JPS59227797A - Method for pulling up single crystal - Google Patents

Method for pulling up single crystal

Info

Publication number
JPS59227797A
JPS59227797A JP10008483A JP10008483A JPS59227797A JP S59227797 A JPS59227797 A JP S59227797A JP 10008483 A JP10008483 A JP 10008483A JP 10008483 A JP10008483 A JP 10008483A JP S59227797 A JPS59227797 A JP S59227797A
Authority
JP
Japan
Prior art keywords
thermocouple
single crystal
crystal
temperature
seeding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10008483A
Other languages
Japanese (ja)
Inventor
Riyuusuke Nakai
龍資 中井
Koji Tada
多田 紘二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10008483A priority Critical patent/JPS59227797A/en
Publication of JPS59227797A publication Critical patent/JPS59227797A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal

Abstract

PURPOSE:To facilitate the seeding operation and control of the diameter of a single crystal and pull up the single crystal while estimating the temperature gradient in the crystal, by specifying the fixing position of a thermocouple for measuring the temperature for controlling the power of a heater in the Czochralski method. CONSTITUTION:A thermocouple 9 is provided below the side of a seed crystal 4 at a position for wrapping the tip thereof in the head of a single crystal 5 to be grown. The thermocouple 9 is attached to a pulling up shaft 10 to be rotated, and lead wires are led to the outside by a slip ring on the shaft 10 and are made rotatable with the single crystal 5. The seed crystal 4 and the thermocouple 9 together are dipped in a raw material melt 3. At this time, the temperature of the thermocouple 9 is adjusted to be close to the melting point for seeding the single crystal 5. The seeding temperature can be measured directly with the thermocouple 9, and the operation is easily carried out without failure in seeding. The crystal 4 is then pulled up while reducing the temperature of the raw material melt 3 measured by the thermocouple 9 to grow the single crystal 5 to wrap the crystal 4. The power 8 of a heater 2 is controlled on the basis of the temperature measured by the thermocouple 9 during that time. In the process, the average temperature gradient in the crystal 4 can be directly estimated.

Description

【発明の詳細な説明】 (技術分野) 本発明はチヨツク/l/ 7キー法(以下、CZ法と称
す)又は液体カプセルチョクラルスキー法(以下、L 
E C法と称す)により単結晶を引上げる方法に関し、
特に炉内温度を制御する方法に関するものである。
Detailed Description of the Invention (Technical Field) The present invention is based on the Czoch/L/7-key method (hereinafter referred to as CZ method) or the liquid capsule Czochralski method (hereinafter referred to as L
Regarding the method of pulling single crystals by the EC method (referred to as the EC method),
In particular, it relates to a method of controlling the temperature inside the furnace.

(背景技術) CZ法は、第1図に例を示すように、炉内加熱ヒーター
2により加熱されるるつぼ1に原料融液3を収容し、必
要によりその表面を8203  融液でおおい(LEC
法の場合)、融液3表面に種結晶4を浸漬し、なじませ
た後、種結晶4を引上げて単結晶5を引」二げる方法で
ある。この場合、従来、単結晶の直径(以下、径と称す
)を制御するにば、ヒーター横6又はるつぼ底7の測定
温度を用い、ヒーター2のパワー8を制御する事により
行なっていた。
(Background Art) In the CZ method, as shown in FIG. 1, a raw material melt 3 is placed in a crucible 1 heated by an in-furnace heater 2, and if necessary, the surface is covered with an 8203 melt (LEC
method), the seed crystal 4 is immersed in the surface of the melt 3, and after being blended, the seed crystal 4 is pulled up and the single crystal 5 is pulled out. In this case, conventionally, the diameter of the single crystal (hereinafter referred to as diameter) has been controlled by using the temperature measured at the side 6 of the heater or at the bottom 7 of the crucible, and by controlling the power 8 of the heater 2.

例えば単結晶5の径の変化をのぞき窓よりの目視か、又
は単結晶5の重量変化によシ確認し、径が太りつつある
時は温度設定値を少し」二げ、それに伴ないヒーター2
のパワー8が」二昇し、固液界面付近の原料融液もの温
度が上がり、結晶が太るのを止めていた。又径が細りつ
つある時は」−述と逆の操作をしていた。これらの制御
はコンピューター又は人手により行なわれていた。
For example, check the change in the diameter of the single crystal 5 visually through the peephole or by the change in the weight of the single crystal 5, and if the diameter is getting thicker, increase the temperature setting a little, and the heater 2
The power of 8' increased by 2, the temperature of the raw material melt near the solid-liquid interface rose, and the crystals stopped growing. Also, when the diameter was getting smaller, I did the opposite operation as described above. These controls were performed by computer or manually.

しかしこの方法では、温度計(例、熱電対)の位置が単
結晶5や固液界面付近から遠く削れたヒーター横6又は
るつぼ底7にあυ、ヒーター2のパワー8を変えてから
結晶径が変化するまで時間がかかるので、径を制御する
のに不適当であった。
However, in this method, the thermometer (e.g., thermocouple) is placed on the side of the heater 6 or on the crucible bottom 7, which is carved far from the single crystal 5 or near the solid-liquid interface. Since it takes time for the diameter to change, it is not suitable for controlling the diameter.

又単結晶の低転位化のだめには垂直方向の温度を低温度
勾配として引上げることが必要であるが、引上げ中に結
晶中の温度勾配を知ることができなかった。
Furthermore, in order to reduce dislocations in a single crystal, it is necessary to raise the temperature in the vertical direction with a low temperature gradient, but it was not possible to know the temperature gradient in the crystal during pulling.

(発明の開示) 本発明は上述の問題点を解決するため成されたもので、
単結晶引上げ時の種付は温度、単結晶の温度、固液界面
付近の温度の検知を可能にして種付は作業、単結晶の径
の制御を容易にすると共に、結晶中温度勾配を推定しつ
つ単結晶を引上げる方法を提供せんとするものである。
(Disclosure of the invention) The present invention has been made to solve the above-mentioned problems.
When pulling a single crystal, seeding makes it possible to detect the temperature, the temperature of the single crystal, and the temperature near the solid-liquid interface, making it easier to control the diameter of the single crystal and estimating the temperature gradient in the crystal. The purpose of this study is to provide a method for pulling single crystals.

本発明はチョクラルスキー法により単結晶を引上げる方
法において、種結晶横の下方の、成長させる単結晶の頭
部になる位置に熱電対を設け、該熱電対による沖1定潟
度によシ炉内加熱ヒーターを制御することを特徴とする
単結晶の引上げ方法である。
The present invention is a method for pulling a single crystal using the Czochralski method, in which a thermocouple is provided below the side of the seed crystal at a position that will become the head of the single crystal to be grown, and the thermocouple is used to pull a single crystal using the This is a single crystal pulling method characterized by controlling an in-furnace heater.

本発明方法を適用される単結晶は、周期律表のIll 
−V族化合物、II −IV族化合物もしくはそれらの
結晶、Si、Ge等の半導体、酸化物、窒化物、炭化物
などよシ成る単結晶で、CZ法又はLEC法によシナ上
げられるものである。
The single crystal to which the method of the present invention is applied is Ill of the periodic table.
-V group compounds, II -IV group compounds or their crystals, semiconductors such as Si and Ge, oxides, nitrides, carbides, etc., are single crystals made by CZ method or LEC method. .

以下、本発明を図面を用いて実施例によりiD!!明す
る。
Hereinafter, the present invention will be described by iD! Examples using drawings. ! I will clarify.

第2図は本発明方法の実施例に用いられる単結晶引上装
置の例を示す縦断面図である。図において第1図と同一
の符号はそれぞれ同一の部分を示す。第2図において、
第1図と異なる点は、種結晶4横下方vc熱電対9を設
けた点である。熱電対9の位置は、第3図(ロ)K示す
ように、その先端が成長させる単結晶5の頭部につつま
れる位置で、例えば種結晶4先端横より距11fiH=
 10〜l5mm下方の位置が適当である。熱電対9は
回転する引上llll1110に取付けられ、熱電対9
のリード線が引上軸10に設けたヌリップリング(図示
せず)により外部に取シ出されることによシ、単結晶5
と共に口伝が可能となる。
FIG. 2 is a longitudinal sectional view showing an example of a single crystal pulling apparatus used in an embodiment of the method of the present invention. In the figure, the same reference numerals as in FIG. 1 indicate the same parts. In Figure 2,
The difference from FIG. 1 is that a VC thermocouple 9 is provided below the side of the seed crystal 4. The thermocouple 9 is located at a position where its tip is surrounded by the head of the single crystal 5 to be grown, as shown in FIG.
A position 10 to 15 mm below is appropriate. The thermocouple 9 is attached to the rotating pull-up lllll1110, and the thermocouple 9
The single crystal 5
At the same time, oral transmission became possible.

第3図は」二連の装置を用いて単結晶を引上げる状態を
工程順に示す模式図で、(イ)図は種付は時、(ロ)図
は単結晶引上げ時の状態を示す。先ず種付けを行なうに
は、種結晶4を熱電対9共原料融沿七につける。この時
熱電対9の温度は原料の融点付近になるように調節して
おく。この際、種付けの。
FIG. 3 is a schematic diagram showing the state in which a single crystal is pulled using two sets of devices in the order of steps, in which (a) shows the time of seeding, and (b) shows the state during pulling of a single crystal. First, to carry out seeding, a seed crystal 4 is attached to the thermocouple 9 along the material fusion line. At this time, the temperature of the thermocouple 9 is adjusted to be near the melting point of the raw material. At this time, seeding.

温度を直接熱電対9により測ることができるので、種付
けの失敗が彦<、作業も容易である。
Since the temperature can be directly measured with the thermocouple 9, seeding failures can be avoided and the work is easy.

次いで、熱電対9による融液中の温度を下げつつ、種結
晶4を引上げると、(ロ)図に示すように熱電対9をつ
つみこむようにして単結晶5が成長する。
Next, when the seed crystal 4 is pulled up while lowering the temperature in the melt using the thermocouple 9, the single crystal 5 grows so as to enclose the thermocouple 9, as shown in FIG.

この場合、熱電対9の保獲管は、融液4に濡れない材質
のものを選ぶ。
In this case, the storage tube for the thermocouple 9 is selected from a material that does not get wet with the melt 4.

単結晶成長中ば熱電対9による測定温度に基いてヒータ
ー2のパワー8を制御し、炉内温度を調節する。熱電対
9によれば単結晶5の頭部の温度を直接測定するだけで
なく、この温度によシ結晶中の平均的湯度勾配が直ちに
推定できる。即ち、第4図に示すように、熱電対9によ
る測定温度をT、固液界面の温度をTM(融点)とし、
熱電対9の先端と固液界面の部門11を4とすればfi
1式より結晶中の垂直方向の゛Y均的渦度勾配kが定め
られる。又計算機シミュレーションを使えば、Tと結晶
形状を与えることにより、結晶内温度分布をリマルタイ
ムに求められる。このように本発明方法によれば、固液
界面付近の温度勾配を推定により検知し得る。熱電対9
による測定温度の変化に応じてヒーター2のパワー8を
制御すれば、結晶内温度勾配、ひいては結晶を通って逃
げる熱を制御できることになり、結晶粒を容易にかつ速
く制御できる。
During single crystal growth, the power 8 of the heater 2 is controlled based on the temperature measured by the thermocouple 9 to adjust the temperature inside the furnace. The thermocouple 9 not only directly measures the temperature at the head of the single crystal 5, but also allows the average temperature gradient in the crystal to be immediately estimated from this temperature. That is, as shown in FIG. 4, the temperature measured by the thermocouple 9 is T, the temperature of the solid-liquid interface is TM (melting point),
If the tip of the thermocouple 9 and the sector 11 of the solid-liquid interface are 4, then fi
From Equation 1, the ``Y uniform vorticity gradient k in the vertical direction in the crystal is determined. Furthermore, by using computer simulation, the temperature distribution within the crystal can be determined in real time by giving T and the crystal shape. As described above, according to the method of the present invention, the temperature gradient near the solid-liquid interface can be detected by estimation. thermocouple 9
By controlling the power 8 of the heater 2 according to changes in the measured temperature, it is possible to control the temperature gradient within the crystal and, by extension, the heat escaping through the crystal, making it possible to control the crystal grains easily and quickly.

(実施例1) 第2図に示すような装置を用い、50 mmφのGaA
s半導体単結晶を引上げた。
(Example 1) Using the apparatus shown in Fig. 2, a 50 mmφ GaA
s Semiconductor single crystal was pulled.

るつぼ1としてPBN(パイロリティック窒化ボロン)
製の直径4″のものを用い、GaAs多結晶] kgお
よびn2o3を入れ、溶融した。GaA s融液の高さ
は約30mm、 B2O3融液の厚さは20 mm で
あった。熱電対9として0.5 mmφの熱電対(W・
5%Re−W・26%Re)を用い、PBN製保製管護
管11護し、引上軸10に第5図に示す寸法になるよう
に取付けた。4は種結晶である。
PBN (pyrolytic boron nitride) as crucible 1
GaAs polycrystal [kg] and N2O3 were charged and melted.The height of the GaAs melt was about 30 mm, and the thickness of the B2O3 melt was 20 mm.Thermocouple 9 0.5 mmφ thermocouple (W・
5% Re-W/26% Re) was used to protect the PBN protection tube 11, and it was attached to the pulling shaft 10 so as to have the dimensions shown in FIG. 4 is a seed crystal.

先ず第6図に示すように、引上1iill110を下げ
てシ款 熱電対9の先端を融仇3につけて液温を測シ、温度約1
235°Cで種結晶4を融液3に着けた。12はB2O
3融液である。
First, as shown in Fig. 6, lower the puller 1iill 110 and attach the tip of the thermocouple 9 to the fuse 3 to measure the liquid temperature.
A seed crystal 4 was attached to the melt 3 at 235°C. 12 is B2O
3 melt.

次いで種結晶横の熱電対9によシ炉内加熱ヒーター2の
パワーをコントロールし、結晶径を制御した。その結果
、人が径変動を制御した場合は、単結晶5の径変動は直
胴部で50mm±1.5mmとなった。制御に計算機を
使った結晶重量による自動直径制御を使った場合は50
 mm±0.5 mmであった。
Next, the power of the in-furnace heater 2 was controlled using a thermocouple 9 next to the seed crystal to control the crystal diameter. As a result, when the diameter variation was controlled by humans, the diameter variation of the single crystal 5 was 50 mm±1.5 mm at the straight body portion. 50 when using automatic diameter control based on crystal weight using a computer for control.
It was mm±0.5 mm.

(実施例2) 第7図に示すような2段ヒーター構造の単結晶引上装置
を用い、本発明方法によF) 50mmφ のGaAs
半導体単結晶を引上げた。
(Example 2) F) 50 mmφ GaAs was produced by the method of the present invention using a single crystal pulling apparatus with a two-stage heater structure as shown in FIG.
Pulled semiconductor single crystal.

図において第2図と同一の符号はそれぞれ同一の部分を
示す。第71ン1ではヒーターを固液界面付近で」二、
下に分割して」ニヒーター13および下ヒータ−14と
し、それらに付加するパワー15゜16をそれぞれ別個
に制御した。
In the figure, the same reference numerals as in FIG. 2 indicate the same parts. In No. 71-1, the heater was placed near the solid-liquid interface.
The heater was divided into a lower heater 13 and a lower heater 14, and the power applied to them was controlled separately.

実施例]と同様にして種付けを行なった後、単結晶を引
」二げる時、熱電対9で測った温度をT1(℃)  と
し、 となるように、」ニヒーター13、下ヒータ−+4の個
々のパワー15.16をそれぞれ調節しつつ、全体のパ
ワー量をるつぼ底の熱電対17によ多制御して引上げを
行なった。
After seeding in the same manner as in Example], when pulling out the single crystal, the temperature measured with thermocouple 9 is T1 (°C), and so that While adjusting the individual powers 15 and 16 of the crucible, the overall power amount was controlled by the thermocouple 17 at the bottom of the crucible to perform pulling.

通常このような装置で引上げる場合、従来、上ヒータ−
13の温度を一定値として引上げるが、低転位密度化の
ため低温度勾配にしようとして上ヒータ−13の温度を
上げると、結晶の溶′け落ち等が起こシ、径制御がむつ
かしく、熱流が安定しないので、折角低温度勾配にして
も結局結晶の転位密度は余り下がらなかった。
Normally, when lifting with such a device, the upper heater
The temperature of the upper heater 13 is raised to a constant value, but if the temperature of the upper heater 13 is raised in an attempt to create a low temperature gradient in order to lower the dislocation density, crystal melting may occur, diameter control is difficult, and heat flow is increased. is not stable, so even if a low temperature gradient was used, the dislocation density of the crystal did not decrease much in the end.

しかし、本発明方法において(3)式のに、を5γσと
することにより、結晶径の変動が51±2mmになると
共に、転位密度は、単結晶のフロント部で平均5XIO
”7m、バック部で7X]03/fflとすることがで
きた。従来法による引上げでは、一般に転位密度はフロ
ント部で2 X 10’/i、/<ツク部で6×104
/C−rI であった。
However, in the method of the present invention, by setting 5γσ in equation (3), the variation in crystal diameter becomes 51 ± 2 mm, and the dislocation density is reduced to 5XIO on average at the front part of the single crystal.
"7m, 7X]03/ffl at the back part. In the conventional method, the dislocation density is generally 2 x 10'/i at the front part, and 6x104 at the back part.
/C-rI.

(発明の効果) 上述のように構成された本発明の単結晶用」二げ方法は
次のような効果がある。
(Effects of the Invention) The single crystal growth method of the present invention configured as described above has the following effects.

(イ) 種結晶横の下方の成長させる単結晶の頭部にな
る位置に熱電対を設け、該熱電対による測定温度によシ
炉函加熱ヒーターを制御するから、種付は時種付は位置
の融液温度を直接側れるため、種付は条件を容易に調節
でき゛るので、種付けの失敗がなく、作業が容易である
(b) A thermocouple is installed below the side of the seed crystal at the position that will become the head of the single crystal to be grown, and the furnace heater is controlled according to the temperature measured by the thermocouple. Since the melt temperature at the location can be directly controlled, the seeding conditions can be easily adjusted, so there is no seeding failure and the work is easy.

(ロ) 又熱電対によシ単結晶の頭部の温度が測れ、前
述のように結晶内の温度勾配を直ちに推定し得、それに
より炉内加熱ヒーターのパワーを制御し得るので、単結
晶の径制御が容易で、かつ応答が速いので、精密な径制
御が可能である。
(b) Furthermore, since the temperature at the head of a single crystal can be measured using a thermocouple, the temperature gradient within the crystal can be immediately estimated as described above, and the power of the heater in the furnace can be controlled thereby. Since diameter control is easy and response is quick, precise diameter control is possible.

(ハ) 単結晶の温度勾配を直接検知できるため、垂直
方向の低温度勾配条件を見つけやすく、又低温度勾配を
維持することも容易であり、全長イ立 に亘り低転借密度の単結晶を製造し得る。
(c) Since the temperature gradient of the single crystal can be directly detected, it is easy to find the low temperature gradient conditions in the vertical direction, and it is also easy to maintain the low temperature gradient. Can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の単結晶引上装置の例を示す縦断面図であ
る。 第2図は本発明方法の実施例に用いられる単結晶引上装
置の例を示す縦断面図である。 第3図(イ)、(ロ)は本発明方法の実施例における単
結晶引上げの状態を示す模式図で、(イ)図は種付は時
、(ロ)ロバ単結晶引上げ時の状態を示す。 第4図は本発明方法により引」二げ中の単結晶の温度を
示す図である。 第5図は本発明方法の実施例における熱電対の取付状態
の例を示す側面図である。 第6図は本発明方法の実施例における種付は前の状態を
示す縦断面図である。 第7図は本発明方法の他の実施例に用いられる単結晶引
上装置の例を示す縦断面図である。 1・・・るつぼ、2・・・炉内加熱ヒーター、3・・・
原料融液、4・・・種結晶、5・・単結晶、6・・・ヒ
ーター横、7・・・るつぼ底、8,15.16・・・パ
ワー、9.I7・・・熱電対、10・・・引上軸、11
・・・保護管、12・・・B2O3融液、13・・・上
ヒータ−,14・・・下ヒータ−、m、l・・・距前、
’r、’rM・・・温度。 第1回 第2図 第3同(Tff) 第4回 第5図 第6図 算7図
FIG. 1 is a longitudinal sectional view showing an example of a conventional single crystal pulling apparatus. FIG. 2 is a longitudinal sectional view showing an example of a single crystal pulling apparatus used in an embodiment of the method of the present invention. Figures 3 (a) and (b) are schematic diagrams showing the state of single crystal pulling in an embodiment of the method of the present invention, (a) shows the time of seeding, and (b) shows the state of donkey single crystal pulling. show. FIG. 4 is a diagram showing the temperature of a single crystal during drawing by the method of the present invention. FIG. 5 is a side view showing an example of the mounting state of the thermocouple in the embodiment of the method of the present invention. FIG. 6 is a longitudinal sectional view showing a state before seeding in an embodiment of the method of the present invention. FIG. 7 is a longitudinal sectional view showing an example of a single crystal pulling apparatus used in another embodiment of the method of the present invention. 1... Crucible, 2... Furnace heating heater, 3...
Raw material melt, 4... Seed crystal, 5... Single crystal, 6... Side of heater, 7... Crucible bottom, 8, 15. 16... Power, 9. I7... Thermocouple, 10... Pulling shaft, 11
... protection tube, 12 ... B2O3 melt, 13 ... upper heater, 14 ... lower heater, m, l ... distance front,
'r,'rM...Temperature. 1st Figure 2 Figure 3 (Tff) 4th Figure 5 Figure 6 Calculation Figure 7

Claims (1)

【特許請求の範囲】 f+)  チョクラルスキー法によシ単結晶を引」二げ
る方法において、種結晶横の下方の、成長させる単結晶
の頭部になる位置に熱電対を設け、該熱電対による測定
温度により炉内加熱ヒーターを制御することを特徴とす
る単結晶の引上げ方法。 (2)  熱電対を設ける位置が、種結晶先端横より1
0〜] 5 mm下方の位置である特許請求の範囲第1
項記載の単結晶の引上げ方法。
[Claims] f+) In a method of pulling a single crystal using the Czochralski method, a thermocouple is provided below the side of the seed crystal at a position that will become the head of the single crystal to be grown. A single crystal pulling method characterized by controlling an in-furnace heater based on the temperature measured by a thermocouple. (2) The thermocouple should be placed 1 point from the side of the seed crystal tip.
0~] 5 mm below the claim 1
Method for pulling single crystals as described in section.
JP10008483A 1983-06-03 1983-06-03 Method for pulling up single crystal Pending JPS59227797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10008483A JPS59227797A (en) 1983-06-03 1983-06-03 Method for pulling up single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10008483A JPS59227797A (en) 1983-06-03 1983-06-03 Method for pulling up single crystal

Publications (1)

Publication Number Publication Date
JPS59227797A true JPS59227797A (en) 1984-12-21

Family

ID=14264568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10008483A Pending JPS59227797A (en) 1983-06-03 1983-06-03 Method for pulling up single crystal

Country Status (1)

Country Link
JP (1) JPS59227797A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159287A (en) * 1986-12-24 1988-07-02 Toshiba Ceramics Co Ltd Production of silicon single crystal
JPH0196092A (en) * 1987-10-06 1989-04-14 Furukawa Electric Co Ltd:The Device for growing compound semiconductor single crystal
CN102517629A (en) * 2011-12-15 2012-06-27 江西旭阳雷迪高科技股份有限公司 Method for quickly and accurately finding monocrystal seeding crucible position

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159287A (en) * 1986-12-24 1988-07-02 Toshiba Ceramics Co Ltd Production of silicon single crystal
JPH0196092A (en) * 1987-10-06 1989-04-14 Furukawa Electric Co Ltd:The Device for growing compound semiconductor single crystal
CN102517629A (en) * 2011-12-15 2012-06-27 江西旭阳雷迪高科技股份有限公司 Method for quickly and accurately finding monocrystal seeding crucible position

Similar Documents

Publication Publication Date Title
JPS5957986A (en) Method for pulling up single crystal
TWI812512B (en) Single crystal silicon crystal pulling control method and device, single crystal silicon crystal pulling furnace
JPS59227797A (en) Method for pulling up single crystal
JPS5930795A (en) Apparatus for pulling up single crystal
JP3109950B2 (en) Method for growing semiconductor single crystal
JPH01317188A (en) Production of single crystal of semiconductor and device therefor
JPH01212291A (en) Method and apparatus for growing crystal
JP3042097B2 (en) Apparatus and method for growing single crystal
JPS6054994A (en) Production of compound semiconductor crystal
CN208219010U (en) A kind of pulling single crystal furnace apparatus
JP3991400B2 (en) Single crystal growth method and apparatus
JP2543449B2 (en) Crystal growth method and apparatus
JP3125313B2 (en) Single crystal growth method
JP3134415B2 (en) Single crystal growth method
JPS6135563Y2 (en)
JPS6011297A (en) Method and device for controlling growth of crystal
JP2757865B2 (en) Method for producing group III-V compound semiconductor single crystal
JP2726887B2 (en) Method for manufacturing compound semiconductor single crystal
JPH0940492A (en) Production of single crystal and apparatus for production therefor
US20140174338A1 (en) Methods to bond silica parts
JPS5836997A (en) Producing device for single crystal
JPS60180993A (en) Pulling method of gaas single crystal
JPS63319286A (en) Method for growing single crystal
JPH0341432B2 (en)
JPH05319973A (en) Single crystal production unit