JP2737990B2 - Compound semiconductor single crystal manufacturing equipment - Google Patents

Compound semiconductor single crystal manufacturing equipment

Info

Publication number
JP2737990B2
JP2737990B2 JP1064193A JP6419389A JP2737990B2 JP 2737990 B2 JP2737990 B2 JP 2737990B2 JP 1064193 A JP1064193 A JP 1064193A JP 6419389 A JP6419389 A JP 6419389A JP 2737990 B2 JP2737990 B2 JP 2737990B2
Authority
JP
Japan
Prior art keywords
crystal
compound semiconductor
single crystal
semiconductor single
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1064193A
Other languages
Japanese (ja)
Other versions
JPH02243596A (en
Inventor
隆男 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP1064193A priority Critical patent/JP2737990B2/en
Publication of JPH02243596A publication Critical patent/JPH02243596A/en
Application granted granted Critical
Publication of JP2737990B2 publication Critical patent/JP2737990B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液体封じチョクラルスキー法で化合物半導体
単結晶を育成する装置に関し、特に偏析係数が1.0より
大きい不純物の結晶内での分布を均一化補正する装置に
関する。
Description: TECHNICAL FIELD The present invention relates to an apparatus for growing a compound semiconductor single crystal by a liquid-sealed Czochralski method, and more particularly, to uniforming the distribution of impurities having a segregation coefficient larger than 1.0 in a crystal. The present invention relates to an apparatus for performing correction.

〔従来の技術〕 近年、化合物半導体はIII−V族化合物を中心に結晶
品質の改善が進み、集積回路、光−電子集積回路、電子
素子用材料等に広く用いられるようになってきた。III
−V族化合物半導体の中でもガリウム砒素(GaAs)は電
子移動度が大きく発光し易く、また光を検知できる等の
特徴を有し、マイクロ波トランジスタ、高速集積回路、
太陽電池用材料として広く用いられつつある。
[Related Art] In recent years, compound semiconductors have been improved in crystal quality mainly of III-V group compounds, and have been widely used for integrated circuits, opto-electronic integrated circuits, materials for electronic devices, and the like. III
Among group V compound semiconductors, gallium arsenide (GaAs) has features such as high electron mobility, easy light emission, and light detection. Microwave transistors, high-speed integrated circuits,
It is being widely used as a material for solar cells.

GaAs結晶は高圧結晶育成炉を用いて液体封じチョクラ
ルスキー法(LEC法)により育成されるのが一般的であ
り、これらGaAs結晶が集積回路用基板として用いられる
ためには、比抵抗が107Ω・cm以上の半絶縁性を有する
こと、転位や格子欠陥等の物理的、化学的欠陥がないこ
と、熱処理特性が良好であること等の他に、結晶内の不
純物が結晶上部と尾部で均一に分布し、ウェハー特性が
結晶インゴット内で変化しないことが要求される。
GaAs crystals are generally grown by a liquid-sealed Czochralski method (LEC method) using a high-pressure crystal growth furnace.・ Semi-insulating property of more than cm, no physical or chemical defects such as dislocations and lattice defects, good heat treatment characteristics, etc., and impurities in the crystal are uniform at the top and tail of the crystal And that the wafer characteristics do not change within the crystal ingot.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところが、上述した従来の高圧結晶育成炉でLEC法に
より育成した半絶縁性GaAs単結晶では結晶中の炭素元素
が1.0よりも大きい実効偏析係数を有するため、その濃
度が結晶上部から尾部へ行くに従い減少するという欠点
がある。
However, in the semi-insulating GaAs single crystal grown by the LEC method in the conventional high-pressure crystal growth furnace described above, since the carbon element in the crystal has an effective segregation coefficient greater than 1.0, its concentration increases from the top of the crystal to the tail. It has the disadvantage of decreasing.

半絶縁性GaAs結晶中の炭素はアクセプターとして働
き、活性層を形成するために注入されたシリコン元素の
見かけ上の活性化率を変えるため、GaAsデバイスの歩留
りを低下させるので、上述の欠点は重大な問題である。
The above drawbacks are significant because the carbon in the semi-insulating GaAs crystal acts as an acceptor, altering the apparent activation rate of the silicon element implanted to form the active layer, thereby reducing the yield of GaAs devices. Problem.

本発明の目的は前記課題を解決した化合物半導体単結
晶製造装置を提供することにある。
An object of the present invention is to provide a compound semiconductor single crystal manufacturing apparatus which solves the above-mentioned problems.

〔発明の従来技術に対する相違点〕[Differences of the Invention from the Prior Art]

上述した従来の化合物半導体用の高圧単結晶引上げ炉
に比べ、本発明による装置は、実効偏析係数が1.0より
大きい不純物の濃度が結晶中で結晶成長の進行に伴って
減少するのと、融液中に当該不純物元素を酸化物ガス等
の形で注入することにより補正し、結晶内分布を均一化
できるという相違点を有する。
Compared with the above-mentioned conventional high-pressure single crystal pulling furnace for compound semiconductors, the apparatus according to the present invention is characterized in that the concentration of impurities whose effective segregation coefficient is larger than 1.0 decreases as crystal growth progresses in the crystal, There is a difference that the impurity element can be corrected by injecting the impurity element in the form of an oxide gas or the like and the distribution in the crystal can be made uniform.

〔課題を解決するための手段〕[Means for solving the problem]

前記目的を達成するため、本発明に係る化合物半導体
単結晶製造装置は、液体封じチョクラルスキー法で化合
物半導体単結晶を育成する化合物半導体単結晶製造装置
において、るつぼ内の化合物半導体融液に炭酸ガスを供
給する手段と、前記単結晶の上部から尾部への炭素濃度
を均一化するように前記炭酸ガスの圧力をコントロール
する手段とを有することを特徴とするものであります。
In order to achieve the above object, a compound semiconductor single crystal manufacturing apparatus according to the present invention is a compound semiconductor single crystal manufacturing apparatus for growing a compound semiconductor single crystal by a liquid-sealed Czochralski method. It has a means for supplying gas and a means for controlling the pressure of the carbon dioxide gas so as to make the carbon concentration from the top to the tail of the single crystal uniform.

〔実施例〕〔Example〕

次に本発明をGaAs半導体を例にとり図面を参照して説
明する。
Next, the present invention will be described with reference to the drawings, taking a GaAs semiconductor as an example.

(実施例1) 第1図は本発明の一実施例を示す縦断面図である。Embodiment 1 FIG. 1 is a longitudinal sectional view showing one embodiment of the present invention.

図において、1はガス注入用ノズル、3はノズル1に
ガスを供給する注入用高圧ガスボンベ、2は高精度圧力
コントローラ、4はるつぼ、5は炉体、6は化合物半導
体融液、7はヒーター、8は化合物半導体単結晶、9は
圧力ツール部、10は保温部材、11は液体封止剤層を示
す。
In the figure, 1 is a gas injection nozzle, 3 is a high-pressure gas cylinder for supplying gas to the nozzle 1, 2 is a high-precision pressure controller, 4 is a crucible, 5 is a furnace body, 6 is a compound semiconductor melt, and 7 is a heater. , 8 denotes a compound semiconductor single crystal, 9 denotes a pressure tool part, 10 denotes a heat retaining member, and 11 denotes a liquid sealant layer.

結晶成長は次のようにして行った。 Crystal growth was performed as follows.

6インチ径のPBNるつぼ4に、Ga金属とAs金属で合計
で4000gと封止剤として酸化ボロン(B2O3)をチャージ
し、炉体5内をアルゴン(Ar)ガスで置換し、その後昇
温しGaAs融液を作製した。一方、注入用高圧ガスボンベ
3として、結晶中の炭素濃度の不均一性を補正する目的
で一酸化炭素ガスボンベを用い、ノズル1を結晶種付け
直前にGaAs融液中に挿入した。ノズル1は融液の不純物
汚染を避けるためにPBN(パイロリティク窒化硼素)で
作製し、またるつぼ4内融液の対流に悪影響を及ぼさな
いようにるつぼ4内壁の極近傍に位置するよう設計し
た。
A 6-inch diameter PBN crucible 4 is charged with a total of 4000 g of Ga metal and As metal and boron oxide (B 2 O 3 ) as a sealant, and the inside of the furnace body 5 is replaced with argon (Ar) gas. The temperature was raised to produce a GaAs melt. On the other hand, a carbon monoxide gas cylinder was used as the injection high-pressure gas cylinder 3 for the purpose of correcting the non-uniformity of the carbon concentration in the crystal, and the nozzle 1 was inserted into the GaAs melt immediately before seeding the crystal. The nozzle 1 was made of PBN (pyrolytic boron nitride) in order to avoid impurity contamination of the melt, and was designed to be located very close to the inner wall of the crucible 4 so as not to adversely affect the convection of the melt in the crucible 4.

GaAs結晶中の炭素の実効偏析係数は1.0より大きいた
め、結晶成長の進行に伴い炭素濃度が減少するが、本実
験ではノズル1の管内のCOガス圧力をコントロールして
融液中にCOガスを導入することにより、減少する炭素量
を補正しながら3インチ径GaAs結晶を作製した。
Since the effective segregation coefficient of carbon in the GaAs crystal is greater than 1.0, the carbon concentration decreases with the progress of crystal growth. In this experiment, the CO gas pressure in the tube of the nozzle 1 was controlled to introduce CO gas into the melt. By introducing the GaAs crystal, a 3-inch diameter GaAs crystal was produced while correcting the decreasing amount of carbon.

得られた結晶を切断し結晶上部から尾部の間で等間隔
に7つの炭素濃度測定用試料を作製し、フーリェ変換方
式赤外吸収法により測定した結果、2.0±0.5×1015cm-3
の範囲内で均一な分布を示した。
The obtained crystal was cut, and seven carbon concentration measurement samples were prepared at equal intervals between the top and the tail of the crystal. As a result of measurement by the Fourier transform infrared absorption method, 2.0 ± 0.5 × 10 15 cm −3
Within the range.

また、育成した結晶からデバイス作製用ウェハーを同
じく7枚等間隔に切り出してGaAs FET群を作製し、各ウ
ェハー間でのFET閾電圧の分布を調べた結果、各ウェハ
ーの特性が均一であり、結晶の肩部と尾部で従来100〜2
00mVであった閾電圧の差が10〜20mVに改善されていた。
Also, seven wafers for device fabrication were cut out from the grown crystal at equal intervals to form a GaAs FET group, and the distribution of the FET threshold voltage between each wafer was examined.As a result, the characteristics of each wafer were uniform. Conventional 100-2 at the shoulder and tail of the crystal
The difference between the threshold voltages, which was 00 mV, was improved to 10 to 20 mV.

(実施例2) 次に実施例2について説明する。Second Embodiment Next, a second embodiment will be described.

本実施例ではGaAsの原料を直接合成法によらず、多結
晶のGaAs結晶で行った。結晶作製の要領及び炭素濃度、
FET閾値電圧評価法は実施例1におけると同様である。
In this embodiment, the raw material of GaAs is not a direct synthesis method but a polycrystalline GaAs crystal. Crystal preparation procedure and carbon concentration,
The FET threshold voltage evaluation method is the same as in the first embodiment.

本実施例においても、結晶内の炭素濃度のばらつきは
2.5±0.5×1016cm-3と良好であり、閾電圧のばらつきも
10〜20mVと改善の効果が見られた。
Also in this embodiment, the variation in the carbon concentration in the crystal is
As good as 2.5 ± 0.5 × 10 16 cm -3 , variation in threshold voltage
An improvement effect of 10 to 20 mV was observed.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明による化合物半導体単結晶
製造装置を用いれば、炭素濃度ばらつきのないGaAs単結
晶を得ることができ、この結晶を用いてGaAs集積回路又
は大規模集積回路を作製した場合の歩留りを著しく向上
できる効果がある。
As described above, by using the compound semiconductor single crystal manufacturing apparatus according to the present invention, it is possible to obtain a GaAs single crystal having no carbon concentration variation, and to manufacture a GaAs integrated circuit or a large-scale integrated circuit using this crystal. This has the effect of significantly improving the yield.

また本発明の装置はその構造上、InP,GaP等の他の化
合物半導体等に適用でき、実効偏析係数が1.0より大き
い残留不純物をそれらの結晶中で均一に分布せしめる効
果を有することは明白である。
Further, it is apparent that the device of the present invention can be applied to other compound semiconductors such as InP and GaP due to its structure, and has an effect of uniformly distributing residual impurities having an effective segregation coefficient larger than 1.0 in those crystals. is there.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す縦断面図である。 1……ガス注入用ノズル 2……高精度圧力コントローラ 3……注入用高圧ガスボンベ、4……るつぼ 5……炉体、6……化合物半導体融液 7……ヒーター、8……化合物半導体単結晶 9……圧力ツール部、10……保温部材 FIG. 1 is a longitudinal sectional view showing one embodiment of the present invention. DESCRIPTION OF SYMBOLS 1 ... Gas injection nozzle 2 ... High precision pressure controller 3 ... High pressure gas cylinder for injection, 4 ... Crucible 5 ... Furnace body, 6 ... Compound semiconductor melt 7 ... Heater, 8 ... Compound semiconductor unit Crystal 9 ... Pressure tool part, 10 ... Insulation member

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】液体封じチョクラルスキー法で化合物半導
体単結晶を育成する化合物半導体単結晶製造装置におい
て、るつぼ内の化合物半導体融液に炭酸ガスを供給する
手段と、前記単結晶の上部から尾部への炭素濃度を均一
化するように前記炭酸ガスの圧力をコントロールする手
段とを有することを特徴とする化合物半導体単結晶製造
装置。
1. A compound semiconductor single crystal manufacturing apparatus for growing a compound semiconductor single crystal by a liquid-sealed Czochralski method, comprising: means for supplying carbon dioxide to a compound semiconductor melt in a crucible; Means for controlling the pressure of the carbon dioxide gas so as to equalize the carbon concentration in the compound semiconductor.
JP1064193A 1989-03-16 1989-03-16 Compound semiconductor single crystal manufacturing equipment Expired - Lifetime JP2737990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1064193A JP2737990B2 (en) 1989-03-16 1989-03-16 Compound semiconductor single crystal manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1064193A JP2737990B2 (en) 1989-03-16 1989-03-16 Compound semiconductor single crystal manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH02243596A JPH02243596A (en) 1990-09-27
JP2737990B2 true JP2737990B2 (en) 1998-04-08

Family

ID=13250986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1064193A Expired - Lifetime JP2737990B2 (en) 1989-03-16 1989-03-16 Compound semiconductor single crystal manufacturing equipment

Country Status (1)

Country Link
JP (1) JP2737990B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121193A (en) * 1982-12-27 1984-07-13 Fujitsu Ltd Silicon crystal
JPH0288496A (en) * 1988-09-26 1990-03-28 Hitachi Cable Ltd Production of compound semiconductor crystal

Also Published As

Publication number Publication date
JPH02243596A (en) 1990-09-27

Similar Documents

Publication Publication Date Title
JPH03122097A (en) Preparation of single crystal ii-vi group or iii-v group compound and product made of it
US3994755A (en) Liquid phase epitaxial process for growing semi-insulating GaAs layers
US6056817A (en) Process for producing semi-insulating InP single crystal and semi-insulating InP single crystal substrate
US4637854A (en) Method for producing GaAs single crystal
US6485563B2 (en) Method of preparing a compound semiconductor crystal
JP2737990B2 (en) Compound semiconductor single crystal manufacturing equipment
JPH0413319B2 (en)
JPH0639355B2 (en) Method for producing compound semiconductor single crystal
JPH0557240B2 (en)
US4032950A (en) Liquid phase epitaxial process for growing semi-insulating gaas layers
JPH0557239B2 (en)
JPH07165488A (en) Apparatus for producing single crystal and method therefor
JP3793934B2 (en) Method for producing semi-insulating InP single crystal
JPH01215799A (en) Semi-insulating gaas compound semiconductor single crystal and production thereof
JPH0411518B2 (en)
JP2000313699A (en) PRODUCTION OF SEMIINSULATING InP SINGLE CRYSTAL
JP2885452B2 (en) Boat growth method for group III-V compound crystals
EP0100453A1 (en) Method for growing a GaAs single crystal by pulling from GaAs melt
JP2781857B2 (en) Single crystal manufacturing method
JPS61197499A (en) Method of growing single crystal of inorganic compound
JPH0269390A (en) Production of single crystal of iii-v compound semiconductor
JPS61247700A (en) Preparation of iii-v compound semiconductor
Salnick et al. Untraditionally doped Cz-grown silicon for power devices
JPS61117198A (en) Melt for growth of inp single crystal and method for using said melt
JPH0559880B2 (en)