JPS61247700A - Preparation of iii-v compound semiconductor - Google Patents

Preparation of iii-v compound semiconductor

Info

Publication number
JPS61247700A
JPS61247700A JP8930785A JP8930785A JPS61247700A JP S61247700 A JPS61247700 A JP S61247700A JP 8930785 A JP8930785 A JP 8930785A JP 8930785 A JP8930785 A JP 8930785A JP S61247700 A JPS61247700 A JP S61247700A
Authority
JP
Japan
Prior art keywords
single crystal
gaas
crystal
iii
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8930785A
Other languages
Japanese (ja)
Other versions
JPH042559B2 (en
Inventor
Takao Matsumura
松村 隆男
Akio Shimura
志村 昭夫
Fumihiko Sato
文彦 佐藤
Toshiyuki Misaki
三崎 敏幸
Tomohisa Kitano
北野 友久
Hisao Watanabe
久夫 渡辺
Yasubumi Kameshima
亀島 泰文
Junji Matsui
松井 純爾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8930785A priority Critical patent/JPS61247700A/en
Publication of JPS61247700A publication Critical patent/JPS61247700A/en
Publication of JPH042559B2 publication Critical patent/JPH042559B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To obtain a III-V compound semiconductor contg. no dislocation suitable as material for a substrate of GaAs integrated circuit, and substrate for optical-electronic integrated circuit by growing a GaAs single crystal by the pulling method from GaAs soln. by allowing a specified amt. of In element to be contained. CONSTITUTION:A GaAs single crystal is grown from melt by pulling method by melting a mixture consisting of Ga as a Group III element, As and In as Group V element, B2O3 as liquid sealing agent to a PBN crucible wherein the growth of the GaAs single crystal is controlled by regulating the concn. of In contained in the crystal to 4.0X10<18>-6.0X10<19>cm<-3> and the temp. gradient at the solid/liquid boundary of the GaAs single crystal and the melt formed by the pulling to 5-40 deg.C/cm.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はIll −V族化合物半導体単結晶の作製方法
に関し、特にG a A s集積回路用基板及び光−電
子集積回路用基板に適した無転位GaAs単結晶の製造
方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a Ill-V group compound semiconductor single crystal, and is particularly suitable for a GaAs integrated circuit substrate and an opto-electronic integrated circuit substrate. The present invention relates to a method for manufacturing a dislocation-free GaAs single crystal.

〔従来の技術〕[Conventional technology]

最近III −V族化合物半導体は高品質の結晶が得ら
れる様になυ、集積回路、光−電子集積回路及び電子素
子材料などに広く用いられる様になってきた。■−V族
化合物半導体の中でもガリウム砒素(OaAs)は電子
移動度が大きく、発光し易く1だ光を検知するhどの特
徴を有し、マイクロ波用トランジスタ、高速集積回路、
太陽電池及び光−電子素子材料として広く用いられつつ
ある。
Recently, III-V group compound semiconductors have come to be widely used in integrated circuits, opto-electronic integrated circuits, electronic device materials, etc. as high quality crystals can be obtained. - Among group V compound semiconductors, gallium arsenide (OaAs) has the characteristics of high electron mobility, easy luminescence, and the ability to detect single rays.It is used in microwave transistors, high-speed integrated circuits,
It is becoming widely used as a material for solar cells and opto-electronic devices.

G a A、 s単結晶が上述の集積回路用基板及び光
−電子集積回路基板として用いられるには比抵抗が10
7Ω・α以上の半絶縁性を有する事、転位や格子欠陥な
どの物理的化学的欠陥がない事、残留不純物が少ない事
などが要求される。この中で特に転位や格子欠陥は集積
回路の特性に影響を与え歩留シを低下させる原因になっ
ている。
In order for the G a A,s single crystal to be used as the above-mentioned integrated circuit substrate and opto-electronic integrated circuit substrate, the specific resistance must be 10.
It is required to have a semi-insulating property of 7Ω·α or more, to be free from physical and chemical defects such as dislocations and lattice defects, and to have a small amount of residual impurities. Among these, dislocations and lattice defects in particular affect the characteristics of integrated circuits and cause a decrease in yield.

最近Oa A s結晶中にインジウム(In)元素を添
加する事により転位を著しく軽減できる事が明らかにな
っ″てさた。Inを添加して無転位化されたGaAs結
晶を用いて集積回路を作製すると、個々の電界効果トラ
ンジスタの代表的パラメーターであるしきい値電圧(v
th)のバラツキを減少させる事ができる。
Recently, it has become clear that dislocations can be significantly reduced by adding indium (In) to OaAs crystals.Integrated circuits have been developed using GaAs crystals that have been made dislocation-free by adding In. Once fabricated, the threshold voltage (v
th) can be reduced.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし固液界面での温度勾配が4Q’Q/cm以上では
、G a A s基板を無転位化するには、添加するI
n濃度が5 X l 019cm−”以上必要であシ、
10×lQ2’cm−”から3. Q x l Q 2
06m−3の範囲内で最もその効果が太きい。しかしこ
の様に多重のInを添加するとイオン打込みした原子の
活性化率の低下をもたらすという欠点がある。
However, when the temperature gradient at the solid-liquid interface is 4Q'Q/cm or more, it is necessary to add I to make the GaAs substrate dislocation-free.
It is necessary that the n concentration is 5 x l 019cm-" or more,
10×lQ2′cm-” to 3. Q x l Q 2
The effect is strongest within the range of 06m-3. However, adding multiple In in this way has a drawback in that the activation rate of the ion-implanted atoms decreases.

また、この上うガ基板上にGaAsをエピタキシャル成
長させた場合、格子不整のために良質なエピタキシャル
層が得られない等の問題点がある。
Further, when GaAs is epitaxially grown on the above-mentioned GaAs substrate, there are problems such as the inability to obtain a good quality epitaxial layer due to lattice misalignment.

これは光−電子集積回路用基板としては致命釣人欠点で
ある。
This is a fatal drawback for opto-electronic integrated circuit boards.

本発明の目的は上記欠点を除いたG a A、 s単結
晶の成長方法を提供するものである。
An object of the present invention is to provide a method for growing a Ga A, s single crystal that eliminates the above-mentioned drawbacks.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、0aAs単結晶をインジウム元素を4
. Q x l Q ”Cm−”以上60 X 10”
Cm−3以下VCガる様にチョクラルスキー法で作製し
ている。特にG a A s溶液から引き上げる時、固
液界面の温度勾酸を5〜40°C/Cmにしてインジウ
ムをG a A−s結晶中に含せせている。
According to the present invention, 0aAs single crystal is made of indium element 4
.. Q x l Q “Cm-” or more 60 x 10”
It is produced by the Czochralski method so that the VC is less than Cm-3. In particular, when pulling up from the Ga As solution, the temperature gradient at the solid-liquid interface is set to 5 to 40°C/Cm to incorporate indium into the Ga As crystal.

〔作用〕[Effect]

Oa A、 s固液界面の温度勾配は従来40℃/cm
以下にする事は困難とされて来たが、液体封止I酌の厚
みや多段ヒーターの構造及び保温筒の形状を最適化する
事により40℃/cm以下5℃/cm以上にできる。こ
の様な低温度勾配下では結晶中の残留熱歪が少な(I 
nを添加しない場合でも化学腐食法による転位密度が2
 X I Q3(1m−3〜4 X I Q”1l17
i 2の結晶が得られる。この低温度勾配の条件下では
第1図に示す様に、結晶中に含1れるInの濃度が4.
Ox ]、 01acm3から6.Ox 1019cy
n−3ノ範囲内で無転位化できる。尚温度勾配が5°C
/σ以下では、結晶成長の際、結晶形状の制御が困難に
なυ、直径の急激な増減により転位が導入され無転位化
できない。この範囲内でInを添加した結晶をG a 
A−s集積回路用基板として用いた場合、イオン打ち込
みした原子の活性化率は第2図に示す様にIn濃度の高
いものより良好である。これはイオン注入した原子が基
板中のインジウムと反応し、活性化を妨げるためである
Oa A, sThe temperature gradient at the solid-liquid interface is conventionally 40℃/cm
Although it has been considered difficult to achieve a temperature below 40°C/cm or more than 5°C/cm by optimizing the thickness of the liquid-sealed cup, the structure of the multistage heater, and the shape of the heat-insulating tube. Under such a low temperature gradient, residual thermal strain in the crystal is small (I
Even when n is not added, the dislocation density by chemical corrosion method is 2.
X I Q3 (1m-3~4 X I Q"1l17
Crystals of i2 are obtained. Under this low temperature gradient condition, as shown in Figure 1, the concentration of In contained in the crystal is 4.5%.
Ox ], 01acm3 to 6. Ox 1019cy
No dislocation can be achieved within the range of n-3. Furthermore, the temperature gradient is 5°C.
Below /σ, it becomes difficult to control the crystal shape during crystal growth υ, and dislocations are introduced due to the rapid increase/decrease in diameter, making it impossible to eliminate dislocations. A crystal with In added within this range is Ga
When used as a substrate for an As integrated circuit, the activation rate of the ion-implanted atoms is better than that of a substrate with a high In concentration, as shown in FIG. This is because the implanted atoms react with indium in the substrate, preventing activation.

一方しきい値電圧のウェハー面内のバラツキの標準偏差
も添加したInが結晶内部に成長縞やInの析出等の欠
陥を形成するために第3図に示す様にIn濃度が増加す
るに従って大きくなる。
On the other hand, the standard deviation of the threshold voltage variation within the wafer surface also increases as the In concentration increases, as shown in Figure 3, because added In forms defects such as growth stripes and In precipitation inside the crystal. Become.

また、この範囲内でInを添加した結晶にエピタキシャ
ル層を成長させると、第4図に示す様にマンドープ結晶
と同程度の結晶性のものが得られるがIn濃度か増加す
るに従って、基板結晶との格子不整のためエピタキシャ
ル層の結晶性は悪くなる。尚結晶性についてはX線ロッ
キング曲線の半値幅で評価した。
Furthermore, if an epitaxial layer is grown on a crystal doped with In within this range, a crystallinity comparable to that of a mandoped crystal can be obtained, as shown in Figure 4, but as the In concentration increases, The crystallinity of the epitaxial layer deteriorates due to the lattice misalignment. The crystallinity was evaluated by the half width of the X-ray rocking curve.

〔実施例〕〔Example〕

以下、本発明による実施例を示す。 Examples according to the present invention will be shown below.

4インチ径のP B Nるつは中にガリウムと砒素を等
化学当量ずつ2100gチャージしさらにインジウムを
80gと添加量と等化学当量の砒素を加えた。液体封止
剤であるB2O3層の厚みは100關とし上部に熱しゃ
へい板を置き固液界面の温度勾配を70°C/c!nに
し直径54訂、長さ80闘の単結晶Aを作製した。一方
インジウムを8gと等化学等量の砒素を加え、3つのヒ
ーターを各々コントロールして固液界面の温度勾配を2
0°C/cInとし、他は結晶Aと同じ製造方法を用い
て単結晶Bを作製した。
A 4-inch diameter PBN melt was charged with 2100 g of equal chemical equivalents of gallium and arsenic, and 80 g of indium and arsenic in equivalent chemical equivalents to the added amount were added. The thickness of the B2O3 layer, which is a liquid sealant, is 100 degrees, and a heat shield plate is placed on top to reduce the temperature gradient at the solid-liquid interface to 70°C/c! A single crystal A with a diameter of 54 mm and a length of 80 mm was produced. On the other hand, 8 g of indium and chemically equivalent amount of arsenic were added, and the temperature gradient at the solid-liquid interface was adjusted to 2 by controlling each of the three heaters.
Single crystal B was produced using the same manufacturing method as crystal A except that the temperature was 0°C/cIn.

単結晶Aと単結晶Bの各結晶につき、直胴部の上部から
20關の部分からウエノ・−を切り出し、化学腐食法で
転位密度を調べた結果無転位であった。こi′Lらに隣
接するウェハーを用いて電界効果トランジスタの集積回
路を作製し、代表的な素子特性であるしきい値電圧(v
th)のバラツキ(σVth)を測定した結果、単結晶
Aでは20mVと太きかったが、単結晶Bでは6mVと
小さかった。
For each crystal, single crystal A and single crystal B, Ueno was cut out from a portion 20 degrees from the top of the straight body, and the dislocation density was examined using a chemical corrosion method. As a result, no dislocations were found. An integrated circuit of field effect transistors was fabricated using the wafers adjacent to these i′L, and the threshold voltage (v
As a result of measuring the variation (σVth) in single crystal A, it was large at 20 mV, but it was small at 6 mV in single crystal B.

甘だ活性化率は単結晶Aでは11チで、単結晶Bでは4
5チであった。
Amada activation rate is 11chi for single crystal A and 4 for single crystal B.
It was 5chi.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、本発明による方法を用れば結晶中に
含才れるIn濃度の少い無転位G a A s結晶を得
る事ができこの結晶から得られるウエノ・−に電界効果
トランジスタを作製する事によ少時性バラツキの極めて
小い電界効果トランジスタが得られGaAsICの高集
化ができる効果がある。さらにこのウェハー上にエピタ
キシャル層を成長させた場合、転位のない結晶性の優れ
た層を形成する事ができ、光−電子結合型集積回路用基
板として使用できる効果がある。
As explained above, by using the method according to the present invention, it is possible to obtain a dislocation-free GaAs crystal with a low In concentration in the crystal, and a field effect transistor can be built in the Ueno obtained from this crystal. By manufacturing this, a field effect transistor with extremely small temporal variations can be obtained, and GaAs ICs can be highly integrated. Furthermore, when an epitaxial layer is grown on this wafer, it is possible to form a layer with excellent crystallinity free of dislocations, which has the effect of being usable as a substrate for opto-electronic integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は固液界面の温度勾配とGaAs基板を無転位化
するのに必要な結晶中のインジウム量についての関係を
示すグラフである。第2図は結晶中のIn濃度と活性化
率の関係を示すグラフである。 第3図に結晶中のIn9度と電界効果トランジスタのし
きい値電圧のバラツキ(σvth)の関係ヲ示すグラフ
である。第4図に結晶中のIn濃度とエピタキシャル層
のX線ロックキング−カーブの半値幅の関係を示すグラ
フである。
FIG. 1 is a graph showing the relationship between the temperature gradient at the solid-liquid interface and the amount of indium in the crystal required to make a GaAs substrate free of dislocations. FIG. 2 is a graph showing the relationship between the In concentration in the crystal and the activation rate. FIG. 3 is a graph showing the relationship between the In9 degree in the crystal and the variation (σvth) in the threshold voltage of a field effect transistor. FIG. 4 is a graph showing the relationship between the In concentration in the crystal and the half width of the X-ray locking curve of the epitaxial layer.

Claims (1)

【特許請求の範囲】 1、GaAs単結晶をインジウム元素を4.0×10^
1^8cm^−^3以上6.0×10^1^9cm^−
^3以下含有するようにGaAs溶液から単結晶を成長
種として引き上げて形成する事を特徴とするIII−V族
化合物半導体の製造方法。 2、前記GaAs溶液と前記単結晶を成長種として引き
上げて形成されたGaAs単結晶との固液界面の温度勾
配を5〜40℃/cmとすることを特徴とする特許請求
の範囲第1項記載のIII−V族化合物半導体の製造方法
[Claims] 1. GaAs single crystal with indium element of 4.0×10^
1^8cm^-^3 or more 6.0 x 10^1^9cm^-
A method for manufacturing a III-V compound semiconductor, characterized in that a single crystal is pulled from a GaAs solution as a growth seed so as to contain ^3 or less. 2. Claim 1, characterized in that the temperature gradient at the solid-liquid interface between the GaAs solution and the GaAs single crystal formed by pulling the single crystal as a growth seed is 5 to 40°C/cm. A method for manufacturing the III-V compound semiconductor described above.
JP8930785A 1985-04-25 1985-04-25 Preparation of iii-v compound semiconductor Granted JPS61247700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8930785A JPS61247700A (en) 1985-04-25 1985-04-25 Preparation of iii-v compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8930785A JPS61247700A (en) 1985-04-25 1985-04-25 Preparation of iii-v compound semiconductor

Publications (2)

Publication Number Publication Date
JPS61247700A true JPS61247700A (en) 1986-11-04
JPH042559B2 JPH042559B2 (en) 1992-01-20

Family

ID=13967005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8930785A Granted JPS61247700A (en) 1985-04-25 1985-04-25 Preparation of iii-v compound semiconductor

Country Status (1)

Country Link
JP (1) JPS61247700A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02229797A (en) * 1989-03-02 1990-09-12 Hitachi Cable Ltd Production of gallium arsenide single crystal having low dislocation density
JP2022008146A (en) * 2020-06-12 2022-01-13 Dowaエレクトロニクス株式会社 GaAs INGOT, PRODUCTION METHOD OF GaAs INGOT, AND GaAs WAFER

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895699A (en) * 1981-12-03 1983-06-07 Nec Corp Growing method of gaas single crystal
JPS59131598A (en) * 1983-01-18 1984-07-28 Sumitomo Electric Ind Ltd Production of gaas single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895699A (en) * 1981-12-03 1983-06-07 Nec Corp Growing method of gaas single crystal
JPS59131598A (en) * 1983-01-18 1984-07-28 Sumitomo Electric Ind Ltd Production of gaas single crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02229797A (en) * 1989-03-02 1990-09-12 Hitachi Cable Ltd Production of gallium arsenide single crystal having low dislocation density
JP2022008146A (en) * 2020-06-12 2022-01-13 Dowaエレクトロニクス株式会社 GaAs INGOT, PRODUCTION METHOD OF GaAs INGOT, AND GaAs WAFER

Also Published As

Publication number Publication date
JPH042559B2 (en) 1992-01-20

Similar Documents

Publication Publication Date Title
US4594173A (en) Indium doped gallium arsenide crystals and method of preparation
US3994755A (en) Liquid phase epitaxial process for growing semi-insulating GaAs layers
JPS61247700A (en) Preparation of iii-v compound semiconductor
Clemans et al. Bulk III‐V Compound Semi‐Conductor Crystal Growth
US4028147A (en) Liquid phase epitaxial process for growing semi-insulating GaAs layers
Ohtsuka et al. High-purity In0. 53Ga0. 47As layer grown by liquid phase epitaxy
Tatsumi et al. Growth and characterization of III–V materials grown by vapor-pressure-controlled Czochralski method: comparison with standard liquid-encapsulated Czochralski materials
US4032950A (en) Liquid phase epitaxial process for growing semi-insulating gaas layers
JPH0557240B2 (en)
JPH11268998A (en) Gallium arsenic single crystal ingot, its production, and gallium arsenic single crystal wafer using the same
JPH0543679B2 (en)
JPH0557239B2 (en)
US5215938A (en) Process to obtain semi-insulating single crystalline epitaxial layers of arsenides and phosphides of metals of the group III of the periodic table useful to make electronic devices
JP2737186B2 (en) Gallium arsenide compound semiconductor single crystal
JPH02229796A (en) P-type inp single crystal substrate material having low dislocation density
JP2505222B2 (en) Method for manufacturing semi-insulating GaAs substrate
Fornari et al. Si-doping effect on electrical properties of lec-gaas crystals
JPS59131598A (en) Production of gaas single crystal
JPH08758B2 (en) Method for producing chromium-doped semi-insulating gallium arsenide single crystal
Mortensen Gallium arsenide in Japan
JP2737990B2 (en) Compound semiconductor single crystal manufacturing equipment
Fornari Optimal growth conditions and main features of GaAs single crystals for solar cell technology: a review
JPH01215799A (en) Semi-insulating gaas compound semiconductor single crystal and production thereof
KR960005511B1 (en) Growing method of gaas single crystal
JPS63201097A (en) Semiinsulating gallium-arsenic single crystal