JP2543449B2 - Crystal growth method and apparatus - Google Patents

Crystal growth method and apparatus

Info

Publication number
JP2543449B2
JP2543449B2 JP3225277A JP22527791A JP2543449B2 JP 2543449 B2 JP2543449 B2 JP 2543449B2 JP 3225277 A JP3225277 A JP 3225277A JP 22527791 A JP22527791 A JP 22527791A JP 2543449 B2 JP2543449 B2 JP 2543449B2
Authority
JP
Japan
Prior art keywords
crystal
seed crystal
temperature
thermal conductivity
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3225277A
Other languages
Japanese (ja)
Other versions
JPH0543375A (en
Inventor
英樹 堺
聰明 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP3225277A priority Critical patent/JP2543449B2/en
Publication of JPH0543375A publication Critical patent/JPH0543375A/en
Application granted granted Critical
Publication of JP2543449B2 publication Critical patent/JP2543449B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、結晶成長方法および結
晶成長装置におけるるつぼの支持構造に関し、CdTe
のようなII-VI族化合物半導体結晶の成長に好適な技術
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crucible supporting structure in a crystal growing method and a crystal growing apparatus, and relates to CdTe.
And a technique suitable for growing a II-VI group compound semiconductor crystal as described above.

【0002】[0002]

【従来の技術】従来、化合物半導体単結晶のうちGaA
sやInP単結晶はLEC法(液体封止チョクラルスキ
ー法)によって製造されている。これに対し、CdTe
のようなII-VI族化合物半導体単結晶はLEC法による
育成が困難であるため、横型ボート法や垂直徐冷法によ
って育成されている。
2. Description of the Related Art Conventionally, GaA is one of the compound semiconductor single crystals.
s and InP single crystals are manufactured by the LEC method (liquid sealed Czochralski method). On the other hand, CdTe
Since such II-VI compound semiconductor single crystals are difficult to grow by the LEC method, they are grown by the horizontal boat method or the vertical annealing method.

【0003】このうち、垂直徐冷法によるCdTe単結
晶の成長は、一般に、図2(a)に示すような装置によ
り行なわれていた。
Of these, the growth of CdTe single crystals by the vertical slow cooling method has generally been carried out by an apparatus as shown in FIG. 2 (a).

【0004】すなわち、底部が漏斗状をなするつぼ1内
に種結晶2と原料(多結晶)を入れて、BN(窒化ボロ
ン)製のサセプタ3によって支持して石英アンプル4内
に封入する。そして、これを円筒状ヒーター5を有する
炉内に設置し、ヒーター5に給電して、種結晶2より上
の部分が融点以上になるような温度勾配(図2(b)参
照)を形成し、この勾配を保ったまま温度を徐々に下げ
て結晶を成長させるというものである。
That is, a seed crystal 2 and a raw material (polycrystal) are put in a crucible 1 having a funnel shape at the bottom, supported by a susceptor 3 made of BN (boron nitride), and enclosed in a quartz ampoule 4. Then, this is installed in a furnace having a cylindrical heater 5, and power is supplied to the heater 5 to form a temperature gradient (see FIG. 2 (b)) such that a portion above the seed crystal 2 has a melting point or higher. The temperature is gradually lowered while maintaining this gradient to grow crystals.

【0005】上記方法の種付けは、LEC法の種付けと
異なり、種付け時の状態を直接観察しながら行なうこと
が、構造上困難である上、BN製のサセプタ3は、熱伝
導率が高いので種結晶に温度勾配を付けにくく、種付け
位置を再現性よく実現するのは困難であるという欠点が
あった。
Unlike the seeding of the LEC method, the seeding of the above method is structurally difficult to perform while directly observing the state at the time of seeding, and the BN susceptor 3 has a high thermal conductivity. It was difficult to form a temperature gradient on the crystal, and it was difficult to realize the seeding position with good reproducibility.

【0006】上記種付けを再現性良く行なう工夫とし
て、垂直ブリッジマン法において、育成炉下部にアンプ
ル先端を観察するための窓を設け、非接触温度計(赤外
線温度計)によりアンプル先端温度を測定し、アンプル
先端部での相変態の様子を観察し、種付けを再現性良く
行なうことを可能にした成長方法が開示されている(電
材研技報第4巻第2号(1986)14)。この方法
は、種結晶上部が融解するときの位置が赤外線温度計の
温度指示と対応するため、間接的に種付け位置を確認で
きるという利点がある反面、育成装置が大掛りになると
いう欠点があった。
As a device for performing the above seeding with good reproducibility, in the vertical Bridgman method, a window for observing the tip of the ampoule is provided in the lower part of the growth furnace, and the temperature of the ampoule tip is measured by a non-contact thermometer (infrared thermometer). , A method of growth in which the state of phase transformation at the tip of an ampoule is observed and seeding can be performed with good reproducibility is disclosed (Electronic Materials Research Institute Vol. 4, No. 2 (1986) 14). This method has the advantage that the seeding position can be confirmed indirectly because the position when the upper part of the seed crystal melts corresponds to the temperature indication of the infrared thermometer, but it has the disadvantage that the growing device becomes large. It was

【0007】[0007]

【発明が解決しようとする課題】本発明は上記の欠点を
除去したもので、本発明の目的は、垂直徐冷法による結
晶成長において、るつぼ支持構造を改良することによ
り、種結晶融解位置を観察することなく、種付け位置を
再現性良く実現し、単結晶の製造歩留りを向上させるこ
とにある。
DISCLOSURE OF THE INVENTION The present invention eliminates the above-mentioned drawbacks, and an object of the present invention is to observe a seed crystal melting position by improving a crucible supporting structure in crystal growth by a vertical annealing method. Without increasing the reproducibility of the seeding position and improving the production yield of the single crystal.

【0008】[0008]

【課題を解決するための手段】[Means for Solving the Problems]

【手段】本発明は、るつぼ内の原料を融解させてから徐
々に温度を下げることにより種結晶から単結晶を育成す
る方法において、種結晶下部の垂直方向の温度勾配を種
結晶上部の垂直方向の温度勾配より大きくすることを特
徴とする結晶成長方法を提供するものである。
According to the present invention, in a method of growing a single crystal from a seed crystal by melting a raw material in a crucible and then gradually lowering the temperature, the temperature gradient in the vertical direction of the seed crystal lower part is set to the vertical direction of the seed crystal upper part. The present invention provides a crystal growth method characterized by making the temperature gradient larger than the above temperature gradient.

【0009】また、本発明は、円筒状の加熱体と、この
加熱体の内側に配置され、原料の入ったるつぼを支持す
る支持体とからなり、上記加熱体により所望の温度勾配
を形成して、るつぼ内の原料を融解させてから徐々に温
度を下げることにより種結晶から単結晶を育成する装置
において、上記支持体の種結晶周辺部分の材質を上下2
分割とし上半分を熱伝導率の高い材料、下半分を熱伝導
率の低い材料としたことを特徴とする結晶成長装置を提
供するものである。
Further, the present invention comprises a cylindrical heating element and a supporting element which is arranged inside the heating element and which supports a crucible containing a raw material. The heating element forms a desired temperature gradient. In the apparatus for growing a single crystal from a seed crystal by gradually melting the raw material in the crucible and then gradually lowering the temperature, the material around the seed crystal of the support may be changed into upper and lower parts.
The present invention provides a crystal growth apparatus characterized in that the upper half is made of a material having a high thermal conductivity and the lower half is made of a material having a low thermal conductivity.

【0010】[0010]

【作用】上記手段によれば、種結晶の垂直方向の温度勾
配が下部支持体に囲まれた部分で大きくなるため、支持
体周辺部の温度分布が多少変動しても、従来の支持体を
使用していた時に比べ、種付けを行なう位置の変動が減
少し、種付け位置の再現性が向上する。
According to the above means, since the temperature gradient in the vertical direction of the seed crystal becomes large in the portion surrounded by the lower support, even if the temperature distribution around the support slightly fluctuates, the conventional support can be The variation in the position for seeding is reduced and the reproducibility of the seeding position is improved as compared with the time of use.

【0011】[0011]

【実施例】図1には、本発明に係る結晶成長装置の要部
たるサセプターの一実施例が示されている。この実施例
では、種結晶部周囲の上部サセプター14は、例えば高
純度カーボンのような熱伝導率の高い材料からなり、下
部サセプター15は、例えば石英のような熱伝導率の低
い材料からなっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of a susceptor which is a main part of a crystal growth apparatus according to the present invention. In this embodiment, the upper susceptor 14 around the seed crystal portion is made of a material having a high thermal conductivity such as high-purity carbon, and the lower susceptor 15 is made of a material having a low thermal conductivity such as quartz. There is.

【0012】なお、図1において、13は加熱体として
のヒーター、16は石英アンプル12を載置する耐熱レ
ンガであり、加熱体13は図2に示されている従来の装
置と同様に、るつぼ11およびサセプタの外側を囲繞す
るように円筒状に形成され、かつ所定の温度勾配を形成
できるように構成されている。
In FIG. 1, 13 is a heater as a heating element, 16 is a heat-resistant brick on which the quartz ampoule 12 is placed, and the heating element 13 is similar to the conventional apparatus shown in FIG. 11 and the susceptor are formed in a cylindrical shape so as to surround the outside thereof, and are configured so that a predetermined temperature gradient can be formed.

【0013】上記実施例では、熱伝導率の高い材料とし
てカーボンが使用されているが、カーボン以外にも例え
ば窒化ボロン等を用いることができる。また、熱伝導率
の低い材料としては石英以外に例えばアルミナ等を用い
るようにしてもよい。
In the above embodiment, carbon is used as the material having high thermal conductivity, but boron nitride or the like may be used instead of carbon. In addition to quartz, alumina or the like may be used as the material having a low thermal conductivity.

【0014】一例として図1の装置を用いてCdTe単
結晶の成長を行なうための予備実験を行なった。熱伝導
率の高い材料からなる上部サセプター14としては、外
径82mm、厚さ40mmの高純度カーボン製部材を用
い、熱伝導率の低い材料からなる下部サセプター15と
しては、同じく外径82mm、厚さ40mmの石英製部
材を用いた。るつぼ11としては底部の傾斜角が45度
とされたpBN製のものを使用した。種結晶を入れるる
つぼ11の小径部の温度分布を測定するため、るつぼ中
心軸と小径部外壁にそれぞれ石英保護管に入れられたP
R熱電対を上下にスライドできるように設置し、るつぼ
内には1500gのCdTe多結晶を原料として載せ
た。これらを石英アンプル12内に入れて、真空封入し
た後、ヒーター13の内側に設置した。そして、ヒータ
ー13に給電して、一度るつぼ内全体の温度が1092
℃以上になるよう温度制御をし、CdTe多結晶を全部
融解したのち、上部サセプター14と下部サセプター1
5との接触面付近が1092℃になるようヒーター13
を温度制御して、種結晶部分の温度分布を測定した。図
3に測定時の炉壁温度分布(b)と種結晶部の測温結果
(a)を示す。種結晶部下半分は、石英サセプターの影
響で温度勾配が急峻になっていることが確認できた。比
較のため、上部サセプター,下部サセプターともにカー
ボンにした場合と石英にした場合の測温結果を図4
(a),(b)に示す。従来は、図4(a)のような状
態で結晶成長を行なっていたが、この場合、セッティン
グが変わるたびに炉壁の温度分布が同一状態であっても
種結晶部分の温度が微妙に変わり、外側からは中がのぞ
けない構造になっているため、種付け位置が大きく変動
したり、極端な場合は種結晶が融けてしまうこともあっ
て、それが製造歩留りを低下させる要因の一つになって
いた。又、図4(b)のような場合、石英の熱伝導率が
低いので単結晶成長中の熱の逃げる速度が減少し、種付
けが再現性よく行なわれても、育成速度を遅くしなけれ
ばならず、製造効率の低下を招いた。
As an example, a preliminary experiment for growing a CdTe single crystal was conducted using the apparatus shown in FIG. A high-purity carbon member having an outer diameter of 82 mm and a thickness of 40 mm is used as the upper susceptor 14 made of a material having a high thermal conductivity, and the lower susceptor 15 made of a material having a low thermal conductivity is also an outer diameter of 82 mm and a thickness. A quartz member having a thickness of 40 mm was used. As the crucible 11, a crucible made of pBN having an inclination angle of 45 degrees was used. In order to measure the temperature distribution in the small diameter part of the crucible 11 in which the seed crystal is placed, P is placed in a quartz protective tube on the center axis of the crucible and on the outer wall of the small diameter part.
An R thermocouple was installed so that it could slide up and down, and 1500 g of CdTe polycrystal was placed in the crucible as a raw material. These were placed in a quartz ampoule 12, vacuum-sealed, and then placed inside a heater 13. Then, power is supplied to the heater 13 so that the temperature inside the crucible once becomes 1092.
After controlling the temperature so that the temperature becomes ℃ or more and melting all the CdTe polycrystals, the upper susceptor 14 and the lower susceptor 1
Heater 13 so that the vicinity of the contact surface with 5 is 1092 ° C
The temperature was controlled and the temperature distribution of the seed crystal part was measured. FIG. 3 shows the furnace wall temperature distribution (b) during measurement and the temperature measurement result (a) of the seed crystal part. It was confirmed that the lower half of the seed crystal part had a steep temperature gradient due to the influence of the quartz susceptor. For comparison, the temperature measurement results when the upper susceptor and the lower susceptor are both carbon and quartz are shown in FIG.
Shown in (a) and (b). Conventionally, crystal growth was performed in the state as shown in FIG. 4 (a), but in this case, the temperature of the seed crystal portion slightly changes each time the setting changes, even if the temperature distribution on the furnace wall remains the same. However, since the inside cannot be seen from the outside, the seeding position may change greatly, and in extreme cases, the seed crystal may melt, which is one of the factors that reduce the manufacturing yield. Was becoming. Further, in the case of FIG. 4 (b), since the thermal conductivity of quartz is low, the rate of heat escaping during single crystal growth is reduced, and even if seeding is performed with good reproducibility, the growth rate must be slowed. As a result, the production efficiency was lowered.

【0015】本発明により、種付けを行なった結果、種
付けの位置はほとんどずれることがなくなり、製造歩留
りも向上した。
According to the present invention, as a result of seeding, the position of seeding is hardly displaced, and the manufacturing yield is improved.

【0016】[0016]

【発明の効果】以上説明したように本発明は、垂直徐冷
法により単結晶を育成する装置において、るつぼを支持
する支持体の種結晶周辺部を上下二分割し、上半分は熱
伝導率の高い材質、下半分は熱伝導率の低い材質で構成
することにより、種結晶下部の温度勾配を急峻にし、周
囲の温度環境が多少変化しても種付け位置がほとんど変
化しなくなり、種付けが再現性良く実現できるようにな
ったので、製造歩留りが向上するという利点がある。
As described above, according to the present invention, in the apparatus for growing a single crystal by the vertical annealing method, the peripheral portion of the seed crystal of the support for supporting the crucible is divided into upper and lower parts, and the upper half has high thermal conductivity. The material, the lower half of which is made of a material with low thermal conductivity, makes the temperature gradient in the lower part of the seed crystal steep, and the seeding position hardly changes even if the ambient temperature environment changes slightly. Since it can be realized, there is an advantage that the manufacturing yield is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る結晶成長装置の要部の一実施例を
示す断面正面図である。
FIG. 1 is a sectional front view showing an embodiment of a main part of a crystal growth apparatus according to the present invention.

【図2】(a)および(b)は、従来の垂直徐冷法によ
る単結晶成長装置の一例を示す断面図およびその温度分
布を示す説明図である。
2 (a) and (b) are a cross-sectional view showing an example of a conventional single crystal growth apparatus by a vertical annealing method and an explanatory view showing its temperature distribution.

【図3】(a)および(b)は、本発明装置による種付
け時の種結晶温度分布、およびその炉壁温度分布を示す
説明図である。
3 (a) and 3 (b) are explanatory views showing a seed crystal temperature distribution at the time of seeding by the device of the present invention and a furnace wall temperature distribution thereof.

【図4】(a),(b)は図3(a)に対する比較例を
示す説明図である。
4A and 4B are explanatory views showing a comparative example with respect to FIG.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 るつぼ内の原料を融解させてから徐々に
温度を下げることにより種結晶から単結晶を育成する方
法において、種結晶下部の垂直方向の温度勾配を種結晶
上部の垂直方向の温度勾配より大きくすることを特徴と
する結晶成長方法。
1. A method for growing a single crystal from a seed crystal by melting a raw material in a crucible and then gradually lowering the temperature, wherein a temperature gradient in the vertical direction of the lower portion of the seed crystal is set to a temperature in the vertical direction of the upper portion of the seed crystal. A method for growing a crystal characterized by making it larger than a gradient.
【請求項2】 円筒状の加熱体と、この加熱体の内側に
配置され、原料の入ったるつぼを支持する支持体とから
なり、上記加熱体により所望の温度勾配を形成して、る
つぼ内の原料を融解させてから徐々に温度を下げること
により種結晶から単結晶を育成する装置において、上記
支持体の種結晶周辺部分の材質を上下2分割とし上半分
を熱伝導率の高い材料、下半分を熱伝導率の低い材料と
したことを特徴とする結晶成長装置。
2. A cylindrical heating body, and a supporting body disposed inside the heating body and supporting a crucible containing raw materials, wherein the heating body forms a desired temperature gradient, and the inside of the crucible is formed. In a device for growing a single crystal from a seed crystal by gradually melting the raw material and then gradually lowering the temperature, the material around the seed crystal of the support is divided into upper and lower parts, and the upper half is a material having high thermal conductivity, A crystal growth apparatus characterized in that the lower half is made of a material having a low thermal conductivity.
【請求項3】 上記熱伝導率の高い材料がカーボンまた
は窒化ボロンであり、上記熱伝導率の低い材料が石英ま
たはアルミナであることを特徴とする結晶成長装置。
3. A crystal growth apparatus, wherein the material having high thermal conductivity is carbon or boron nitride, and the material having low thermal conductivity is quartz or alumina.
JP3225277A 1991-08-12 1991-08-12 Crystal growth method and apparatus Expired - Lifetime JP2543449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3225277A JP2543449B2 (en) 1991-08-12 1991-08-12 Crystal growth method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3225277A JP2543449B2 (en) 1991-08-12 1991-08-12 Crystal growth method and apparatus

Publications (2)

Publication Number Publication Date
JPH0543375A JPH0543375A (en) 1993-02-23
JP2543449B2 true JP2543449B2 (en) 1996-10-16

Family

ID=16826811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3225277A Expired - Lifetime JP2543449B2 (en) 1991-08-12 1991-08-12 Crystal growth method and apparatus

Country Status (1)

Country Link
JP (1) JP2543449B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5685823A (en) * 1994-03-30 1997-11-11 Asahi Kogaku Kogyo Kabushiki Kaisha End structure of endoscope
JP2005298301A (en) * 2004-04-15 2005-10-27 Sumitomo Electric Ind Ltd Method for producing compound single crystal and single crystal growing vessel with holding tool used in the same

Also Published As

Publication number Publication date
JPH0543375A (en) 1993-02-23

Similar Documents

Publication Publication Date Title
JP5497053B2 (en) Single crystal germanium crystal growth system, method and substrate
JP2003277197A (en) CdTe SINGLE CRYSTAL, CdTe POLYCRYSTAL AND METHOD FOR PRODUCING THE SINGLE CRYSTAL
EP1774068A1 (en) Method of growing single crystals from melt
Zupp et al. Growth of transparent, striation-free Ba2NaNb5O15 single crystals by a low-thermal-gradient Czochralski technique
US5135726A (en) Vertical gradient freezing apparatus for compound semiconductor single crystal growth
JP2543449B2 (en) Crystal growth method and apparatus
JP3109950B2 (en) Method for growing semiconductor single crystal
JP3991400B2 (en) Single crystal growth method and apparatus
JP2704032B2 (en) Method for manufacturing compound semiconductor single crystal
JPH01317188A (en) Production of single crystal of semiconductor and device therefor
JP3788156B2 (en) Method for producing compound semiconductor single crystal and PBN container used therefor
JP2823257B2 (en) Semiconductor single crystal manufacturing equipment
JP2004203721A (en) Apparatus and method for growing single crystal
JP2690420B2 (en) Single crystal manufacturing equipment
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JP3154351B2 (en) Single crystal growth method
KR101956754B1 (en) DEVICE FOR SINGLE CRYSTAL GROWTH OF GaAs
JPH0559873B2 (en)
JPH0341432B2 (en)
JP3125313B2 (en) Single crystal growth method
JPH04187585A (en) Device of growing crystal
JPH0316988A (en) Production device of single crystal of compound semiconductor
JPH08319189A (en) Production of single crystal and device therefor
JPS60180989A (en) Manufacture of compound single crystal
JPH0380180A (en) Device for producing single crystal