JPH0316988A - Production device of single crystal of compound semiconductor - Google Patents

Production device of single crystal of compound semiconductor

Info

Publication number
JPH0316988A
JPH0316988A JP15135089A JP15135089A JPH0316988A JP H0316988 A JPH0316988 A JP H0316988A JP 15135089 A JP15135089 A JP 15135089A JP 15135089 A JP15135089 A JP 15135089A JP H0316988 A JPH0316988 A JP H0316988A
Authority
JP
Japan
Prior art keywords
furnace
compound semiconductor
single crystal
temperature
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15135089A
Other languages
Japanese (ja)
Inventor
Seiji Mizuniwa
清治 水庭
Toru Kurihara
徹 栗原
Akio Hattori
昭夫 服部
Mikio Kashiwa
幹雄 柏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP15135089A priority Critical patent/JPH0316988A/en
Publication of JPH0316988A publication Critical patent/JPH0316988A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To stabilize state of solid-liquid interface, to make a melt side convex and to obtain high-quality single crystal by equipping a cooling means from part of a melt forming furnace at least to an interface control furnace above a growth furnace. CONSTITUTION:A horizontal boat 2 provided with a compound semiconductor raw material 6 and a seed crystal 3 is placed at one end of a quartz ampule 1, a constituent element 7 having higher volatility among constituent elements of the compound semiconductor is laid at the other end and the ampule 1 is sealed in vacuum. Then the ampule 1 is set in a supporting tube 13 and introduced into a growth furnace consisting of a cooling means 14 from part of high-temperature furnaces 8 and 11, a melt forming furnace 9, an interface control furnace 10, a low-temperature furnace 12 and equipped with a cooling means from part of the furnace 9 at least to the furnace 10. The raw materials 6 and 7 in the boat are reacted under heating by the furnaces 8-12, temperature in the furnace 9 is raised to 1,260-1,280 deg.C to form a melt zone 5, the furnace body is moved, the seed crystal 3 is brought into contact with the melt zone 5, the seed is immersed, then the furnace body is moved in the opposite direction to grow compound semiconductor single crystal.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、水平ゾーンメルティング法による化合物半導
体単結晶製造装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a compound semiconductor single crystal manufacturing apparatus using a horizontal zone melting method.

[従来の技術] ガリウム・ヒ素(GaAs)等化合物半導体の単結晶を
製造するには幾つかの方式が知られているが、例えば特
公昭56−32272号公報には横形ボート内で溶融し
たGaAsの温度を制御してGaAs単結晶を製逍する
場合、結晶威長炉のボートの上側に当る部分に放熱孔等
の放熱手段を設けることにより固液界面が安定に制御で
きることが開示されている。ここで開示されている方法
は温度傾斜(GF)法を用いて単結晶を成長させる場合
に特に効果があり、放熱部の長さを結晶の長さと同一に
することにより良好な単結晶を得ることができる。
[Prior Art] Several methods are known for manufacturing single crystals of compound semiconductors such as gallium arsenide (GaAs). When producing GaAs single crystals by controlling the temperature of . The method disclosed here is particularly effective when growing single crystals using the temperature gradient (GF) method, and good single crystals can be obtained by making the length of the heat dissipation part the same as the length of the crystal. be able to.

[発明が解決しようとする課題コ 上述したようにGF法を用いてGaAsの単結晶を製造
するような場合は成長炉のボートの上方側に当る部分に
結晶の長さと同一長さの放熱部を設けることにより良好
な単結晶が得られるか、いわゆる水平ブリッジマン(H
B)法等を用いて単結晶を成長させる場合は、例えば炉
が移動しても固液界面の位置は成長炉の長手方向に対し
て常に略同一の位置となる。これに対してゾーンメルト
(ZM)法を用いて単結晶を成長させる場合は、ピーク
温度を形成するメルト形成炉と固液界面を形成する界面
制御炉とが接近して配置されているためメルト形成炉の
温度が界面制御炉の温度に影響を与える。よってZM法
においては上記放熱手段の位置および長さが適切に設定
されないと放熱の効果が現われず固液界面が成長方向に
対し凹面化して結晶成長か不安定になる現象か観察され
た。
[Problems to be Solved by the Invention] As mentioned above, when producing a GaAs single crystal using the GF method, there is a heat dissipation part of the same length as the length of the crystal in the upper part of the boat of the growth furnace. A good single crystal can be obtained by providing a so-called horizontal Bridgman (H
When growing a single crystal using method B), the position of the solid-liquid interface is always approximately the same in the longitudinal direction of the growth furnace, even if the furnace moves, for example. On the other hand, when growing single crystals using the zone melt (ZM) method, the melt forming furnace that forms the peak temperature and the interface control furnace that forms the solid-liquid interface are placed close to each other. The temperature of the forming furnace influences the temperature of the interface control furnace. Therefore, in the ZM method, it has been observed that unless the position and length of the heat dissipation means are set appropriately, the heat dissipation effect is not achieved and the solid-liquid interface becomes concave with respect to the growth direction, resulting in unstable crystal growth.

本発明の目的は、水平ZM法において安定して単結晶を
成長させる化合物半導体単結晶製造装置を提供すること
にある。
An object of the present invention is to provide a compound semiconductor single crystal manufacturing apparatus that can stably grow a single crystal using the horizontal ZM method.

[課通を解決するための手段] 本発明は、化合物半導体の原料を収容する横形ボー1・
並びに前記化合物半導体の構或元索のうちより揮発性の
高い描成元索をそれぞれ所定位置に設置して真空封入す
る石英アンプルと、該石英アンプルの外周に設けられて
前記化合物半導体原料を該原料の融点以下の温度に加軌
する高温炉、前記ポート内温度にピーク値を形成するメ
ルト形成炉および前記単結晶成長時に固液界面を形成す
る界面制御炉並びに前記揮発性の高い構成元素を加熱す
る蒸気圧h11償用炉により構威される或長炉とを有す
る化合物半導体単結晶製造装置において、前記成長炉の
上方に、前記メルト形成炉の部分から少なくとも前記界
面制御炉にわたり冷却手段を設けたものである。
[Means for solving departmental problems] The present invention provides a horizontal board 1 for accommodating raw materials for compound semiconductors.
In addition, a quartz ampoule is provided in which the more volatile component of the compound semiconductor is placed in a predetermined position and vacuum-sealed, and a quartz ampoule is provided on the outer periphery of the quartz ampoule to contain the compound semiconductor raw material. A high-temperature furnace that accelerates the temperature to a temperature below the melting point of the raw material, a melt forming furnace that forms a peak value at the temperature inside the port, an interface control furnace that forms a solid-liquid interface during the growth of the single crystal, and the highly volatile constituent elements. In a compound semiconductor single crystal production apparatus having a long furnace constituted by a heating vapor pressure h11 compensation furnace, a cooling means is provided above the growth furnace from a portion of the melt forming furnace to at least the interface controlled furnace. It was established.

[作   用] 本発明の化合物半導体単鈷晶製造装置では水平ZM法に
より例えばGaAs単結晶を製造する場合、メルト形成
炉の温度ピーク値を形戊する位置から固液界面が形成さ
れる界面制御炉の位置にわたり赦熱孔または水冷勢1等
の冷却手段を設けてあるので、この赦熱効果により固液
界面の状態か安定化されてメルト側か凸面となり、高品
質のlli結晶を得ることかできる。
[Function] In the compound semiconductor single crystal manufacturing apparatus of the present invention, when manufacturing, for example, a GaAs single crystal by the horizontal ZM method, interface control is performed so that a solid-liquid interface is formed from a position that shapes the temperature peak value of the melt forming furnace. Since a cooling means such as a heat absorbing hole or a water cooling force is provided across the furnace, this heat absorbing effect stabilizes the state of the solid-liquid interface and makes the melt side convex, making it possible to obtain high quality LLI crystals. I can do it.

3 [実施例] 以下、本発明の一実施例について図を用いて説明する。3 [Example] An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の化合物半導体単結晶製迭装置の一丈施
例を示す説明図で、同図(a)は断面図、同図(b)は
平面図を示す。また同図CC)は炉内温度分布図で横軸
は成長炉の長さし、縦軸は温度Tを示す。
FIG. 1 is an explanatory view showing a one-length embodiment of the compound semiconductor single crystal production apparatus of the present invention, with FIG. 1(a) showing a sectional view and FIG. 1(b) showing a plan view. Figure CC) is a temperature distribution diagram in the furnace, where the horizontal axis represents the length of the growth furnace and the vertical axis represents the temperature T.

第1図において、1は石英アンプル、2は石英ボート、
3は種結晶、4はGaAs単結晶、5はGaAsのメル
トゾーン、6は多結晶、7はA s ,8は高温炉、9
はメルトゾーン5を形成するメルト形成炉、10は固液
界面を制御する界面制御炉、11は高温炉、12はAs
7を加熱する低温炉、13は炭化けい素(S i C)
の支持管、14は放熱孔を示す。またAは温度Tがピー
クを示す位置、Bは固液昇面の位置、CはA点よりB点
までの距離、1は赦八孔14の長さを示す。
In Figure 1, 1 is a quartz ampoule, 2 is a quartz boat,
3 is a seed crystal, 4 is a GaAs single crystal, 5 is a GaAs melt zone, 6 is a polycrystal, 7 is As, 8 is a high temperature furnace, 9
10 is an interface control furnace that controls the solid-liquid interface; 11 is a high-temperature furnace; 12 is an As
7 is a low temperature furnace for heating, 13 is silicon carbide (S i C)
14 indicates a heat radiation hole. Further, A indicates the position where the temperature T peaks, B indicates the position of the solid-liquid rising surface, C indicates the distance from point A to point B, and 1 indicates the length of the eight-hole hole 14.

この装置を川いてGaAs単粘晶を製造する場合は石英
ボー1− 2の中に原料のGa2000gと秤結晶3を
入れて石英アンプル1の一方の端に置4 き、他端にはAs7を2200g入れて石英アンプル1
を真空封止する。この石英アンプル1を支持管13の中
にセットして高温炉311. メルト形成炉9、界面制
御炉10、低温炉12により加熱する。このとき同図(
c)に示すように低温炉12の温度を610℃にして石
英アンプル1内の圧力をAs圧の1 atmに保ちこの
状態で炉8〜11の温度を1200°Cに」二昇させて
石英ボー1・2内のGaとAsにより合成反応を行なわ
せる。
When using this device to produce GaAs single crystal, put 2000 g of Ga as a raw material and a weighing crystal 3 into a quartz bowl 1-2, place it on one end of a quartz ampoule 1, and place As7 on the other end. 1 quartz ampoule with 2200g
Vacuum seal. This quartz ampoule 1 is set in the support tube 13 and placed in a high temperature furnace 311. Heating is performed using a melt forming furnace 9, an interface control furnace 10, and a low temperature furnace 12. At this time, the same figure (
As shown in c), the temperature of the low-temperature furnace 12 is set to 610°C, the pressure inside the quartz ampoule 1 is kept at 1 atm of As pressure, and in this state, the temperature of the furnaces 8 to 11 is raised to 1200°C to quartz. A synthesis reaction is carried out using Ga and As in Bo 1 and 2.

ついでメルI・形成炉9の温度を1260゜C〜128
0℃に昇温してGaAsのメルトゾーン5を形成した後
、炉体を移動させて種結晶3とメルトゾーン5を接触さ
せてシード付を行なう。次に炉体を5〜10■/時の速
度で前の場合と反対方向に移動させてGaAs単結晶を
或長させ、その後約100℃/gの温度で室温まで冷却
して単結晶とする。
Then, the temperature of Mel I/forming furnace 9 was set to 1260°C to 128°C.
After raising the temperature to 0° C. to form a GaAs melt zone 5, the furnace body is moved to bring the seed crystal 3 into contact with the melt zone 5 to perform seeding. Next, the furnace body is moved in the opposite direction to the previous case at a speed of 5 to 10 cm/hour to elongate the GaAs single crystal, and then cooled to room temperature at a temperature of about 100°C/g to form a single crystal. .

このようにしてGaAsのqi結晶約4150gを得る
ことができるか、この場合、放熱孔14の長さ1を変化
させて固液界面形状を観察した粘果を第1表に示す。
Approximately 4150 g of qi crystal of GaAs can be obtained in this manner. In this case, Table 1 shows the results obtained by observing the shape of the solid-liquid interface while changing the length 1 of the heat dissipation hole 14.

同表は放熱孔14を界面制御炉10にのみ取付けた場合
と界面制御炉10およびメルト形成炉9の両者に共通と
なるように取付けた場合(第1図(b))について放熱
孔長さ1と固液界面形状との関係を示すが、同表より明
らかなように放熱孔14を界面制御炉10にのみ取付け
た場合は放熱孔14を150IllIIIまで長くして
も固液界面の形状は凹面のままで良好な結晶威長が得ら
れない。これに対して放熱孔14をメルト形成炉9と界
面制御炉10の両者にまたがるように取付けた場合は、
放熱孔14の長さ1を温度がピークとなる位置Aより固
液界面位置Bまでの距離C=801IIIllより長く
することにより固液界面形状は凸面となり良好な成長が
得られることが分かる。
The table shows the length of the heat dissipation hole for the case where the heat dissipation hole 14 is installed only in the interface controlled furnace 10 and the case where it is installed in common to both the interface controlled furnace 10 and the melt forming furnace 9 (Fig. 1(b)). 1 and the shape of the solid-liquid interface.As is clear from the table, when the heat radiation hole 14 is installed only in the interface control furnace 10, the shape of the solid-liquid interface will change even if the heat radiation hole 14 is lengthened to 150IllIII. Good crystal height cannot be obtained because the surface remains concave. On the other hand, when the heat radiation hole 14 is installed so as to span both the melt forming furnace 9 and the interface control furnace 10,
It can be seen that by making the length 1 of the heat radiation hole 14 longer than the distance C=801IIIll from the temperature peak position A to the solid-liquid interface position B, the solid-liquid interface shape becomes convex and good growth can be obtained.

7 同表に示すように固液界面形状がやや凸面および凸面で
単結晶が安定に成長するためには{一100mm以上と
することが必要で、さらに、放熱孔14の長さ1を温度
ピーク値の位置Aより単結晶4の反対方向へ10011
1111以上延長し、固液界面位置Bより単結晶4の方
向に1001以上延長してC−80mmを含めJ’−2
80mn+以上とすれば一層良好な結果を得ることがで
きる。
7 As shown in the same table, in order for the solid-liquid interface shape to be slightly convex or convex and for stable growth of a single crystal, it is necessary to set it to 100 mm or more. 10011 in the opposite direction of single crystal 4 from value position A
Extend by 1111 or more and extend by 1001 or more in the direction of single crystal 4 from the solid-liquid interface position B to J'-2 including C-80mm.
If it is 80 m+ or more, even better results can be obtained.

なお、上述の場合は戊長炉は通常使用される抵抗加熱式
電気炉の場合を対象としたが、その他高周波加熱炉やゴ
ールドイメージ炉(高出力赤外線炉)に対しても同様に
適用することができる。
In the above case, the long furnace is a resistance-heating electric furnace that is commonly used, but the same applies to other high-frequency heating furnaces and gold image furnaces (high-power infrared furnaces). I can do it.

[発明の効果] 以上述べたように本発明によれば次のような効果が得ら
れる。
[Effects of the Invention] As described above, according to the present invention, the following effects can be obtained.

(1)結晶の長さ方向におけるドーバント濃度が均一と
なり特性が安定でかつ均一な単結晶を得ることができる
(1) The dopant concentration in the length direction of the crystal is uniform, and a single crystal with stable and uniform properties can be obtained.

(2)クローム(Cr) ドープの半絶縁性基板に適用
する場合、インゴット内のCr濃度のバラツキを低減す
ることができ良好な特性を得ることができる。
(2) When applied to a chromium (Cr) doped semi-insulating substrate, it is possible to reduce variations in the Cr concentration within the ingot and obtain good characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の化合物半導体単結晶製造装置の一実施
例を示す説明図である。 1:石英アンプル、 2:石英ボート、 3:種結晶、 4:GaAs単結晶、 5:GaAsメルトゾーン、 6:多結晶、 7:As, 8,11:高温炉、 9:メルト形成炉、 10;界面制御炉、 12:低温炉、 14。放熱孔。
FIG. 1 is an explanatory diagram showing an embodiment of the compound semiconductor single crystal manufacturing apparatus of the present invention. 1: Quartz ampoule, 2: Quartz boat, 3: Seed crystal, 4: GaAs single crystal, 5: GaAs melt zone, 6: Polycrystal, 7: As, 8, 11: High temperature furnace, 9: Melt forming furnace, 10 ; Interface controlled furnace, 12: Low temperature furnace, 14. Heat radiation hole.

Claims (1)

【特許請求の範囲】[Claims] 1、化合物半導体の原料を収容する横形ボート並びに前
記化合物半導体の構成元素のうちより揮発性の高い構成
元素をそれぞれ所定位置に設置して真空封入する石英ア
ンプルと、該石英アンプルの外周に設けられて前記化合
物半導体原料を該原料の融点以下の温度に加熱する高温
炉、前記ボート内温度にピーク値を形成するメルト形成
炉および前記単結晶成長時に固液界面を形成する界面制
御炉並びに前記揮発性の高い構成元素を加熱する蒸気圧
補償用炉により構成される成長炉とを有する化合物半導
体単結晶製装置において、前記成長炉の上方に、前記メ
ルト形成炉の部分から少なくとも前記界面制御炉にわた
り冷却手段を設けたことを特徴とする化合物半導体単結
晶製造装置。
1. A horizontal boat containing raw materials for a compound semiconductor, a quartz ampoule in which the more volatile constituent elements of the compound semiconductor are placed at predetermined positions and vacuum sealed; a high-temperature furnace that heats the compound semiconductor raw material to a temperature below the melting point of the raw material, a melt forming furnace that forms a peak value at the temperature inside the boat, an interface control furnace that forms a solid-liquid interface during the single crystal growth, and the volatilization furnace. In a compound semiconductor single crystal manufacturing apparatus having a growth furnace constituted by a vapor pressure compensation furnace for heating constituent elements with high properties, above the growth furnace, extending from a portion of the melt forming furnace to at least the interface control furnace. A compound semiconductor single crystal manufacturing apparatus characterized by being provided with a cooling means.
JP15135089A 1989-06-14 1989-06-14 Production device of single crystal of compound semiconductor Pending JPH0316988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15135089A JPH0316988A (en) 1989-06-14 1989-06-14 Production device of single crystal of compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15135089A JPH0316988A (en) 1989-06-14 1989-06-14 Production device of single crystal of compound semiconductor

Publications (1)

Publication Number Publication Date
JPH0316988A true JPH0316988A (en) 1991-01-24

Family

ID=15516639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15135089A Pending JPH0316988A (en) 1989-06-14 1989-06-14 Production device of single crystal of compound semiconductor

Country Status (1)

Country Link
JP (1) JPH0316988A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102433585A (en) * 2011-12-08 2012-05-02 浙江绿谷光伏科技有限公司 Thermal field structure of quasi-monocrystal ingot furnace
CN102703968A (en) * 2012-06-05 2012-10-03 湖南红太阳光电科技有限公司 Method and device for controlling seed crystal melting degree through gas flow in single crystal casting process
US10259997B2 (en) 2006-11-24 2019-04-16 Ge Phosphors Technology, Llc Phosphor, method of producing the same, and light emitting apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10259997B2 (en) 2006-11-24 2019-04-16 Ge Phosphors Technology, Llc Phosphor, method of producing the same, and light emitting apparatus
CN102433585A (en) * 2011-12-08 2012-05-02 浙江绿谷光伏科技有限公司 Thermal field structure of quasi-monocrystal ingot furnace
CN102703968A (en) * 2012-06-05 2012-10-03 湖南红太阳光电科技有限公司 Method and device for controlling seed crystal melting degree through gas flow in single crystal casting process

Similar Documents

Publication Publication Date Title
JPH07172998A (en) Production of single crystal of silicon carbide
US20060260536A1 (en) Vessel for growing a compound semiconductor single crystal, compound semiconductor single crystal, and process for fabricating the same
US4619811A (en) Apparatus for growing GaAs single crystal by using floating zone
JPH0316988A (en) Production device of single crystal of compound semiconductor
JP2543449B2 (en) Crystal growth method and apparatus
JPH05319973A (en) Single crystal production unit
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JPH069025Y2 (en) Compound semiconductor single crystal manufacturing equipment
JP2773441B2 (en) Method for producing GaAs single crystal
JPS6090897A (en) Method and apparatus for manufacturing compound semiconductor single crystal
JP2645491B2 (en) Method for growing compound semiconductor single crystal
JPH0449185Y2 (en)
JPH0341432B2 (en)
JPH08319189A (en) Production of single crystal and device therefor
JPH0380180A (en) Device for producing single crystal
JPH0867593A (en) Method for growing single crystal
JPH0733303B2 (en) Crystal growth equipment
JPH02149494A (en) Method for growing compound semiconductor single crystal
JPS63134594A (en) Production of single crystal of iii-v compound semiconductor
JPS59203793A (en) Preparation of semiinsulative ga-as single crystal
JPH08290991A (en) Method for growing compound semiconductor single crystal
JPH08104591A (en) Apparatus for growing single crystal
JPS62207799A (en) Method and device for producing iii-v compound semiconductor single crystal
JPH11292680A (en) Production of compound semiconductor single crystal and ampule for producing single crystal
JPH02229783A (en) Method for growing single crystal of compound semiconductor by vertical type boat method