside of the inner crucible is covered with a heat insulating plate, thereby controlling the temperature of the semiconductor melt surface between the outer crucible and the inner crucible to the temperature in the inner crucible. Maintained at a higher temperature than the surface of the semiconductor melt,
A method for producing a semiconductor single crystal, comprising pulling the semiconductor single crystal from the inner crucible.
(2)外側のるつぼ内に下部に流通孔を有する内側のる
つぼが配設された二重構造のるつぼに入れられた半導体
融液を該るつぼの側方に設けたヒータによって加熱し、
前記内側のるつぼから半導体融液を引上げて半導体結晶
を製造する装置において、 前記二重構造のるつぼの上方に外側のるつぼから少なく
とも内側のるつぼの内側までを覆う保温板を設けたこと
を特徴とする半導体単結晶の製造装置。
(2) A semiconductor melt placed in a double-structured crucible in which an inner crucible having a flow hole at the bottom is disposed inside an outer crucible is heated by a heater provided on the side of the crucible;
The apparatus for producing a semiconductor crystal by pulling up a semiconductor melt from the inner crucible is characterized in that a heat insulating plate is provided above the double-structured crucible to cover from the outer crucible to at least the inside of the inner crucible. Semiconductor single crystal manufacturing equipment.
(3)二重構造のるつぼの下方に、該二重構造のるつぼ
の側方に設けたヒータとは独立して制御されるヒータを
設けたことを特徴とする請求項2記載の半導体単結晶の
製造装置。
(3) A semiconductor single crystal according to claim 2, characterized in that a heater is provided below the double-structured crucible and is controlled independently of a heater provided on the side of the double-structured crucible. manufacturing equipment.
JP14819388A 1988-06-17 1988-06-17 Production of single crystal of semiconductor and device therefor Pending JPH01317188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14819388A JPH01317188A (en) 1988-06-17 1988-06-17 Production of single crystal of semiconductor and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14819388A JPH01317188A (en) 1988-06-17 1988-06-17 Production of single crystal of semiconductor and device therefor

Publications (1)

Publication Number Publication Date
JPH01317188A true JPH01317188A (en) 1989-12-21

Family

ID=15447336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14819388A Pending JPH01317188A (en) 1988-06-17 1988-06-17 Production of single crystal of semiconductor and device therefor

Country Status (1)

Country Link
JP (1) JPH01317188A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991014809A1 (en) * 1990-03-20 1991-10-03 Nkk Corporation Apparatus for making silicon single crystal
US5312600A (en) * 1990-03-20 1994-05-17 Toshiba Ceramics Co. Silicon single crystal manufacturing apparatus
JP2003522086A (en) * 1998-06-26 2003-07-22 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Electric resistance heater for crystal growth apparatus and method of using the same
JP2007297222A (en) * 2006-04-27 2007-11-15 Tokuyama Corp Pulling apparatus for metal fluoride single crystal and method for manufacturing metal fluoride single crystal
CN113106538A (en) * 2021-03-25 2021-07-13 徐州鑫晶半导体科技有限公司 Crucible assembly for preparing monocrystalline silicon and preparation furnace

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991014809A1 (en) * 1990-03-20 1991-10-03 Nkk Corporation Apparatus for making silicon single crystal
US5312600A (en) * 1990-03-20 1994-05-17 Toshiba Ceramics Co. Silicon single crystal manufacturing apparatus
JP2003522086A (en) * 1998-06-26 2003-07-22 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Electric resistance heater for crystal growth apparatus and method of using the same
JP2007297222A (en) * 2006-04-27 2007-11-15 Tokuyama Corp Pulling apparatus for metal fluoride single crystal and method for manufacturing metal fluoride single crystal
CN113106538A (en) * 2021-03-25 2021-07-13 徐州鑫晶半导体科技有限公司 Crucible assembly for preparing monocrystalline silicon and preparation furnace

Similar Documents

Publication Publication Date Title
CA1261715A (en) Apparatus and process for growing monocrystals of semiconductor materials from shallow crucibles by czochralski technique
EP0068021B1 (en) The method and apparatus for forming and growing a single crystal of a semiconductor compound
US5714004A (en) Process for producing polycrystalline semiconductors
KR930003044B1 (en) Method and apparatus for manufacturing silicon single crystal
JPH02133389A (en) Production device of silicon single crystal
EP0992618B1 (en) Method of manufacturing compound semiconductor single crystal
JPH01317188A (en) Production of single crystal of semiconductor and device therefor
JPH0971497A (en) Production of polycrystal semiconductor
KR20000075400A (en) Czochralski Pullers and Pulling Methods for Manufacturing Monocrystalline Silicon Ingots by Controlling Temperature Gradients at the Center and Edge of an Ingot-Melt Interface
US20160024686A1 (en) Method of designing a passage through a weir for allowing dilutions of impurities
JP2681115B2 (en) Single crystal manufacturing method
KR20020062971A (en) Silicon semiconductor single crystal manufacturing apparatus and manufacturing method
JP3991400B2 (en) Single crystal growth method and apparatus
JP2019043788A (en) Method and apparatus for growing single crystal
JP3812573B2 (en) Semiconductor crystal growth method
JP2543449B2 (en) Crystal growth method and apparatus
US6340392B1 (en) Pulling methods for manufacturing monocrystalline silicone ingots by controlling temperature at the center and edge of an ingot-melt interface
JP3079991B2 (en) Single crystal manufacturing apparatus and manufacturing method
JPH0259494A (en) Production of silicon single crystal and apparatus
JPH02172885A (en) Production of silicon single crystal
JPH07110798B2 (en) Single crystal manufacturing equipment
JPS63319286A (en) Method for growing single crystal
JP4117813B2 (en) Method for producing compound semiconductor single crystal
JP2014156373A (en) Manufacturing apparatus for sapphire single crystal
JPS59227797A (en) Method for pulling up single crystal