JPH0196092A - Device for growing compound semiconductor single crystal - Google Patents

Device for growing compound semiconductor single crystal

Info

Publication number
JPH0196092A
JPH0196092A JP25219287A JP25219287A JPH0196092A JP H0196092 A JPH0196092 A JP H0196092A JP 25219287 A JP25219287 A JP 25219287A JP 25219287 A JP25219287 A JP 25219287A JP H0196092 A JPH0196092 A JP H0196092A
Authority
JP
Japan
Prior art keywords
single crystal
compound semiconductor
seed
temperature
semiconductor single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25219287A
Other languages
Japanese (ja)
Other versions
JPH0776145B2 (en
Inventor
Michio Takahashi
高橋 道生
Fumihiko Abe
文彦 安倍
Yasuhiro Naka
恭宏 仲
Yoshimasa Masukata
舛方 義政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP62252192A priority Critical patent/JPH0776145B2/en
Publication of JPH0196092A publication Critical patent/JPH0196092A/en
Publication of JPH0776145B2 publication Critical patent/JPH0776145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To enable the control of the temp. of molten starting material and to increase the work efficiency of fitting of a seed crystal to the molten starting material by fixing a thermometer in a pulling-up shaft. CONSTITUTION:A hole is bored in the tip part of an inner rod 4 on the seed holder 2 side from the periphery toward the center so that the hole is inclined downward and a thermocouple 12 is fixed in the hole. The temp. of molten starting material can be accurately measured in a short time with the thermocouple and the work efficiency of fitting of a seed crystal 1 to the molten starting material can be increased and stabilized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液体封止引上法(LEC法)による化合物半
導体単結晶育成装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a compound semiconductor single crystal growth apparatus using a liquid confinement pulling method (LEC method).

〔従来の技術〕[Conventional technology]

GaAs等の■−■族化合物半導体はSiよりも大きな
電子移動度を有し、その性質を利用したICや発光素子
の開発が進められている。 m−v族化合物半導体の単
結晶を成長させる方法としては、工業的に単結晶引上方
法の一種である液体封止引上法(Liguid Enc
apsulated Czochralski(LEC
)法)が多く用いられている。■−V族化合物半導体は
融点近傍でV族元素が高い解離圧をもつため、LEC法
は原料融液をB t Ox等の液体状封止剤でおおい、
さらにAr、Nzガスなどで5〜80kg/cdに加圧
された雰囲気下で単結晶を成長させる方法である。
BACKGROUND ART ■-■ group compound semiconductors such as GaAs have higher electron mobility than Si, and development of ICs and light emitting devices utilizing this property is progressing. A method for growing single crystals of m-v group compound semiconductors is the liquid entrapment pulling method, which is a type of industrial single crystal pulling method.
apsulated Czochralski (LEC
) method) is often used. ■-Since group V elements in group V compound semiconductors have a high dissociation pressure near their melting point, the LEC method covers the raw material melt with a liquid encapsulant such as B t Ox.
Furthermore, it is a method of growing a single crystal in an atmosphere pressurized to 5 to 80 kg/cd using Ar, Nz gas, or the like.

LEC法は、単結晶引上げの際、種結晶と呼ばれる単結
晶の小片を用いて原料融液から単結晶の引上げを行って
いる。即ち、第3図に示すように、種結晶(1)を装着
したシードホルダー(2)をアウターチューブ(3)内
を通るインナーロッド(4)に取付け、下軸Oalと接
続されて圧力容器(5)内に収容されたるつぼ(9)内
の、ヒーター(6)で溶解された原料融液(8)に液体
封止剤(7)を貫いて種結晶(1)を浸し、充分なじま
せた後、融液(8)より種結晶(1)と結晶方位のそろ
った単結晶を引上げている。種結晶(1)を原r[融液
(8)に浸しなじませる行為は種付けといわれている0
種付けし、単結晶を引上げるための許容温度中は10°
C以内程度である。なお、01)は圧力容器(5)に設
けた観測用窓を示す。
In the LEC method, when pulling a single crystal, a small piece of single crystal called a seed crystal is used to pull a single crystal from a raw material melt. That is, as shown in Fig. 3, a seed holder (2) equipped with a seed crystal (1) is attached to an inner rod (4) that passes through the outer tube (3), and is connected to the lower shaft Oal and attached to the pressure vessel ( 5) Immerse the seed crystal (1) through the liquid sealant (7) into the raw material melt (8) melted by the heater (6) in the crucible (9) housed in the crucible (9), and let it thoroughly blend. After that, a single crystal having the same crystal orientation as the seed crystal (1) is pulled from the melt (8). The act of soaking the seed crystal (1) in the melt (8) is called seeding.
10° during permissible temperatures for seeding and pulling single crystals
It is within C. Note that 01) indicates an observation window provided in the pressure vessel (5).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来、種付けし、引上げる工程は観測窓より目測により
融液面の状況を観察しながら行われている。この場合、
融液の温度を直接測定することができないため、種付は
作業を繰返して融液の温度の適否を判断する必要があり
、作業能率が悪く、かつ一定しないという問題が生じる
。本発明は以上のような点にかんがみてなされたもので
、その目的とするところは、種付は試行回数を削減して
種付は作業能率を向上させ、かつ一定にする化合物半導
体単結晶育成装置を提供することにある。
Conventionally, the seeding and pulling processes are performed while visually observing the state of the melt surface through an observation window. in this case,
Since it is not possible to directly measure the temperature of the melt, it is necessary to repeat the seeding process to determine whether the temperature of the melt is appropriate, resulting in problems such as poor work efficiency and inconsistency. The present invention has been made in view of the above points, and its purpose is to reduce the number of seeding trials, improve the seeding work efficiency, and keep it constant during compound semiconductor single crystal growth. The goal is to provide equipment.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために本発明によれば、種結晶を保
持するためのシードホルダーと、シードホルダーを取付
は回転上下動させるためのインナーロッドから構成され
る引上軸を有する、液体封止法により単結晶を引上げる
化合物半導体単結晶育成装置において、測温体が引上軸
に装着されていることを特徴とする化合物半導体単結晶
育成装置が提供される。
In order to achieve the above object, the present invention provides a liquid sealing device having a pulling shaft composed of a seed holder for holding a seed crystal and an inner rod for rotating and moving the seed holder up and down. A compound semiconductor single crystal growth apparatus for pulling a single crystal by a method is provided, which is characterized in that a temperature measuring element is attached to a pulling shaft.

〔作用〕[Effect]

種付けには最適な原料融液温度が存在し、その許容温度
中はきびしく±5℃程度以内である。従って、原料融液
温度を精度よく短時間に知ることが出来れば、種付は作
業能率は向上する。しかしながら、高温の融液温度を直
接測定することは困難であるため、本発明では、種付は
状態における引上軸の特定部分の温度を測定し、あらか
じめ測定しである前記特定部分の温度と融液温度との相
関関係から、融液温度を知る方法をとる。引上軸の測温
個所は、シードホルダーの表面或いは内部、インナーロ
ッドのるつぼ側下端の表面或いは内部が適当であり、ま
た種結晶の温度を直接測定すれば、原料融液面に近いた
め、融液温度を精度よく知ることが出来る。熱電対など
の測温体は測温個所内部に埋め込むか、または表面に接
触させておいてもよい、ただし、LEC法では不活性ガ
ス圧力下で単結晶を育成するため、ガスの対流の影響を
うけて、表面に測温体を装着した場合は埋め込む場合は
ど測定精度はあがらない。
There is an optimum raw material melt temperature for seeding, and the allowable temperature is strictly within about ±5°C. Therefore, if the temperature of the raw material melt can be known accurately and in a short time, the efficiency of seeding will improve. However, since it is difficult to directly measure the temperature of the high-temperature melt, in the present invention, the temperature of a specific part of the pulling shaft in the seeding state is measured, and the temperature of the specific part is measured in advance. A method is used to determine the melt temperature from the correlation with the melt temperature. The appropriate temperature measurement point for the pulling shaft is on the surface or inside of the seed holder, or on the surface or inside of the lower end of the inner rod on the crucible side.Also, if the temperature of the seed crystal is directly measured, it will be close to the surface of the raw material melt. Melt temperature can be determined with high accuracy. A temperature measuring element such as a thermocouple may be embedded inside the temperature measuring point or may be placed in contact with the surface. However, in the LEC method, a single crystal is grown under inert gas pressure, so the influence of gas convection may be avoided. Therefore, if the temperature sensor is attached to the surface, the measurement accuracy will not improve when it is embedded.

〔実施例〕〔Example〕

以下図面に示した実施例に基づいて本発明を説明する。 The present invention will be described below based on embodiments shown in the drawings.

第1図は本発明の一実施例を示す引上軸の部分断面図で
ある。インナーロッド(4)のシードホルダー(2)側
光端部に側面から斜め下方に中心部に向けて穴をあけ、
この穴に熱電対02)が埋め込まれている。
FIG. 1 is a partial sectional view of a pulling shaft showing an embodiment of the present invention. Drill a hole diagonally downward from the side toward the center of the seed holder (2) side light end of the inner rod (4),
A thermocouple 02) is embedded in this hole.

第2図は本発明の他の実施例を示す引上軸の部分断面図
である。この例では、インナーロッド(4)側面から中
心部に向けて開けられた穴はシードホルダー(2)の中
心を貫通して種結晶(1)の中はどに達し、この穴に埋
め込まれた熱電対0りの感温部分は穴の先端、種結晶(
+)の中に位置する。この例では、原料融液に近い部分
の温度を測定するため、正確な融液温度を知ることがで
きるが、単結晶引上げことに種結晶に穴をあけ、熱電対
をセットするとともに、引上げ終了後はセットした熱電
対を取り外すという煩雑さが生じる。
FIG. 2 is a partial sectional view of a pulling shaft showing another embodiment of the present invention. In this example, a hole is drilled from the side of the inner rod (4) toward the center, passes through the center of the seed holder (2), reaches the inside of the seed crystal (1), and the seed crystal (1) is embedded in this hole. The temperature sensing part of the thermocouple is the tip of the hole, the seed crystal (
+). In this example, since the temperature of the part close to the raw material melt is measured, it is possible to know the exact temperature of the melt, but when pulling a single crystal, a hole is made in the seed crystal, a thermocouple is set, and the pulling is completed. After that, it becomes a hassle to remove the set thermocouple.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、測温体が引上軸に
装着されているため、原料融液の温度管理が可能となり
、種付は作業能率が向上し、かつ安定するという優れた
効果がある。
As explained above, according to the present invention, since the temperature measuring element is attached to the pulling shaft, it is possible to control the temperature of the raw material melt, and the seeding has excellent work efficiency and stability. effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる引上げ軸の部分断面図、第2図
は本発明にかかる他の引上軸の部分断面図、第3図は従
来のLEC法による化合物半導体単結晶育成装置の説明
図である。 1・・・種結晶、 2・・・シードホルダー、 3・・
・アウターチューブ、  4・・・インナーロッド、 
 5・・・圧力容器、 6・・・ヒーター、 7・・・
B201、8・・・原料融液、 9・・・るつぼ、 1
0・・・下軸、 11・・・観測用窓、 12・・・熱
電対。
FIG. 1 is a partial sectional view of a pulling shaft according to the present invention, FIG. 2 is a partial sectional view of another pulling shaft according to the present invention, and FIG. 3 is an explanation of a compound semiconductor single crystal growth apparatus using the conventional LEC method. It is a diagram. 1... Seed crystal, 2... Seed holder, 3...
・Outer tube, 4...Inner rod,
5...Pressure vessel, 6...Heater, 7...
B201, 8... Raw material melt, 9... Crucible, 1
0...Lower axis, 11...Observation window, 12...Thermocouple.

Claims (2)

【特許請求の範囲】[Claims] (1)種結晶を保持するためのシードホルダーと、シー
ドホルダーを取付け回転上下動させるためのインナーロ
ッドから構成される引上軸を有する、液体封止法により
単結晶を引上げる化合物半導体単結晶育成装置において
、測温体が引上軸下端近傍に装着されていることを特徴
とする化合物半導体単結晶育成装置。
(1) A compound semiconductor single crystal that pulls a single crystal using the liquid sealing method, which has a pulling shaft consisting of a seed holder for holding the seed crystal and an inner rod for attaching the seed holder and rotating it up and down. A compound semiconductor single crystal growth apparatus characterized in that a temperature measuring element is attached near the lower end of a pulling shaft.
(2)測温体がシードホルダーに取付けられている種結
晶に装着されていることを特徴とする特許請求の範囲第
1項記載の化合物半導体単結晶育成装置。
(2) The compound semiconductor single crystal growth apparatus according to claim 1, wherein the temperature measuring body is attached to a seed crystal attached to a seed holder.
JP62252192A 1987-10-06 1987-10-06 Compound semiconductor single crystal growth equipment Expired - Fee Related JPH0776145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62252192A JPH0776145B2 (en) 1987-10-06 1987-10-06 Compound semiconductor single crystal growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62252192A JPH0776145B2 (en) 1987-10-06 1987-10-06 Compound semiconductor single crystal growth equipment

Publications (2)

Publication Number Publication Date
JPH0196092A true JPH0196092A (en) 1989-04-14
JPH0776145B2 JPH0776145B2 (en) 1995-08-16

Family

ID=17233781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62252192A Expired - Fee Related JPH0776145B2 (en) 1987-10-06 1987-10-06 Compound semiconductor single crystal growth equipment

Country Status (1)

Country Link
JP (1) JPH0776145B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529437A (en) * 1975-07-14 1977-01-25 Fuji Xerox Co Ltd Method for discharging a charged copy sheet
JPS59227797A (en) * 1983-06-03 1984-12-21 Sumitomo Electric Ind Ltd Method for pulling up single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529437A (en) * 1975-07-14 1977-01-25 Fuji Xerox Co Ltd Method for discharging a charged copy sheet
JPS59227797A (en) * 1983-06-03 1984-12-21 Sumitomo Electric Ind Ltd Method for pulling up single crystal

Also Published As

Publication number Publication date
JPH0776145B2 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
US6143070A (en) Silicon-germanium bulk alloy growth by liquid encapsulated zone melting
US5406905A (en) Cast dopant for crystal growing
JP2008063165A (en) Manufacturing method of silicon single crystal
JPH0196092A (en) Device for growing compound semiconductor single crystal
KR20110086985A (en) Melt temperature controlling system and the control method of the same
JPS6341879B2 (en)
KR20120045307A (en) Temperature detecting system and temperature control method for single crystal growing
JPH01212291A (en) Method and apparatus for growing crystal
JP2723249B2 (en) Crystal growing method and crucible for crystal growing
JP3991400B2 (en) Single crystal growth method and apparatus
JP2543449B2 (en) Crystal growth method and apparatus
US6284041B1 (en) Process for growing a silicon single crystal
JPH04259830A (en) Temperature measuring method at time of growing single crystal of semiconductor
JP3125313B2 (en) Single crystal growth method
JPH0532477A (en) Method for growing single crystal
JP2830306B2 (en) Compound semiconductor crystal manufacturing equipment
KR20090074940A (en) Growing apparatus of a single crystal ingot having thermocouple
JPH0543106Y2 (en)
KR940009941B1 (en) Method of mono crystalline growth of dissociative compound semiconductors
KR20150080703A (en) View port for observing ingot growing process and method for growing ingot using the same
JP2710289B2 (en) Method and apparatus for measuring weight of pulled crystal
JPS632895A (en) Production of single crystal consisting of high dissociation pressure compound
JPH0327514B2 (en)
JPS616194A (en) Device for preparing single crystal
Myer A Survey of Semiconductor Materials Technology

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees