JP2737186B2 - Gallium arsenide compound semiconductor single crystal - Google Patents

Gallium arsenide compound semiconductor single crystal

Info

Publication number
JP2737186B2
JP2737186B2 JP63311155A JP31115588A JP2737186B2 JP 2737186 B2 JP2737186 B2 JP 2737186B2 JP 63311155 A JP63311155 A JP 63311155A JP 31115588 A JP31115588 A JP 31115588A JP 2737186 B2 JP2737186 B2 JP 2737186B2
Authority
JP
Japan
Prior art keywords
crystal
single crystal
gaas
compound semiconductor
semiconductor single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63311155A
Other languages
Japanese (ja)
Other versions
JPH02157198A (en
Inventor
隆男 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP63311155A priority Critical patent/JP2737186B2/en
Publication of JPH02157198A publication Critical patent/JPH02157198A/en
Application granted granted Critical
Publication of JP2737186B2 publication Critical patent/JP2737186B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガリウム砒素(GaAs)化合物半導体単結晶に
関し、特に集積回路用基板に適するGaAs化合物半導体単
結晶に関する。
Description: TECHNICAL FIELD The present invention relates to a gallium arsenide (GaAs) compound semiconductor single crystal, and more particularly to a GaAs compound semiconductor single crystal suitable for an integrated circuit substrate.

〔従来の技術〕[Conventional technology]

従来、この種のGaAs集積回路用GaAs基板は液体封止チ
ョクラルスキー(LEC)法、又は水平ブリッジマン(H
B)法により作製され、通常LEC法では無添加結晶、HB法
ではクロム添加結晶を用いている。
Conventionally, this type of GaAs substrate for a GaAs integrated circuit has been manufactured using a liquid-sealed Czochralski (LEC) method or a horizontal Bridgman (H
It is manufactured by the B) method. Normally, the LEC method uses no added crystal, and the HB method uses a chromium added crystal.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

GaAs結晶が集積回路(IC)用基板として使用されるた
めには、比抵抗が1.0×1017Ω・cm以上の半絶縁性を有
することや、転位と呼ばれる結晶欠陥の数が少いか又は
均一に分布して存在することが必要であり、更にその基
板上に互いに近接して作製された電界効果トランジスタ
(FET)間の特性が影響を及ぼし合わないこと、即ちサ
イド・ゲート(SG)効果が極力小さいことが要求され
る。
In order for a GaAs crystal to be used as a substrate for an integrated circuit (IC), it must have a semi-insulating property with a specific resistance of 1.0 × 10 17 Ω · cm or more and have a small or uniform number of crystal defects called dislocations. And that the characteristics between the field effect transistors (FETs) formed on the substrate in close proximity to each other do not affect each other, that is, the side gate (SG) effect It is required to be as small as possible.

ところが上述した従来の技術によるGaAs単結晶を用い
て集積回路を作製するとデバイス間の特性に相互作用が
生じ事実上、ICとして動作しないという欠点がある。
However, when an integrated circuit is manufactured using the GaAs single crystal according to the above-described conventional technique, there is a drawback that the characteristics between the devices interact with each other and, in effect, do not operate as an IC.

〔課題を解決するための手段〕[Means for solving the problem]

本発明によれば、結晶中に7.0×1015cm-3以上1.0×10
17cm-3以下の酵素元素を含むことを特徴とするGaAs化合
物半導体単結晶を得る。
According to the present invention, in the crystal 7.0 × 10 15 cm -3 or more 1.0 × 10
A GaAs compound semiconductor single crystal containing an enzyme element of 17 cm −3 or less is obtained.

集積回路用GaAs単結晶としては通常無添加結晶が用い
られるが、その半絶縁性はEL2と呼ばれる禁制帯中のド
ナー型の深い準位が、炭素(C)に代表される浅いアク
セプター準位を補償して成り立っている。我々はGaAs集
積回路上に作製された電界効果型トランジスタ間でのサ
イド・ゲート効果の発生原因について調べた結果、GaAs
を熱処理した際にその基板表面近傍でEL2順位の濃度が
減少し、その結果基板の極表面で比抵抗が減少すること
に拠ることをつきとめた。
As a GaAs single crystal for integrated circuits, an undoped crystal is usually used, and its semi-insulating property is such that a donor-type deep level in a forbidden band called EL2 is a shallow acceptor level represented by carbon (C). It is made up of compensation. We investigated the causes of the side-gate effect between field-effect transistors fabricated on GaAs integrated circuits.
It was found that when heat-treated, the concentration of EL2 order decreased near the surface of the substrate, and as a result, the resistivity decreased on the very surface of the substrate.

EL2準位はGaAs結晶中のGa格子位置をAs原子が占有す
ることによってASGaの形で形成されるものであり、従っ
て極表面でのEL2濃度の減少は、熱処理時に蒸気圧の高
いAs原子が蒸散することにより発生するものである。
The EL2 level is formed in the form of AS Ga by occupying the Ga lattice position in the GaAs crystal with As atoms.Therefore, the decrease in the EL2 concentration at the extreme surface is caused by the high vapor pressure of As atoms during the heat treatment. Is generated by evaporation.

一方GaAs結晶中の酸素原子は禁制帯中にEL2(AsGa
と同じエネルギー準位を形成しGaAs基板の半絶縁性化に
寄与し、更に、GaAs基板を熱処理しても極表面を含めて
その濃度が結晶中で再分布せず熱的に極めて安定であり
極表面の低抵抗化を引起こさない。
On the other hand, oxygen atoms in the GaAs crystal are EL2 (As Ga ) in the forbidden band.
Contributes to the semi-insulating property of the GaAs substrate, and even if the GaAs substrate is annealed, its concentration including the pole surface does not redistribute in the crystal and is extremely stable thermally. Does not cause a reduction in the resistance of the very surface.

また集積回路用GaAs単結晶としてクロムを添加したも
のも用いられるが、GaAs結晶中のCrは熱的に不安定であ
り、熱処理中に再分布し、表面の低抵抗化をもたらす。
Although chromium-added GaAs single crystals for integrated circuits are also used, Cr in GaAs crystals is thermally unstable and redistributes during heat treatment, resulting in a lower surface resistance.

すなわち、酸素元素により形成される深い準位は、EL
2と呼ばれる準位と同じ活性化エネルギーを有し、しか
も熱的に極めて安定であるため、熱処理によって、ウェ
ハー極表面が低抵抗化することがない。
That is, the deep level formed by the oxygen element is EL
Since it has the same activation energy as the level referred to as 2 and is extremely thermally stable, the heat treatment does not lower the surface of the wafer pole.

従って、本発明による基板を用いれば、サイド・ゲー
ト効果の極めて少いGaAs集積回路を作製することができ
る。
Therefore, by using the substrate according to the present invention, a GaAs integrated circuit having extremely small side gate effect can be manufactured.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例を示すものであり、Ga
2O3の形で酸素を添加した結晶ウェハーに作製したFET素
子間のサイド・ゲート耐圧と結晶中酸素濃度との関係を
示すグラフである。
FIG. 1 shows a first embodiment of the present invention.
4 is a graph showing a relationship between a side gate breakdown voltage between FET elements manufactured on a crystal wafer to which oxygen is added in the form of 2 O 3 and an oxygen concentration in a crystal.

GaAs結晶は次の様にして作製した。6インチのPBNる
つぼ中にGaとAsを等モルづつ3100gチャージし、更に結
晶中の酸素濃度が1.0×1015から1.0×1018cm-3の範囲内
で変化する様に酸素をGa2O3の形で添加し、添加したGa2
O3のGaと等化学当量のAsを追加チャージした。この原料
を液体封じ剤B2O3で封止しLEC法により酸素濃度の異な
る結晶を作製した。また、同様にして酸素を添加しない
アンドープの単結晶も比較のために作製した。
The GaAs crystal was produced as follows. 3100 g of Ga and As are charged in equimolar amounts into a 6-inch PBN crucible, and oxygen is further added to Ga 2 O so that the oxygen concentration in the crystal changes within the range of 1.0 × 10 15 to 1.0 × 10 18 cm -3. Ga 2 added in the form of 3
An additional charge of As, which is equivalent to Ga in O 3 , was added. This raw material was sealed with a liquid sealing agent B 2 O 3 , and crystals having different oxygen concentrations were produced by the LEC method. Similarly, an undoped single crystal to which oxygen was not added was prepared for comparison.

これらの各結晶につき直胴部の上部から20mmの部分か
らウェハーを切り出し電界効果トランジスタを作製しそ
の近接する素子間のSG効果を測定した。結晶中の酸素濃
度は放射化分析により求め、SG効果の良否を判別する特
性指数としては、集積回路内の任意のあるFETのドレイ
ン電流を10%減少させる最隣接のFETのソース電圧値を
とった。図からわかる様に結晶中の酸素濃度が7.0×10
15〜1.0×1017cm-3の範囲内で良好な耐サイド・ゲート
特性を得ることができる。
For each of these crystals, a wafer was cut out from a portion 20 mm from the top of the straight body to produce a field effect transistor, and the SG effect between adjacent elements was measured. The oxygen concentration in the crystal is determined by activation analysis, and the characteristic index used to determine the quality of the SG effect is the source voltage value of the nearest FET that reduces the drain current of any given FET in the integrated circuit by 10%. Was. As can be seen from the figure, the oxygen concentration in the crystal is 7.0 × 10
Good side gate resistance can be obtained in the range of 15 to 1.0 × 10 17 cm −3 .

次に本発明の第2の実施例について説明する。 Next, a second embodiment of the present invention will be described.

結晶作製の要領,酸素濃度測定法及びSG効果評価法は
第1の実施例1と同様であるが本実施例では結晶育成時
の酸素添加をAs2O3により行った。その結果は第1図に
示す関係図と全く同様であり本実施例でも結晶中の酸素
濃度が7.0×1015〜1.0×1017cm-3の範囲内で良好な耐サ
イド・ゲード特性が得られることが確認できた。
The procedure for preparing the crystal, the method for measuring the oxygen concentration, and the method for evaluating the SG effect are the same as those in the first embodiment, but in this embodiment, oxygen was added using As 2 O 3 during crystal growth. The result is exactly the same as the relationship shown in FIG. 1. In this example, good anti-side gade characteristics were obtained when the oxygen concentration in the crystal was in the range of 7.0 × 10 15 to 1.0 × 10 17 cm −3. It was confirmed that it could be done.

〔発明の効果〕〔The invention's effect〕

以上説明した様に、本発明によるGaAs化合物半導体単
結晶を用いれば、サイド・ゲート効果がないかまたは極
めて少いGaAs集積回路及び大規模集積回路を実現でき、
これらを工業的規模で製造した場合の歩留りを著しく向
上できるという効果がある。
As described above, the use of the GaAs compound semiconductor single crystal according to the present invention can realize a GaAs integrated circuit and a large-scale integrated circuit having no or extremely little side gate effect,
There is an effect that the yield when these are manufactured on an industrial scale can be significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の各実施例の結果を示すグラフである。 FIG. 1 is a graph showing the results of each embodiment of the present invention.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】結晶中にEL2準位と同じ活性化エネルギー
を有する深い準位を形成する酸素元素を7.0×1015cm-3
以上でかつ1.0×1017cm-3以下含む他は、意図的な不純
物添加がされていないことを特徴とする半絶縁性のガリ
ウム砒素化合物半導体単結晶。
An oxygen element forming a deep level having the same activation energy as an EL2 level in a crystal is 7.0 × 10 15 cm −3.
A semi-insulating gallium arsenide compound semiconductor single crystal characterized by being free from intentional addition of impurities other than the above and containing 1.0 × 10 17 cm −3 or less.
JP63311155A 1988-12-08 1988-12-08 Gallium arsenide compound semiconductor single crystal Expired - Lifetime JP2737186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63311155A JP2737186B2 (en) 1988-12-08 1988-12-08 Gallium arsenide compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63311155A JP2737186B2 (en) 1988-12-08 1988-12-08 Gallium arsenide compound semiconductor single crystal

Publications (2)

Publication Number Publication Date
JPH02157198A JPH02157198A (en) 1990-06-15
JP2737186B2 true JP2737186B2 (en) 1998-04-08

Family

ID=18013766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63311155A Expired - Lifetime JP2737186B2 (en) 1988-12-08 1988-12-08 Gallium arsenide compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JP2737186B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273888A (en) * 2003-03-11 2004-09-30 Hitachi Cable Ltd Epitaxial wafer for field effect transistor
WO2014153734A1 (en) * 2013-03-27 2014-10-02 Beijing Tongmei Xtal Technology Co., Ltd. Controllable oxygen concentration in semiconductor substrate
CN110325672A (en) 2017-07-04 2019-10-11 住友电气工业株式会社 Gallium arsenide and gallium arsenide substrate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919911B2 (en) * 1976-03-29 1984-05-09 住友電気工業株式会社 Semi-insulating Group 3-5 compound single crystal
JPS56100410A (en) * 1980-01-14 1981-08-12 Sumitomo Electric Ind Ltd Gallium arsenide crystal of low defect density and semi-insulation

Also Published As

Publication number Publication date
JPH02157198A (en) 1990-06-15

Similar Documents

Publication Publication Date Title
Matsunami et al. Step-controlled epitaxial growth of SiC: High quality homoepitaxy
JP2737186B2 (en) Gallium arsenide compound semiconductor single crystal
US3994755A (en) Liquid phase epitaxial process for growing semi-insulating GaAs layers
KR940000387B1 (en) Fabricating method of semiconductor device
JPH0510317B2 (en)
US4032950A (en) Liquid phase epitaxial process for growing semi-insulating gaas layers
JPS58156598A (en) Method for crystal growth
US5215938A (en) Process to obtain semi-insulating single crystalline epitaxial layers of arsenides and phosphides of metals of the group III of the periodic table useful to make electronic devices
JPH0476355B2 (en)
Kitagawara et al. Deep levels in semiconducting In‐alloyed bulk n‐GaAs and its resistivity conversions by thermal treatments
JPH0380199A (en) Substrate made of single crystal of p type gaas, production thereof and semiconductor device using this substrate
JP2572291B2 (en) Method of manufacturing semi-insulating InP single crystal substrate
JPS63201097A (en) Semiinsulating gallium-arsenic single crystal
JPS60211912A (en) Low-transition semi-insulation substrate
JPS61247700A (en) Preparation of iii-v compound semiconductor
JPH0269307A (en) Compound semiconductor and its production
JP2829403B2 (en) Method for manufacturing compound semiconductor
JP2750307B2 (en) Method for producing InP single crystal
JPS59165467A (en) Semiconductor device and manufacture thereof
SU970906A1 (en) Semiconductor material for microwave transistors
JP3246067B2 (en) Field effect transistor wafer and transistor
JPH0597596A (en) Gaas crystal and gaas device using the same
Imaizumi et al. Semi‐insulation of undoped GaAs epitaxial layers by wafer annealing
JPS628576A (en) Semiconductor device
JPS60235799A (en) Method of growth of gaas crystal having semiinsulating property