JPS63134594A - Production of single crystal of iii-v compound semiconductor - Google Patents

Production of single crystal of iii-v compound semiconductor

Info

Publication number
JPS63134594A
JPS63134594A JP27753186A JP27753186A JPS63134594A JP S63134594 A JPS63134594 A JP S63134594A JP 27753186 A JP27753186 A JP 27753186A JP 27753186 A JP27753186 A JP 27753186A JP S63134594 A JPS63134594 A JP S63134594A
Authority
JP
Japan
Prior art keywords
boat
group
single crystal
ampule
ampoule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27753186A
Other languages
Japanese (ja)
Inventor
Mikio Kashiwa
幹雄 柏
Masaya Onishi
大西 正哉
Seiji Mizuniwa
清治 水庭
Michinori Wachi
三千則 和地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP27753186A priority Critical patent/JPS63134594A/en
Publication of JPS63134594A publication Critical patent/JPS63134594A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To contrive to form high-quality single crystal of compound semiconductor in setting an ampule having a sealed boat in a crystal growing furnace and forming single crystal of III-V compound semiconductor, by laying a group V element to compensate pressure in the ampule and a heat shielding plate in the ampule. CONSTITUTION:An ampule 2 having a sealed boat 1 is set in a crystal growing furnace, a group III element and a group V element in the boat 2 are subjected to eutectic melting in a ratio of chemical equivalent, the boat is controlled in such a way that temperature distribution 9 produced in the boat 2 is transferred in the lengthwise direction and seed crystal 4 set at the end of the boat 2 is brought into contact with melt 3 to gradually form single crystal 5. The above-mentioned constitution is provided with the following constitution. Namely, at the end on the opposite side to the boat 2 in the ampule 1, a group V element 6 to compensate the pressure in the ampule 1 constant by its vapor pressure and a heat shielding plate 7 is set between the group V element 6 and the boat 2 so that radiation heat radiating from a high-temperature part 10 to the group V element 6 is shielded and reduction in the pressure compensating function is prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、III−V族化合物半導体単結量の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a group III-V compound semiconductor single crystal.

[従来の技術] ガリウム・ヒソ(GaAs)、インジウム・リン(In
P)、インジウム−1=ソ(InAs)などの■−v族
化合物半導体単結晶の製造方法に関しては、例えば水平
ブリッジマン法(H一方法)や特開昭58−15659
9号公報に開示されている温度傾斜法(GF法)などが
知られている。
[Prior art] Gallium phosphorus (GaAs), indium phosphide (In
Regarding the manufacturing method of ■-v group compound semiconductor single crystals such as P) and indium-1-sol (InAs), for example, the horizontal Bridgman method (H-method) and JP-A-58-15659
The temperature gradient method (GF method) disclosed in Japanese Patent No. 9 is known.

これらの方法は融液の入ったボートとこれを加熱する加
熱炉の間には移動方式に相違はあるが基本的には同一方
法といえるもので、長尺のボート内に■族元素とV族元
素とを化学当量の割合で共融させ、ボートの良さ方向に
形成された温度勾配を一定に保持しながら同相、液相の
境界面をボートの長手方向に移動して種結晶から徐々に
結晶化させて単結晶を製造するものである。
Although there are differences in the transfer method between the boat containing the melt and the heating furnace that heats it, these methods can basically be said to be the same method. The group elements are eutectic in a chemical equivalent ratio, and the boundary between the same phase and liquid phase is moved in the longitudinal direction of the boat while keeping the temperature gradient formed in the direction of the boat constant, gradually starting from the seed crystal. Single crystals are produced by crystallization.

[発明が解決しようとする問題点] 上述した製造方法を用いる場合は、結晶の化学量論(ス
トイキオメトリ−)に基づく組成を保持するため、アン
プル内にV族元素を挿入し、その解離圧と化合物半導体
の融点における■族元素のw4離圧とが等しくなるよう
な状態にする必要がある。
[Problems to be solved by the invention] When using the above-mentioned manufacturing method, in order to maintain the composition based on the stoichiometry of the crystal, a group V element is inserted into the ampoule and its dissociation is performed. It is necessary to create a state in which the pressure is equal to the w4 separation pressure of the group Ⅰ element at the melting point of the compound semiconductor.

GaASの場合を例にとると、GaASの融点1238
℃におけるASの解離圧は約1気圧であるから、アンプ
ルの内部を1気圧に保つ必要が生ずることになるが、こ
れは温度610’CにおけるASの蒸気圧が1気圧であ
ることにより、アンプルの内部にAsを配置し、これを
610℃に加熱することにより、ASが圧力補償要素と
して動作し、アンプル内の圧力が一定に保たれることに
なる。
Taking the case of GaAS as an example, the melting point of GaAS is 1238
Since the dissociation pressure of AS at 610'C is approximately 1 atm, it is necessary to maintain the inside of the ampoule at 1 atm. This is because the vapor pressure of AS at a temperature of 610'C is 1 atm. By placing As inside the ampoule and heating it to 610° C., the AS acts as a pressure compensating element and the pressure inside the ampoule is kept constant.

しかし、このままでは、アンプル始め各容器が石英製で
熱伝導がよいため融液附近の高温輻射熱がアンプル内を
通過してASに熱影響を与え、しかもこの影響は結晶の
固化に伴って変化するのでAs周辺の温度が変動してA
Sの圧力補償要素としての効果が達成できないことにな
る。この現象は前述のH−B法およびGF法のいづれの
場合にも生ずるらので好ましくない現象である。
However, if things continue as they are, since the ampoule and other containers are made of quartz and have good thermal conductivity, high-temperature radiant heat near the melt will pass through the ampoule and have a thermal effect on the AS, and this effect will change as the crystal solidifies. Therefore, the temperature around As fluctuates and A
This means that the effect of S as a pressure compensation element cannot be achieved. This phenomenon occurs in both the above-mentioned HB method and GF method, and is therefore an undesirable phenomenon.

本発明の目的は、高温部から生ずる輻射熱の影響を減少
させ安定に単結晶を成長させる■−v族化合物半導体単
結晶の製造方法を提供することにある。
An object of the present invention is to provide a method for producing a single-crystalline compound semiconductor of group 1-V compound, which reduces the influence of radiant heat generated from a high-temperature section and allows stable growth of the single crystal.

[問題点を解決するための手段] 本発明は、結晶成長炉内にボートの封入されたアンプル
を設置し、前記ボート内では■族元素とV族元素とを化
学当量の割合で共融させ、このボートに生ずる温度分布
が長さ方向に移動するにように制御を加え、前記ボート
内の端部に設けられた種結晶と前記融液とを接合させて
徐々に単結晶を生成する■−v族化合物半導体単結晶の
製造方法において、前記アンプル内の前記ボートと反対
側の端部に、その蒸気圧によりこのアンプル内の圧力が
一定となるように補償するV族元素を配置し、このV族
元素と前記ボートとの間には前記ボートの高温部よりこ
のV族元素へ輻射する輻射熱を遮断して前記圧力の補償
機能の低下を防止する熱遮断板が設けであることを特徴
とし、輻射熱の影響を取除き安定に結晶が成長するよう
にして目的の達成を計ったものである。
[Means for Solving the Problems] The present invention includes installing an ampoule in which a boat is enclosed in a crystal growth furnace, and eutecticizing a group (I) element and a group V element in a chemical equivalent ratio in the boat. , Control is applied so that the temperature distribution generated in the boat moves in the length direction, and the seed crystal provided at the end of the boat is bonded to the melt to gradually produce a single crystal. - A method for manufacturing a group V compound semiconductor single crystal, in which a group V element is disposed at the end of the ampoule opposite to the boat, and the vapor pressure thereof compensates for the pressure in the ampoule to be constant; A heat shielding plate is provided between the V group element and the boat to block radiant heat radiated from the high temperature part of the boat to the V group element and prevent a decrease in the pressure compensation function. This goal was achieved by removing the effects of radiant heat and ensuring stable crystal growth.

[作  用] 本発明のI[[−V族化合物半導体単結晶の製造方法で
は、長尺のアンプル内にボートを封入してこのボート内
で■族元素とV族元素とを化学当措の割合で共融させ、
ボートの端部には種結晶を設け、またボートと反対側の
アンプルの端部にはその蒸気圧によりアンプル内の圧力
を一定にするように動作するV族元素を設け、アンプル
全体を結晶成長炉に設置してボート附近が高温となり上
記V族元素附近が低温となる温度勾配を形成するように
制御を加え、種結晶と融液とを接合させて徐々に単結晶
が成長するようにしであるが、このとき上記の高温部に
生ずる輻射熱がV族元素に加えられるとこのV族元素の
温度が上昇して圧力補償機能が失われるので、この輻射
熱の影響を防止するため、このV族元素とボートとの中
間に熱遮断板を設けて輻射熱を遮断するようにしたもの
で、これによって単結晶生成時にアンプル内の圧力が変
動せず一定となり、高品質の単結晶を製造することが可
能となった。
[Function] In the method for producing a group I[[-V compound semiconductor single crystal of the present invention, a boat is enclosed in a long ampoule, and a group I element and a group V element are mixed in the boat using chemical procedures. eutectic in proportion,
A seed crystal is provided at the end of the boat, and a group V element is provided at the end of the ampoule on the opposite side of the boat, which acts to keep the pressure within the ampoule constant due to its vapor pressure. It is installed in a furnace and controlled to form a temperature gradient in which the temperature near the boat is high and the area near the V group element is low, and the seed crystal and melt are joined to gradually grow a single crystal. However, if the radiant heat generated in the above-mentioned high temperature section is added to the V group element, the temperature of the V group element will rise and the pressure compensation function will be lost. A heat shield plate is installed between the element and the boat to block radiant heat.This allows the pressure inside the ampoule to remain constant without fluctuation during single crystal formation, making it possible to produce high quality single crystals. It has become possible.

[実 施 例] 以下、本発明の一実施例を図により説明する。[Example] Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の■−v族化族化合物半体導体単結晶造
方法の一実施例の説明図である。
FIG. 1 is an explanatory diagram of an embodiment of the method for producing a semiconductor conductor single crystal of a ①-V group compound according to the present invention.

図において1は石英のアンプル、2はボート、3はボー
ト2の内部の■−V族化合物の融液、4はボート2の端
部に設けられた種結晶、5は種結晶4の先端に成長した
単結晶を示す。6はASなどのV族元素で、その蒸気圧
によりアンプル全体内の圧力を補償するものである。7
は熱遮蔽板、8は熱遮蔽板7を外装する石英ガラスであ
る。9は温度分布曲線を表わすもので結晶成長炉の制御
によって与えられ、矢印AあるいはBの方向に移動する
。10は高温の領域、11は低温の領域を示す。12は
V族元素AS6の温度制御点を示すものである。
In the figure, 1 is a quartz ampoule, 2 is a boat, 3 is a melt of the ■-V group compound inside the boat 2, 4 is a seed crystal provided at the end of the boat 2, and 5 is at the tip of the seed crystal 4. A grown single crystal is shown. 6 is a group V element such as AS, whose vapor pressure compensates for the pressure within the entire ampoule. 7
8 is a heat shielding plate, and 8 is a quartz glass that covers the heat shielding plate 7. 9 represents a temperature distribution curve, which is given by the control of the crystal growth furnace, and moves in the direction of arrow A or B. 10 indicates a high temperature region, and 11 indicates a low temperature region. 12 indicates the temperature control point of the V group element AS6.

この実施例において旧−V族化合物半導体単結晶を製造
する場合は、アンプル1を結晶成長炉の中に挿入して各
部の温度を制御するが、このときボート2の部分は高温
領域10内にあるように制御され、■族元素6の部分は
低温領域11となるように制御される。
In this embodiment, when manufacturing a former-V group compound semiconductor single crystal, the ampoule 1 is inserted into a crystal growth furnace to control the temperature of each part. The area of the group Ⅰ element 6 is controlled to be a low temperature region 11.

■、V族元素の原料にはGaと△Sが用いられているが
、GaASの融点は1238℃で、このような高温では
アンプル1は石英ガラス製のため軟化して変形が生じ易
くなる。
(2) Ga and ΔS are used as raw materials for group V elements, but the melting point of GaAS is 1238° C., and at such a high temperature, the ampoule 1 is made of quartz glass and is likely to soften and deform.

いま、単結晶を成長させるため融液3と種結晶4とが接
合するように温度分布曲線9を矢印Bの方向に移動させ
ると、高温領域10が次第にV族元1As6に接近する
ことになる。
Now, if the temperature distribution curve 9 is moved in the direction of arrow B so that the melt 3 and the seed crystal 4 are joined to grow a single crystal, the high temperature region 10 will gradually approach the group V element 1As6. .

この場合熱遮蔽板7が設置されていなければAs6は高
温領域10の輻射熱により全部昇華してアンプル1の内
部圧力を上界させ、アンプル1を膨張変形させることに
なるが、遮蔽板7が設置されていれば、高温領域10か
らAs6に達する輻射熱は熱遮蔽板7で遮蔽されてAs
6には達せず、As6の質昂は殆ど変化しないのでアン
プル1内の気圧も殆ど変化しないことになり、アンプル
1の膨張変形は発生せず、高品質の単結晶が生成される
ことになる。
In this case, if the heat shield plate 7 is not installed, As6 will be completely sublimed by the radiant heat of the high temperature region 10, and the internal pressure of the ampoule 1 will be upper bound, causing the ampoule 1 to expand and deform. However, if the shield plate 7 is installed If so, the radiant heat reaching As6 from the high temperature region 10 will be shielded by the heat shielding plate 7 and the As
6, and the quality of As6 hardly changes, so the air pressure inside the ampoule 1 also hardly changes, so the expansion deformation of the ampoule 1 does not occur, and a high quality single crystal is produced. .

熱遮蔽板7には不透明で耐熱性に優れ、石英ガラスとの
反応性がない炭化珪素(S i C)が用いられており
、アンプル1に設置されたとき安定となるように円柱状
の石英ガラス8で包まれている。
The heat shield plate 7 is made of silicon carbide (S i C), which is opaque, has excellent heat resistance, and has no reactivity with quartz glass. It is covered with glass 8.

石英ガラス8で外装されているので装置の移vJ館に実
施される洗浄および乾燥を容易に行なうことかできる。
Since it is covered with quartz glass 8, cleaning and drying of the device can be easily carried out when it is transferred to a vJ building.

As6は制御点12に熱雷対が設けられ、この熱雷対に
より温度制御が行なわれるが、熱遮蔽板7を設けておか
なければ高温領域10の輻射熱の影響が大きいため制御
の効果が発揮できずAs6は昇華してしまうが、熱遮蔽
板7の効果により安定に制御することができる。
As6 is provided with a thermal lightning pair at the control point 12, and the temperature is controlled by this thermal lightning pair, but if the heat shield plate 7 is not provided, the effect of the control will not be achieved because the influence of radiant heat in the high temperature area 10 will be large. If this is not possible, the As6 will sublimate, but the effect of the heat shield plate 7 allows for stable control.

以上、本実施例を用いることにより次のような効果が得
られる。
As described above, by using this embodiment, the following effects can be obtained.

(1)  アンプル内の圧力補償として設置されたV族
元素に加わる輻射熱を遮断することができるのでV族元
素の昇華を防止しアンプル内を一定圧力に保つことがで
きる。
(1) Since the radiant heat applied to the V group element installed as a pressure compensation inside the ampoule can be blocked, sublimation of the V group element can be prevented and the pressure inside the ampoule can be maintained at a constant pressure.

(2結晶生成時にアンプル内圧力を一定に保つことがで
きるので、高品質の化合物半導体単結晶が得られる。
(Since the pressure inside the ampoule can be kept constant during the production of two crystals, a high quality compound semiconductor single crystal can be obtained.

(3)Vi元素の昇華が防止できるのでアンプルの変形
が無く、アンプルを再使用して原価低減を計ることがで
きる。
(3) Since sublimation of the Vi element can be prevented, there is no deformation of the ampoule, and the ampoule can be reused to reduce cost.

[発明の効果] 本発明によれば、高温部から生ずる輻射熱の影響を減少
し、安定に単結晶を成長させる■−V族化合物半導体単
結晶の製造方法を提供することができる。
[Effects of the Invention] According to the present invention, it is possible to provide a method for producing a -V group compound semiconductor single crystal, which reduces the influence of radiant heat generated from a high temperature section and stably grows a single crystal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のIII−V族化合物半導体単結晶の製
造方法の一実施例の説明図である。 1:アンプル、 2:ボ  −  ト、 3:融  液、 4:種 結 晶、 5:単 結 晶、 6:V族元素、 7:熱遮蔽板、 8:石英ガラス、 9:温度分布曲線、 10:高温領域、 11:低温領域。
FIG. 1 is an explanatory diagram of an embodiment of the method for manufacturing a III-V group compound semiconductor single crystal of the present invention. 1: Ampoule, 2: Boat, 3: Melt, 4: Seed crystal, 5: Single crystal, 6: Group V element, 7: Heat shield plate, 8: Quartz glass, 9: Temperature distribution curve, 10: High temperature region, 11: Low temperature region.

Claims (1)

【特許請求の範囲】[Claims] (1)結晶成長炉内にボートの封入されたアンプルを設
置し、前記ボート内ではIII族元素とV族元素とを化学
当量の割合で共融させ、該ボートに生ずる温度分布が長
さ方向に移動するように制御を加え、前記ボート内の端
部に設けられた種結晶と前記融液とを接合させて徐々に
単結晶を生成するIII−V族化合物半導体単結晶の製造
方法において、前記アンプル内の前記ボートと反対側の
端部に、その蒸気圧により該アンプル内の圧力が一定と
なるように補償するV族元素を配置し、該V族元素と前
記ボートとの間に熱遮蔽板を設けて前記ボートの高温部
より該V族元素へ輻射する輻射熱を遮断して前記圧力の
補償機能の低下を防止することを特徴とするIII−V族
化合物半導体単結晶の製造方法。
(1) An ampoule containing a boat is installed in a crystal growth furnace, and in the boat, Group III elements and Group V elements are eutecticized at a chemical equivalent ratio, and the temperature distribution generated in the boat is adjusted in the length direction. A method for producing a III-V compound semiconductor single crystal, in which a seed crystal provided at an end in the boat is joined to the melt to gradually produce a single crystal, A group V element whose vapor pressure compensates for the pressure inside the ampoule to be constant is arranged at the end of the ampoule opposite to the boat, and heat is created between the group V element and the boat. A method for manufacturing a III-V group compound semiconductor single crystal, characterized in that a shielding plate is provided to block radiant heat radiated from a high-temperature part of the boat to the group V element, thereby preventing a decline in the pressure compensation function.
JP27753186A 1986-11-20 1986-11-20 Production of single crystal of iii-v compound semiconductor Pending JPS63134594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27753186A JPS63134594A (en) 1986-11-20 1986-11-20 Production of single crystal of iii-v compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27753186A JPS63134594A (en) 1986-11-20 1986-11-20 Production of single crystal of iii-v compound semiconductor

Publications (1)

Publication Number Publication Date
JPS63134594A true JPS63134594A (en) 1988-06-07

Family

ID=17584865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27753186A Pending JPS63134594A (en) 1986-11-20 1986-11-20 Production of single crystal of iii-v compound semiconductor

Country Status (1)

Country Link
JP (1) JPS63134594A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0459651U (en) * 1990-09-28 1992-05-21

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0459651U (en) * 1990-09-28 1992-05-21

Similar Documents

Publication Publication Date Title
JPS63134594A (en) Production of single crystal of iii-v compound semiconductor
JPH02145499A (en) Growing method for gallium arsenide single crystals
JPH0365593A (en) Single crystal growing apparatus
JP2612897B2 (en) Single crystal growing equipment
JPH0316988A (en) Production device of single crystal of compound semiconductor
JPH069025Y2 (en) Compound semiconductor single crystal manufacturing equipment
JP3018738B2 (en) Single crystal manufacturing equipment
JP2781857B2 (en) Single crystal manufacturing method
JPS59137399A (en) Method and apparatus of growing low-dislocation density single crystal
JP2773441B2 (en) Method for producing GaAs single crystal
JPS6153186A (en) Heater for resistance heating
JP2001151593A (en) Quartz boat and method of producing compound semiconductor single crystal by boat method using the same
JPH01108189A (en) Production of single crystal of iii-v compound semiconductor
JPS62162687A (en) Production of indium phosphide
RU1431391C (en) Process of growing monocrystals of cadmium telluride
JP2573655B2 (en) Method for producing non-doped compound semiconductor single crystal
JPH08290991A (en) Method for growing compound semiconductor single crystal
JPH0441188Y2 (en)
JPH0582357B2 (en)
JPH0365585A (en) Production of compound semiconductor single crystal
JPH0274585A (en) Device for producing single crystal of compound having high-dissociation pressure
JPS6229394B2 (en)
JPS63195187A (en) Crystal growth apparatus for compound semiconductor
JPH01249686A (en) Production of iii-v group compound semiconductor crystal
JPS63270392A (en) Production of compound semiconductor crystal