JPH069025Y2 - Compound semiconductor single crystal manufacturing equipment - Google Patents

Compound semiconductor single crystal manufacturing equipment

Info

Publication number
JPH069025Y2
JPH069025Y2 JP15187188U JP15187188U JPH069025Y2 JP H069025 Y2 JPH069025 Y2 JP H069025Y2 JP 15187188 U JP15187188 U JP 15187188U JP 15187188 U JP15187188 U JP 15187188U JP H069025 Y2 JPH069025 Y2 JP H069025Y2
Authority
JP
Japan
Prior art keywords
furnace
single crystal
melt
compound semiconductor
semiconductor single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15187188U
Other languages
Japanese (ja)
Other versions
JPH0274371U (en
Inventor
清治 水庭
徹 栗原
昭夫 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP15187188U priority Critical patent/JPH069025Y2/en
Publication of JPH0274371U publication Critical patent/JPH0274371U/ja
Application granted granted Critical
Publication of JPH069025Y2 publication Critical patent/JPH069025Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は、化合物半導体単結晶製造装置、特にガリウム
・ヒ素半導体単結晶製造装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a compound semiconductor single crystal manufacturing apparatus, and more particularly to a gallium arsenide semiconductor single crystal manufacturing apparatus.

[従来の技術] ガリウム・ヒ素(GaAs)半導体等、化合物半導体の
単結晶を成長させる場合は各種の方式が用いられるがそ
のうち一つに帯域溶融方式がある。
[Prior Art] When growing a single crystal of a compound semiconductor such as a gallium arsenide (GaAs) semiconductor, various methods are used, and one of them is a zone melting method.

第4図はGaAs単結晶の成長に用いられる帯域溶融装
置の断面図を示すもので1は石英管、2は石英ボート、
3は溶融前のGaAs、4はGaAsの融液帯、5は種
結晶、6はヒ素(As)、7は高温炉、8は融液帯4を
形成する融液形成炉、9は固液界面の温度を制御する界
面制御炉、10はAs加熱する低温炉である。
FIG. 4 shows a sectional view of a zone melting apparatus used for growing a GaAs single crystal, 1 is a quartz tube, 2 is a quartz boat,
Reference numeral 3 is GaAs before melting, 4 is a melt zone of GaAs, 5 is a seed crystal, 6 is arsenic (As), 7 is a high temperature furnace, 8 is a melt forming furnace for forming the melt zone 4, and 9 is a solid solution. An interface control furnace 10 that controls the temperature of the interface is a low temperature furnace that heats As.

同図において石英管1内の一端にGa2000gと種結
晶5を入れた石英ボート2を配置し、他端にはAs22
00gを配置して石英管1内を5×10-6Torr以下の圧
力で1時間以上真空に吸引して封じ切り、ついで低温炉
10の温度を610℃、高温炉7の温度を1200℃に
すると低温炉10側に配置されているAsが蒸発して石
英管1の内部圧力がAsの蒸気圧となりこの状態でGa
Asの合成反応が行われる。次に融液形成炉8の温度を
1260℃に上昇させるとGaAsの一部が溶融して融
液帯(融液ゾーン)4が形成される。
In the figure, a quartz boat 2 containing Ga2000g and a seed crystal 5 is arranged at one end in a quartz tube 1, and As22 is arranged at the other end.
00g is placed and the inside of the quartz tube 1 is sucked into a vacuum at a pressure of 5 × 10 −6 Torr or less for 1 hour or more to seal off, and then the temperature of the low temperature furnace 10 is set to 610 ° C. Then, As arranged on the low temperature furnace 10 side evaporates, and the internal pressure of the quartz tube 1 becomes the vapor pressure of As.
A synthetic reaction of As is performed. Next, when the temperature of the melt forming furnace 8 is raised to 1260 ° C., a part of GaAs is melted to form a melt zone (melt zone) 4.

第2図はGaAs溶融時の温度分布を示すもので横軸が
融液帯の位置X、縦軸が炉内温度(T℃)を示す。上述
の場合の温度特性は同図曲線Aに示すようになり、この
時のGaAs融液帯幅は100〜200mm、成長速度は
2〜7mm/時で単結晶の成長が行われた。
FIG. 2 shows the temperature distribution when GaAs is melted. The horizontal axis shows the melt zone position X, and the vertical axis shows the temperature in the furnace (T ° C.). The temperature characteristics in the above case are as shown by the curve A in the figure. At this time, the single crystal was grown at a GaAs melt zone width of 100 to 200 mm and a growth rate of 2 to 7 mm / hour.

[考案が解決しようとする課題] 上述したように第4図に示す装置を用いてGaAs単結
晶の成長を行なわせた結果温度特性は第3図曲線Aに示
すようになり温度勾配が比較的大きいことが示されてい
るが、これは融液形成炉8の熱が界面制御炉9の方へ流
れたため固液界面近傍における温度勾配が大きくなった
ためで、これにより融液の対流が増大して固液界面が融
液側へ凹凸となり良好なGaAs単結晶の成長を防げる
現象が生じた。
[Problems to be Solved by the Invention] As a result of growing a GaAs single crystal by using the apparatus shown in FIG. 4 as described above, the temperature characteristic is as shown by the curve A in FIG. 3 and the temperature gradient is relatively large. Although it is shown that the temperature is large, this is because the heat of the melt forming furnace 8 flows toward the interface control furnace 9 and the temperature gradient near the solid-liquid interface becomes large, which increases the convection of the melt. As a result, the solid-liquid interface became uneven toward the melt, and a phenomenon that prevented good growth of GaAs single crystal occurred.

本考案の目的は、融液形成炉より界面制御炉へ流れる熱
の移動を防止し、固液界面を安定にして高純度単結晶の
成長を行わせる化合物半導体単結晶製造装置を提供する
ことにある。
An object of the present invention is to provide a compound semiconductor single crystal production apparatus which prevents the heat flowing from the melt forming furnace to the interface control furnace and stabilizes the solid-liquid interface to grow a high-purity single crystal. is there.

[課題を解決するための手段] 本考案は融液形成炉と界面制御炉との間に、融液形成炉
より界面制御炉へ放射される熱移動を防止して固液界面
を安定化させ単結晶を高純度に成長させる熱輻射遮蔽板
が設けてあることを特徴としており、高品質の単結晶が
得られるようにして目的の達成を計っている。
[Means for Solving the Problems] The present invention stabilizes the solid-liquid interface by preventing heat transfer from the melt forming furnace to the interface controlling furnace between the melt forming furnace and the interface controlling furnace. It is characterized by the provision of a heat radiation shielding plate for growing a single crystal with high purity, and the aim is to achieve a high quality single crystal.

[作用] 本考案の化合物半導体単結晶製造装置では帯域溶融装置
を用いてGaAsの単結晶を成長させる場合、GaAs
の融液ゾーンを形成する融液形成炉と融液ゾーンと接す
る固液界面の温度を制御する界面制御炉との間に熱輻射
遮蔽板を取付け、融液形成炉から界面制御炉へ放射され
る熱移動を防止するようにしているので、固液界面にお
ける温度傾斜が緩やかとなり、高純度の単結晶を安定に
成長させることができる。
[Operation] In the compound semiconductor single crystal production apparatus of the present invention, when a GaAs single crystal is grown using the zone melting apparatus,
The heat radiation shield plate is installed between the melt forming furnace that forms the melt zone and the interface control furnace that controls the temperature of the solid-liquid interface in contact with the melt zone, and is radiated from the melt forming furnace to the interface control furnace. Since the heat transfer is prevented, the temperature gradient at the solid-liquid interface becomes gentle and a high-purity single crystal can be stably grown.

[実施例] 以下、本考案の一実施例について図を用いて説明する。
第1図は本考案の化合物半導体単結晶製造装置の一実施
例を示す断面図、第2図は第1図を側方よりみた側面断
面図である。これらの図は第4図の場合と殆ど同一のも
のであるが異なるのは熱輻射遮蔽板11が設けられてい
る点にある。
[Embodiment] An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a sectional view showing an embodiment of the compound semiconductor single crystal manufacturing apparatus of the present invention, and FIG. 2 is a side sectional view of FIG. 1 seen from the side. Although these figures are almost the same as the case of FIG. 4, the difference is that the heat radiation shielding plate 11 is provided.

本実施例の場合は熱輻射遮蔽板11を設けたことにより
融液形成炉8から界面制御炉9へ放射される輻射熱が遮
断される結果、温度特性は第3図曲線Bに示すようにな
り、固液界面Xにおける温度傾斜が0.5℃/cmと同
図曲線Aの場合の1℃/cmに比べて1/2に減少し、固
液界面が融液側に凸面となり、高純度単結晶を得ること
ができた。この場合得られたGaAs単結晶はGa、A
sの量等第4図の場合と同一条件において4.1kgであ
って種結晶側及び結晶尾部とも転位密度が10cm-2
下の低転位結晶を得ることができた。
In the case of the present embodiment, by providing the heat radiation shield plate 11, the radiant heat radiated from the melt forming furnace 8 to the interface control furnace 9 is cut off, so that the temperature characteristic becomes as shown by the curve B in FIG. The temperature gradient at the solid-liquid interface X 0 is 0.5 ° C / cm, which is 1/2 of 1 ° C / cm in the case of the curve A in the figure, and the solid-liquid interface becomes convex on the melt side. A pure single crystal could be obtained. The GaAs single crystal obtained in this case is Ga, A
Under the same conditions as in FIG. 4, the amount of s was 4.1 kg, and a low dislocation crystal having a dislocation density of 10 4 cm −2 or less on both the seed crystal side and the crystal tail could be obtained.

尚熱輻射遮蔽板の材質としては断熱材が用いられるが、
この他炭化ケイ素(SiC)、酸化アルミニウム(Al
)、アジ化アルミニウム(AlN)等のセラミッ
クスを用いてもよい。
A heat insulating material is used as the material of the heat radiation shielding plate,
In addition, silicon carbide (SiC), aluminum oxide (Al
2 O 3 ), ceramics such as aluminum azide (AlN) may be used.

又、水冷機能付きの冷却板を用いるのが最も良く固液界
面付近の温度勾配を殆ど零とすることができ、極めて安
定な界面を形成することができる。
Further, it is best to use a cooling plate having a water cooling function, since the temperature gradient near the solid-liquid interface can be made almost zero, and an extremely stable interface can be formed.

[考案の効果] 以上述べたように本考案によれば次のような効果が得ら
れる。
[Effect of the Invention] As described above, according to the present invention, the following effects can be obtained.

(1)熱輻射遮蔽板を用いることによりGaAs単結晶成
長時における固液界面を安定化させ高純度の単結晶を得
ることができる。
(1) By using a heat radiation shield plate, the solid-liquid interface can be stabilized during the growth of GaAs single crystal, and a high-purity single crystal can be obtained.

(2)水平ブリッジマン方式(HB方式)や温度傾斜方式
(GF方式)に比べ結晶の長さ方向に均一な濃度を有す
るドーパント分布を得ることができ、各ウエハ間の特性
のバラツキを低減することができる。
(2) As compared with the horizontal Bridgman method (HB method) and the temperature gradient method (GF method), it is possible to obtain a dopant distribution having a uniform concentration in the crystal length direction, and reduce variations in characteristics between wafers. be able to.

(3)クローム(Cr)をドープした結晶のように偏析係
数の小さなドーパントを使用する場合は特に有効に適用
することができる。
(3) It can be applied particularly effectively when a dopant having a small segregation coefficient is used such as a crystal doped with chrome (Cr).

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の化合物半導体単結晶製造装置の一実施
例を示す帯域溶融装置の断面図、第2図は第1図の側面
断面図、第3図は温度分布特性図、第4図は従来装置の
断面図である。 1:石英管、 2:石英ボート、 3:GaAs、 4:融液ゾーン、 5:種結晶、 6:As、 7:高温炉、 8:融液形成炉、 9:界面制御炉、 10:低温炉、 11:熱輻射遮蔽板。
FIG. 1 is a sectional view of a zone melting apparatus showing an embodiment of the compound semiconductor single crystal production apparatus of the present invention, FIG. 2 is a side sectional view of FIG. 1, FIG. 3 is a temperature distribution characteristic diagram, and FIG. FIG. 4 is a cross-sectional view of a conventional device. 1: Quartz tube, 2: Quartz boat, 3: GaAs, 4: Melt zone, 5: Seed crystal, 6: As, 7: High temperature furnace, 8: Melt forming furnace, 9: Interface control furnace, 10: Low temperature Furnace, 11: heat radiation shielding plate.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】一端に原料を入れた石英ボートが配置され
他端には揮発性の構成元素が配置された石英管の周囲
に、前記石英ボートを加熱する融液形成炉及び界面制御
炉を有する高温炉と前記揮発性の構成元素を加熱する低
温炉とよりなる二連式電気炉が設けられており、前記石
英ボート内に融液帯を形成させ、該融液帯を移動させつ
つ単結晶を育成する化合物半導体単結晶製造装置におい
て、前記融液形成炉と前記界面制御炉との間に、前記融
液形成炉より前記界面制御炉へ放射される熱移動を防止
して固液界面を安定化させる熱輻射遮蔽板が設けてある
ことを特徴とする化合物半導体単結晶製造装置。
1. A melt forming furnace and an interface control furnace for heating a quartz boat, wherein a quartz boat having a raw material placed at one end and a volatile constituent element at the other end are arranged around the quartz pipe. A dual electric furnace comprising a high-temperature furnace having and a low-temperature furnace for heating the volatile constituent elements is provided, a melt zone is formed in the quartz boat, and the melt zone is moved while moving. In a compound semiconductor single crystal manufacturing apparatus for growing crystals, a solid-liquid interface is provided between the melt forming furnace and the interface control furnace by preventing heat transfer radiated from the melt forming furnace to the interface control furnace. An apparatus for producing a compound semiconductor single crystal, which is provided with a heat radiation shielding plate for stabilizing the.
JP15187188U 1988-11-22 1988-11-22 Compound semiconductor single crystal manufacturing equipment Expired - Lifetime JPH069025Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15187188U JPH069025Y2 (en) 1988-11-22 1988-11-22 Compound semiconductor single crystal manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15187188U JPH069025Y2 (en) 1988-11-22 1988-11-22 Compound semiconductor single crystal manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH0274371U JPH0274371U (en) 1990-06-06
JPH069025Y2 true JPH069025Y2 (en) 1994-03-09

Family

ID=31426295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15187188U Expired - Lifetime JPH069025Y2 (en) 1988-11-22 1988-11-22 Compound semiconductor single crystal manufacturing equipment

Country Status (1)

Country Link
JP (1) JPH069025Y2 (en)

Also Published As

Publication number Publication date
JPH0274371U (en) 1990-06-06

Similar Documents

Publication Publication Date Title
US5441011A (en) Sublimation growth of single crystal SiC
JPH11508531A (en) Apparatus and method for growing an object epitaxially by CVD
KR20200010711A (en) Apparatus for growing silicon carbide single cryatal and method for growing silicon carbide single cryatal
JPH07172998A (en) Production of single crystal of silicon carbide
JP4052678B2 (en) Large silicon carbide single crystal growth equipment
JPH069025Y2 (en) Compound semiconductor single crystal manufacturing equipment
JPH1087392A (en) Production of compound semiconductor single crystal
JPH10218699A (en) Growth of compound semiconductor single crystal
JP4144349B2 (en) Compound semiconductor manufacturing equipment
JPH0557239B2 (en)
JPH06298600A (en) Method of growing sic single crystal
JP3717562B2 (en) Single crystal manufacturing method
JP4778150B2 (en) Manufacturing method of ZnTe-based compound semiconductor single crystal and ZnTe-based compound semiconductor single crystal
JP3724870B2 (en) Pyrolytic boron nitride crucible
JPH0316988A (en) Production device of single crystal of compound semiconductor
JP2612897B2 (en) Single crystal growing equipment
JP2773441B2 (en) Method for producing GaAs single crystal
JP2001080987A (en) Device for producing compound semiconductor crystal and production process using the same
JP3806793B2 (en) Method for producing compound semiconductor single crystal
JPH03247581A (en) Production of gaas single crystal
JPH0449185Y2 (en)
JPS63134594A (en) Production of single crystal of iii-v compound semiconductor
JPH03193688A (en) Production of single crystal of compound semiconductor
JPH05319973A (en) Single crystal production unit
JPH08319189A (en) Production of single crystal and device therefor