JPH0557239B2 - - Google Patents

Info

Publication number
JPH0557239B2
JPH0557239B2 JP60041881A JP4188185A JPH0557239B2 JP H0557239 B2 JPH0557239 B2 JP H0557239B2 JP 60041881 A JP60041881 A JP 60041881A JP 4188185 A JP4188185 A JP 4188185A JP H0557239 B2 JPH0557239 B2 JP H0557239B2
Authority
JP
Japan
Prior art keywords
concentration
gaas
resistance
crystal
impurity levels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60041881A
Other languages
Japanese (ja)
Other versions
JPS61201700A (en
Inventor
Masamichi Yokogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP4188185A priority Critical patent/JPS61201700A/en
Publication of JPS61201700A publication Critical patent/JPS61201700A/en
Publication of JPH0557239B2 publication Critical patent/JPH0557239B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高抵抗を有するGaAs結晶及びその製
造方法に関する。本発明の高抵抗GaAs結晶は、
主として各種マイクロ波素子、光学素子等の基板
や赤外線の変調材料として利用できるもので、本
発明はさらにその歩留りの良い製造方法を提供す
るものである。 (従来の技術) 従来、300〓における比抵抗が106Ω・cm以上の
高抵抗GaAs結晶を製造する方法として、例えば
次のものが知られている。 (A) クロム、酸素、鉄等電気的に活性な深い不純
物濃度の総和を電気的に活性な浅い不純物濃度
の総和よりも多く意図的にドープして結晶成長
を行う方法〔文献1、特公昭53−46070号公
報〕。 (B) 結晶成長前に使用するGaAs多結晶原料のGa
とAsの組成比を制御して結晶成長を行う、或
は直接合成の場合は、チヤージするGaとAsの
モル比を制御して行う方法〔文献2、D.E.
Holmes et.al.“Stoichiometry−Related
Centere in LEC GaAs”、Semi−Insulating
− Materials、Evian(1982)、p19、
Shiba Publishing〕。 上記(A)、(B)の方法は高抵抗GaAs結晶を得る方
法としていずれも結晶成長前あるいは結晶成長中
の条件に注目しており、結晶固化後の熱環境が電
気抵抗に及ぼす効果については触れられていな
い。 〔発明が解決しようとする問題点〕 高抵抗GaAs結晶においては、そのウエハ上に
直接イオン注入法により、あるいはエピタキシヤ
ル法により形成される動作層の特性を良くした
り、また再現性を良くするために、ドープする不
純物の濃度を少なくすることが要求されている。
あるいは結晶性を良くする意味からも、不純物の
ドープ量を少なくすることが必要である。 ところで、電気的に活性な浅い不純物は、使用
原料、るつぼもしくはボート、またはヒータから
の汚染により生じせしめられるものが大部分であ
り、この大きさを結晶成長前に予測し、これに応
じて、必要最小限の深い不純物の量を、結晶成長
前あるいは成長中にドープしたり、または使用原
料の組成比の変化により生成せしめたりする上記
従来法によつて、ζ>5×106(Ω−cm)という高
抵抗GaAs結晶を再現性良く得ることは困難であ
り、このことが歩留りを低下させる原因となつて
いた。 本発明の目的は上記の従来法の欠点を解決する
ことであり、新規な高抵抗GaAs結晶およびその
再現性良い製造方法を提供せんとするものであ
る。 〔問題点を解決するための手段〕 本発明は、熱エネルギーにより制御可能な深い
不純物準位例えばEL2単位を利用して、結晶固化
後の熱環境を変化させることにより、高抵抗化せ
しめられたGaAs結晶およびその製造方法を提供
するものである。 本発明は、熱的に制御不可能な不純物準位の
濃度が5×1016cm-3以下の範囲にあり、かつ、熱
的に制御可能な不純物準位の濃度が、熱的に制御
不可能な不純物準位の濃度と同じか、又は、それ
以上を有する、熱的に制御可能な不純物準位を利
用して得られる高抵抗GaAs結晶、比抵抗が5
×106Ωcm以上である上記記載の高抵抗GaAs結
晶、及び、熱的に制御不可能な不純物準位の濃
度が5×1016cm-3以下の範囲にあるGaAs結晶を、
不活性ガス、Asを含む雰囲気中又は真空中で600
〜1100℃の温度範囲で4〜60時間の熱的制御を行
うことを特徴とする高抵抗GaAs結晶の製造方法
である。 以下に本発明の高抵抗GaAs結晶およびその製
造方法をその原理より詳細に説明する。 GaAs結晶中で、電気的に活性な深い不純物準
位を形成するものとして、クロム、酸素、鉄等の
不純物、あるいはGaAs結晶中の固有欠陥があ
る。前者の不純物については、結晶固化時にその
不純物がGaAs結晶中で占める格子位置が決定さ
れるため、固化後の熱環境を変化させて、その不
純物が形成するエネルギー準位およびその濃度を
制御することは不可能である。 一方、後者の固有欠陥については、結晶欠陥の
一種である転位が600℃においてさえ、容易に動
きうるという事実からみて、その固有欠陥が作る
深い不純物準位や濃度を、固化後の熱環境により
制御し得ることは容易にわかる。事実、Rumsby
らは固化後のGaAs結晶を、適当な熱環境でアニ
ールすることによりGaAs結晶中の固有欠陥が作
る、“EL2”と呼ばれる深いドナー型準位の濃度
が変化することを見い出している〔文献3、D.
Rumsby et al.“Improved Uniformity of LEC
Undoped Gallium Arsenide Rroduced by
High Temperature Annealing” GaAs IC
Symposium(1983)IEEE 34〜37〕。 また、この“EL2”の濃度としてはGaAs結晶
中に5×1015〜5×1016cm-3程度存在することが
見い出されている〔文献4、F.Hasegawa et.al.
“Distribution of the Main Trap EL2 in
Undoped LEC GaAs”Jap.J.Appl.Phys.22
(1983)L502:文献5、D.E.Holmes et al.
“Contour maps of EL2 deep level in liquid−
encapsulated Czochralski GaAs” J.Appl.
Phys.55(1984)3588〕。 このことから、固有欠陥が作る深い不純物準位
の濃度は、結晶固化後の熱環境により制御が可能
であることがわかる。また近年、“EL2”の起源
として“Asの集合体”(EL2 family)説が有力
である〔文献6、M.Tanigichi et.al.“Spectral
distributions of photoquenching rate and
multimetastable states for midgap electron
trap(EL2 family)in GaAs”Appl.Phy.Lett.
45、(1984)69〕この“Asの集合体”の形成度合
が熱環境により変化して、深い準位の濃度が変り
得ることは容易に想像できる。 以下本発明を具体的に説明する。 原料として、クロム、酸素、鉄等の電気的に活
性な深い不純物準位を形成し、かつその濃度が結
晶固化後の熱的環境により制御不可能な不純物を
意図的に5×1016cm-3以下含むもの、あるいはGa
とAsの組成比を意図的に変化させたものを使用
して高抵抗GaAs結晶を得ることを目的として
HB法、GF法あるいはLEC法によりGaAs単結晶
を成長し、固化させる。本工程により、クロム、
酸素、鉄等の不純物は、GaAsの禁制帯中に、電
気的に活性な深い準位を形成し、この濃度は、固
化後の熱環境により、制御が不可能となる。また
GaとAsの原料組成比を変えたものについては、
“EL2”と呼ばれる深いドナー型準位が5×1015
〜5×1016cm-3程度、固化後、形成される。 次いで該固化後の結晶に対して、不活性ガスあ
るいはAsを含む雰囲気中又は真空中で、600〜
1100℃の温度範囲において、4時間〜60時間の範
囲で熱処理を行うことにより熱的制御が可能な、
深い準位を形成する固有欠陥等を生成せしめ、そ
の濃度を増加させ、安定に電気的に活性な深い準
位の濃度が電気的に活性な浅い不純物準位の濃度
よりも大きくなる状態を作り出すことにより、高
抵抗GaAs結晶が安定的に得られることがわか
る。 ところが、本発明の熱処理条件よりも厳しい熱
環境すなわち1100℃以上、処理時間60時間以上で
熱処理を行うとインゴツト表面からのAsの解離
が激しく、結晶性を著しく低下させる。また本発
明の条件よりもゆるい熱環境すなわち600℃以下、
処理時間4時間以下で熱処理を行うと固有欠陥を
生成せしめる熱エネルギーが不足するため、該効
果は認められない。 〔実施例〕 以下実施例により具体的に説明する。 使用原料としては、HB法により作られた、キ
ヤリヤ濃度が5×1016cm-3以下のGaAs多結晶
1500gを用いる。このGaAs多結晶に、意図的に
純度99.99%の金属クロムを285mg添加して、
PBNるつぼを用いてLEC法によりGaAs結晶の成
長を行い直径55±3mm、長さ50mmの単結晶が得ら
れた。該結晶を第1図の如くS,M,T3つの部
分に分ける。各々の部分の長さs,m,tはそれ
ぞれ10、30、10mmとする。 S,T各々の部分から図に示すF,Bの位置か
ら2枚のウエハF,Bを切り出しラツプ→ポリツ
シユの工程によりミラーウエハに仕上げ、第3図
に示した如く、OFに垂直な方向に5×5mm角の
試料を切り出し、Van der paun法型のホール測
定法により比抵抗を測定した。この結果を第3図
に示す。これよりF1ウエハは、ウエハ中心部に
おいては比抵抗が103Ω・cm近くあるのに対して、
ウエハ周辺部では5×106Ω・cm以下になつてお
り、低抵抗化していることがわかる。これに対し
てB1ウエハでは、ウエハ全面において比抵抗が
5×106Ω・cm以下となつており、低抵抗化して
いることがわかる。このことから、このF1およ
びB1にはさまれた部分Mは、低抵抗化している
ことが推測される。 次にこの中央部分Mを石英管の中に真空封入
し、これを第4図の如く熱処理炉の中に挿入し
て、800℃で12時間熱処理を行つた。第4図中1
は石英管、2は熱処理炉、3はヒーターである。
熱処理後インゴツトMを取り出して第1図に示し
た如く、インゴツト端部より5mmの位置のところ
から、M2,M24 2枚のウエハを切り出し
た。このウエハに対して上述したと同様の方法に
より比抵抗を測定した。この結果を第3図にM2
(×印)、M24△印として示す。この図から明か
な様に、比抵抗は両方のウエハにおいて、ウエハ
全面で107Ω・cm以上となつており高抵抗化され
ていることが確認された。 また比抵抗を測定したウエハの残り部分を利用
してGFA法によりクロム濃度、SSMS法により
シリコン濃度、LVM法により炭素濃度を測定し
て、次表1にまとめたような結果を得た。 【表】 この表より、熱処理により深い準位を形成する
クロムの濃度、および浅い準位を形成するシリコ
ン及び炭素の濃度には、ほとんど変化が見られな
いことが明らかである。 本実施例においては、固化後の結晶を室温まで
冷却して炉より取り出して、熱処理を加えた。し
かし、結晶固化後、インゴツトを融点(1238℃)
付近から室温まで冷却する過程において、意図的
に熱環境を600〜1100℃、保持時間4時間〜60時
間の間で変化させることにより、固有欠陥を生成
せしめ、その濃度を増加させる事ができるのは言
うまでもない。 (発明の効果) 以上説明したように、固化後の熱環境を変化さ
せることにより、電気的に活性な深い準位を形成
する固有欠陥等の濃度を制御できることから、従
来法によれば固化後低抵抗化して不良となるはず
のGaAs結晶を、高抵抗化せしめて良品とするこ
とができるためGaAs結晶の歩留向上という利点
がある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a GaAs crystal with high resistance and a method for manufacturing the same. The high resistance GaAs crystal of the present invention is
It can be mainly used as a substrate for various microwave devices, optical devices, etc., and as an infrared modulating material, and the present invention further provides a method for manufacturing the same with high yield. (Prior Art) Conventionally, the following method is known as a method for manufacturing a high resistance GaAs crystal having a specific resistance of 10 6 Ω·cm or more at 300 Ω. (A) A method of crystal growth in which the total concentration of deep electrically active impurities such as chromium, oxygen, iron, etc. is intentionally doped to a higher concentration than the total concentration of shallow electrically active impurities [Reference 1, Tokkosho 53-46070]. (B) Ga of GaAs polycrystalline raw material used before crystal growth
Crystal growth is performed by controlling the composition ratio of Ga and As, or in the case of direct synthesis, by controlling the molar ratio of charged Ga and As [Reference 2, DE
Holmes et.al. “Stoichiometry−Related
Centere in LEC GaAs”, Semi-Insulating
− Materials, Evian (1982), p19,
Shiba Publishing〕. Methods (A) and (B) above are methods for obtaining high-resistance GaAs crystals, and both focus on the conditions before or during crystal growth, and the effect of the thermal environment on electrical resistance after solidification of the crystal is not considered. Not touched. [Problems to be solved by the invention] In high-resistance GaAs crystals, it is necessary to improve the characteristics and reproducibility of the active layer formed on the wafer by direct ion implantation or epitaxial method. Therefore, it is required to reduce the concentration of doping impurities.
Alternatively, in order to improve crystallinity, it is necessary to reduce the amount of impurity doped. By the way, most of the electrically active shallow impurities are caused by contamination from the raw materials used, crucibles or boats, or heaters, and the size of these impurities is predicted before crystal growth and is processed accordingly. By using the above-mentioned conventional method, in which the necessary minimum amount of deep impurities is doped before or during crystal growth, or generated by changing the composition ratio of the raw materials used, ζ > 5 × 10 6 (Ω- It is difficult to obtain GaAs crystals with high resistance (cm) with good reproducibility, and this has been a cause of lower yields. An object of the present invention is to solve the above-mentioned drawbacks of the conventional method, and to provide a novel high-resistance GaAs crystal and a method for producing the same with good reproducibility. [Means for solving the problem] The present invention utilizes a deep impurity level that can be controlled by thermal energy, such as an EL2 unit, and changes the thermal environment after crystal solidification, thereby increasing the resistance. The present invention provides a GaAs crystal and a method for manufacturing the same. In the present invention, the concentration of thermally uncontrollable impurity levels is in a range of 5×10 16 cm -3 or less, and the concentration of thermally controllable impurity levels is in a thermally uncontrollable range. A high-resistance GaAs crystal obtained using thermally controllable impurity levels with a specific resistance of 5
The high-resistance GaAs crystal described above having a resistance of ×10 6 Ωcm or more, and the GaAs crystal having a concentration of thermally uncontrollable impurity levels of 5 × 10 16 cm -3 or less,
600 in an atmosphere containing inert gas, As, or in vacuum
This is a method for manufacturing a high-resistance GaAs crystal, which is characterized by performing thermal control in a temperature range of ~1100°C for 4 to 60 hours. The high-resistance GaAs crystal of the present invention and its manufacturing method will be explained in detail below in terms of its principle. Impurities such as chromium, oxygen, iron, etc., or inherent defects in the GaAs crystal form electrically active deep impurity levels in the GaAs crystal. Regarding the former impurity, the lattice position that the impurity occupies in the GaAs crystal is determined during crystal solidification, so the energy level formed by the impurity and its concentration can be controlled by changing the thermal environment after solidification. is not possible. On the other hand, regarding the latter intrinsic defect, considering the fact that dislocations, which are a type of crystal defect, can easily move even at 600℃, the deep impurity level and concentration created by the intrinsic defect can be changed depending on the thermal environment after solidification. It is easy to see that it can be controlled. In fact, Rumsby
found that by annealing the solidified GaAs crystal in an appropriate thermal environment, the concentration of deep donor-type levels called "EL2" created by inherent defects in the GaAs crystal changes [Reference 3] ,D.
Rumsby et al. “Improved Uniformity of LEC
Undoped Gallium Arsenide Rroduced by
High Temperature Annealing” GaAs IC
Symposium (1983) IEEE 34-37]. Furthermore, it has been found that the concentration of this "EL2" is approximately 5×10 15 to 5×10 16 cm -3 in GaAs crystals [Reference 4, F. Hasegawa et.al.
“Distribution of the Main Trap EL2 in
Undoped LEC GaAs”Jap.J.Appl.Phys. 22
(1983) L502: Reference 5, DE Holmes et al.
“Contour maps of EL2 deep level in liquid−
encapsulated Czochralski GaAs” J.Appl.
Phys. 55 (1984) 3588]. This shows that the concentration of deep impurity levels created by intrinsic defects can be controlled by the thermal environment after crystal solidification. In addition, in recent years, the theory of “assembly of As” (EL2 family) as the origin of “EL2” has become popular [Reference 6, M. Tanigichi et.al. “Spectral
distributions of photoquenching rate and
multimetastable states for midgap electron
trap (EL2 family) in GaAs”Appl.Phy.Lett.
45, (1984) 69] It is easy to imagine that the degree of formation of this “As aggregate” changes depending on the thermal environment, and the concentration of deep levels can change. The present invention will be specifically explained below. As raw materials, impurities such as chromium, oxygen, iron, etc., which form electrically active deep impurity levels and whose concentration cannot be controlled by the thermal environment after crystal solidification, are intentionally added to 5×10 16 cm - Contains 3 or less, or Ga
The aim is to obtain high-resistance GaAs crystals using intentionally changed composition ratios of GaAs and As.
GaAs single crystals are grown and solidified using the HB method, GF method, or LEC method. Through this process, chromium,
Impurities such as oxygen and iron form electrically active deep levels in the forbidden band of GaAs, and this concentration cannot be controlled due to the thermal environment after solidification. Also
For those with different raw material composition ratios of Ga and As,
The deep donor level called “EL2” is 5×10 15
About 5×10 16 cm −3 is formed after solidification. The solidified crystal is then heated for 600 to 600 minutes in an atmosphere containing inert gas or As, or in vacuum.
Thermal control is possible by performing heat treatment in the temperature range of 1100℃ for 4 to 60 hours.
Generates intrinsic defects that form deep levels, increases their concentration, and creates a state in which the concentration of stable electrically active deep levels is higher than the concentration of electrically active shallow impurity levels. It can be seen that a high-resistance GaAs crystal can be stably obtained by this method. However, if the heat treatment is performed in a harsher thermal environment than the heat treatment conditions of the present invention, that is, at 1100° C. or higher and for a treatment time of 60 hours or more, As will be violently dissociated from the ingot surface, resulting in a significant decrease in crystallinity. In addition, the thermal environment is milder than the conditions of the present invention, i.e., 600℃ or less,
If the heat treatment is performed for a treatment time of 4 hours or less, the effect will not be observed because there is insufficient thermal energy to generate inherent defects. [Example] The present invention will be specifically explained below using Examples. The raw material used is GaAs polycrystal with a carrier concentration of 5×10 16 cm -3 or less, made by the HB method.
Use 1500g. By intentionally adding 285 mg of 99.99% pure metallic chromium to this GaAs polycrystal,
A GaAs crystal was grown by the LEC method using a PBN crucible, and a single crystal with a diameter of 55±3 mm and a length of 50 mm was obtained. The crystal is divided into three parts, S, M, and T, as shown in Figure 1. The lengths s, m, and t of each part are 10, 30, and 10 mm, respectively. Two wafers F and B are cut out from the positions F and B shown in the figure from each part of S and T, finished into mirror wafers through the lapping and polishing process, and then cut in the direction perpendicular to OF as shown in Figure 3. A 5 x 5 mm square sample was cut out, and the specific resistance was measured using a Van der Paun-type Hall measurement method. The results are shown in FIG. From this, the F1 wafer has a resistivity of nearly 10 3 Ωcm at the center of the wafer, whereas
It can be seen that the resistance at the periphery of the wafer is less than 5×10 6 Ω·cm, indicating that the resistance has been reduced. On the other hand, the B1 wafer has a specific resistance of 5×10 6 Ω·cm or less over the entire surface of the wafer, indicating that the resistance has been reduced. From this, it is inferred that the portion M sandwiched between F1 and B1 has a low resistance. Next, this central portion M was vacuum sealed in a quartz tube, which was inserted into a heat treatment furnace as shown in FIG. 4, and heat treated at 800° C. for 12 hours. 1 in Figure 4
is a quartz tube, 2 is a heat treatment furnace, and 3 is a heater.
After the heat treatment, the ingot M was taken out and two wafers, M2 and M24, were cut out from a position 5 mm from the end of the ingot, as shown in FIG. The resistivity of this wafer was measured in the same manner as described above. This result is shown in Figure 3 for M2
(x mark), M24△ mark. As is clear from this figure, the specific resistance of both wafers was 10 7 Ω·cm or more over the entire surface of the wafer, confirming that the resistivity was high. Further, using the remaining portion of the wafer whose resistivity was measured, the chromium concentration was measured by the GFA method, the silicon concentration by the SSMS method, and the carbon concentration by the LVM method, and the results are summarized in Table 1 below. [Table] It is clear from this table that there is almost no change in the concentration of chromium, which forms deep levels, and the concentration of silicon and carbon, which form shallow levels, due to heat treatment. In this example, the crystals after solidification were cooled to room temperature, taken out from the furnace, and subjected to heat treatment. However, after crystal solidification, the ingot has a melting point (1238℃)
By intentionally changing the thermal environment between 600 and 1100℃ and holding time between 4 and 60 hours during the cooling process from nearby to room temperature, it is possible to generate intrinsic defects and increase their concentration. Needless to say. (Effect of the invention) As explained above, by changing the thermal environment after solidification, it is possible to control the concentration of intrinsic defects that form electrically active deep levels. This method has the advantage of improving the yield of GaAs crystals, since it is possible to increase the resistance of GaAs crystals that would otherwise be defective by increasing their resistance and make them good.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例におけるGaAs結晶と
ウエハ切り出し位置とを説明する図、第2図は上
記により切り出したF1ウエハからの試料サンプ
リングを説明する図、第3図は本発明の実施例に
おける各ウエハの中心からの距離と抵抗率の関係
を測定した結果を示すグラフであつて、〇印F
1、●印B1、×印M2、△印M24を示す。第
4図は本発明の熱的制御の実施態様を示す図であ
る。
FIG. 1 is a diagram illustrating the GaAs crystal and wafer cutting position in an embodiment of the present invention, FIG. 2 is a diagram illustrating sample sampling from the F1 wafer cut out as described above, and FIG. 3 is an embodiment of the present invention. This is a graph showing the results of measuring the relationship between the distance from the center of each wafer and the resistivity in
1, ● mark B1, × mark M2, △ mark M24 are shown. FIG. 4 is a diagram showing an embodiment of thermal control of the present invention.

Claims (1)

【特許請求の範囲】 1 熱的に制御不可能な不純物準位の濃度が5×
1016cm-3以下の範囲にあり、かつ、熱的に制御可
能な不純物準位の濃度が、熱的に制御不可能な不
純物準位の濃度と同じか、又は、それ以上を有す
る、熱的に制御可能な不純物準位を利用して得ら
れる高抵抗GaAs結晶。 2 比抵抗が5×106Ωcm以上である特許請求の
範囲第1項記載の高抵抗GaAs結晶。 3 熱的に制御不可能な不純物準位の濃度が5×
1016cm-3以下の範囲にあるGaAs結晶を、不活性
ガス、Asを含む雰囲気中又は真空中で600〜1100
℃の温度範囲で4〜60時間の熱的制御を行うこと
を特徴とする高抵抗GaAs結晶の製造方法。
[Claims] 1. The concentration of thermally uncontrollable impurity levels is 5×
10 16 cm -3 or less, and the concentration of thermally controllable impurity levels is the same as or higher than the concentration of thermally uncontrollable impurity levels. High-resistance GaAs crystal obtained by utilizing impurity levels that can be controlled virtually. 2. The high-resistance GaAs crystal according to claim 1, which has a specific resistance of 5×10 6 Ωcm or more. 3 The concentration of thermally uncontrollable impurity levels is 5×
GaAs crystals in the range of 10 16 cm -3 or less are heated at 600 to 1100 in an atmosphere containing inert gas, As, or in vacuum.
A method for producing a high-resistance GaAs crystal, characterized by performing thermal control for 4 to 60 hours in a temperature range of °C.
JP4188185A 1985-03-05 1985-03-05 High-resistance gaas crystal and its production Granted JPS61201700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4188185A JPS61201700A (en) 1985-03-05 1985-03-05 High-resistance gaas crystal and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4188185A JPS61201700A (en) 1985-03-05 1985-03-05 High-resistance gaas crystal and its production

Publications (2)

Publication Number Publication Date
JPS61201700A JPS61201700A (en) 1986-09-06
JPH0557239B2 true JPH0557239B2 (en) 1993-08-23

Family

ID=12620613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4188185A Granted JPS61201700A (en) 1985-03-05 1985-03-05 High-resistance gaas crystal and its production

Country Status (1)

Country Link
JP (1) JPS61201700A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110373710A (en) * 2019-07-09 2019-10-25 有研光电新材料有限责任公司 The reduction method of Horizontal Bridgman Method arsenide gallium monocrystal dislocation at tail density

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61222999A (en) * 1985-03-27 1986-10-03 Dowa Mining Co Ltd Method of improving electric characteristics of single crystal of compound semiconductor of group iii-v
JPS63195199A (en) * 1987-02-05 1988-08-12 Dowa Mining Co Ltd Production of gallium arsenide crystal
JPH0714077U (en) * 1993-03-31 1995-03-10 利夫 原田 Hinged door
CN106536795B (en) * 2014-07-17 2020-07-31 住友电气工业株式会社 GaAs crystal
CN113847183B (en) * 2021-09-23 2022-09-30 上海鑫歆源电子有限公司 Heat control module, drive circuit and ignition coil driver

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
APPL.PHYS.LETT.=1982 *
SEMI-INSULATING 3-5 MATERIALS *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110373710A (en) * 2019-07-09 2019-10-25 有研光电新材料有限责任公司 The reduction method of Horizontal Bridgman Method arsenide gallium monocrystal dislocation at tail density

Also Published As

Publication number Publication date
JPS61201700A (en) 1986-09-06

Similar Documents

Publication Publication Date Title
Sunder et al. Czochralski growth and characterization of GaSb
JPH07172998A (en) Production of single crystal of silicon carbide
JPH0557239B2 (en)
EP0903427A1 (en) Apparatus and method for producing crystals by the czochralski method and crystals produced by this method
JP3848446B2 (en) Method for growing low resistance SiC single crystal
US5240685A (en) Apparatus for growing a GaAs single crystal by pulling from GaAs melt
JPH0557240B2 (en)
JPH11268998A (en) Gallium arsenic single crystal ingot, its production, and gallium arsenic single crystal wafer using the same
JPH0246560B2 (en)
JP4778150B2 (en) Manufacturing method of ZnTe-based compound semiconductor single crystal and ZnTe-based compound semiconductor single crystal
JPH0543679B2 (en)
KR100945668B1 (en) A method of growth for gaas single crystal by vgf
JP4599067B2 (en) Ga compound doped polycrystalline silicon and manufacturing method thereof
JPH069025Y2 (en) Compound semiconductor single crystal manufacturing equipment
JPH0411518B2 (en)
JPH0784360B2 (en) Method for manufacturing semi-insulating GaAs substrate
JPH01215799A (en) Semi-insulating gaas compound semiconductor single crystal and production thereof
JPH0269307A (en) Compound semiconductor and its production
JPH0274597A (en) Chromium-doped semi-insulative gallium-arsenic single crystal and production thereof
JPH0316988A (en) Production device of single crystal of compound semiconductor
JPH0637358B2 (en) Indium phosphide single crystal and method for producing the same
JPS5929558B2 (en) Semi-insulating gallium arsenide crystal
JPH06279198A (en) Production of semi-insulating gallium arsenide semiconductor single crystal
JPH09142995A (en) Production of p-type single crystal silicon carbide
JP2737990B2 (en) Compound semiconductor single crystal manufacturing equipment

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term