JP2572291B2 - Method of manufacturing semi-insulating InP single crystal substrate - Google Patents

Method of manufacturing semi-insulating InP single crystal substrate

Info

Publication number
JP2572291B2
JP2572291B2 JP2115403A JP11540390A JP2572291B2 JP 2572291 B2 JP2572291 B2 JP 2572291B2 JP 2115403 A JP2115403 A JP 2115403A JP 11540390 A JP11540390 A JP 11540390A JP 2572291 B2 JP2572291 B2 JP 2572291B2
Authority
JP
Japan
Prior art keywords
single crystal
inp
inp single
resistivity
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2115403A
Other languages
Japanese (ja)
Other versions
JPH03279299A (en
Inventor
敬司 甲斐荘
小田  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP2115403A priority Critical patent/JP2572291B2/en
Priority to US07/661,616 priority patent/US5173127A/en
Priority to DE69103464T priority patent/DE69103464T2/en
Priority to EP91301722A priority patent/EP0455325B1/en
Publication of JPH03279299A publication Critical patent/JPH03279299A/en
Priority to US07/943,686 priority patent/US5254507A/en
Application granted granted Critical
Publication of JP2572291B2 publication Critical patent/JP2572291B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電子デバイス、特にOEIC,HEMT、イオン注
入型FETなどに用いる半絶縁性InP単結晶及びその製造方
法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semi-insulating InP single crystal used for an electronic device, in particular, an OEIC, a HEMT, an ion-implanted FET, and a method for producing the same.

[従来の技術] 化合物半導体材料を半絶縁性化するにあたり、n型の
不純物となるSiやSを含む材料では、深いアクセプター
となるFe,CoまたはCr等を添加する方法が工業的に用い
られている。この半絶縁性化は、浅いドナーを深いアク
セプターで補償するという機構によるものである。した
がって、深いアクセプターとなる元素の添加量は、結晶
材料中に含有されているドナーの量より多くなければ、
半絶縁性化することはできないとされている。
[Prior Art] In order to make a compound semiconductor material semi-insulating, a method of adding Fe, Co, Cr or the like as a deep acceptor to a material containing Si or S as an n-type impurity is industrially used. ing. This semi-insulating property is due to a mechanism of compensating a shallow donor with a deep acceptor. Therefore, if the amount of the element that becomes a deep acceptor is not larger than the amount of the donor contained in the crystal material,
It is said that it cannot be made semi-insulating.

ところが、Fe,CoまたはCr等をドープして半絶縁性化
する場合、これらの量はできるだけ少ないことが望まし
い。なぜならば、Fe,Co,Cr等は、深いアクセプターとし
て作用するため、イオン注入型の電子デバイス(FETな
ど)においては活性化率を低下させたり、また高周波で
動作させるデバイス(OEICやHEMTなど)においてはエピ
タキシャル膜中にこれらの元素が拡散しトラップとして
作用して高周波かつ高速化を妨げてしまうからである。
However, when semi-insulating properties are obtained by doping with Fe, Co, Cr, or the like, it is desirable that these amounts be as small as possible. Because Fe, Co, Cr, etc. act as deep acceptors, they lower the activation rate in ion-implanted electronic devices (FETs, etc.) or operate at high frequencies (OEICs, HEMTs, etc.) In these cases, these elements diffuse into the epitaxial film and act as traps to hinder high frequency and high speed.

さらに、これらの元素は偏析し易く結晶の上下でFe等
の濃度が異なり活性化率が不均一となり歩留りが低くな
ってしまう。
Further, these elements are liable to segregate, and the concentration of Fe or the like is different between the upper and lower portions of the crystal, so that the activation rate is not uniform and the yield is low.

従来、電子デバイスに用いる半絶縁性のInPとして
は、FeドープInPが主として用いられている。
Conventionally, Fe-doped InP has been mainly used as semi-insulating InP used for electronic devices.

しかし、Feの含有濃度が0.2ppmw以下であると、抵抗
率が106Ω・cmより低くなってしまい、半絶縁性が低下
してしまう。これを半絶縁性結晶とするためには、Feの
ドープ量を一定量(0.2ppmw)以上にしなければならな
かった。
However, when the Fe content is less than 0.2 ppmw, the resistivity becomes lower than 10 6 Ω · cm, and the semi-insulating property is reduced. In order to make this a semi-insulating crystal, the doping amount of Fe had to be more than a certain amount (0.2 ppmw).

一般に、化合物半導体でFe,Cr等の含有濃度が低くな
ると抵抗率が下がってしまうのは、ドナーとなる不純物
がその水準まで残留不純物として結晶中に存在するため
と考えられていた。ところが、本発明者等は、InP単結
晶の半絶縁性化の機構は、ドナーと深いアクセプターに
よる補償のみでなく、さらに電気的に活性な点欠陥も関
与していると考え、鋭意研究の結果、結晶を熱処理する
ことにより点欠陥の濃度を制御することにより、従来に
比し格段と低い深いアクセプターの不純物濃度でも化合
物半導体を半絶縁性化できることを見い出した。
In general, it has been considered that the resistivity decreases when the content concentration of Fe, Cr, or the like in a compound semiconductor decreases, because impurities serving as donors are present as residual impurities in the crystal to that level. However, the present inventors believe that the mechanism of semi-insulating InP single crystal involves not only compensation by a donor and a deep acceptor, but also an electrically active point defect. By controlling the concentration of point defects by heat-treating the crystal, it has been found that the compound semiconductor can be made semi-insulating even at a much lower impurity concentration of the deep acceptor than in the prior art.

これにより本発明者等は先に、Fe,CoまたはCrのいず
れか1種以上の含有濃度の合計が0.2ppmw以下でありか
つ抵抗率が107Ω・cm以上である化合物半導体の製造技
術を提案した(特願昭63−220632号)。
Accordingly, the present inventors have previously developed a compound semiconductor manufacturing technique in which the total concentration of any one or more of Fe, Co, and Cr is 0.2 ppmw or less and the resistivity is 10 7 Ωcm or more. It was proposed (Japanese Patent Application No. 63-220632).

すなわち、Fe,CoまたはCrを0.2ppmw以下含有する化合
物半導体材料を石英アンプル内に真空封入するととも
に、この石英アンプル内に前記化合物半導体材料の構成
元素またはその構成元素を含む別個の化合物半導体材料
を配置し、石英アンプル内を前記薄板からなる化合物半
導体材料の解離圧以上となる圧力とし、石英アンプルを
400〜640℃で加熱するというものである。
That is, a compound semiconductor material containing 0.2 ppmw or less of Fe, Co or Cr is vacuum-sealed in a quartz ampoule, and a constituent element of the compound semiconductor material or a separate compound semiconductor material containing the constituent element is contained in the quartz ampule. The quartz ampoule is placed at a pressure higher than the dissociation pressure of the compound semiconductor material made of the thin plate in the quartz ampule.
Heating at 400-640 ° C.

一方D.Hofmannらは“Appl.Phys.A 48,P315−319(198
9)”において、キャリア濃度3.5×1015cm-3のノンドー
プInP単結晶ウェーハを5bar(約5kg/cm2)のリン圧下、
900℃の濃度で80時間熱処理を行なうことによって、抵
抗率2×107Ω・cmのInPウェーハを得たと報告してい
る。これは、前記発明と同様、電気的に活性な点欠陥が
関与しているためと考えられる。
On the other hand, D. Hofmann et al., "Appl. Phys. A 48, P315-319 (198
9)), the non-doped InP single crystal wafer having a carrier concentration of 3.5 × 10 15 cm −3 was subjected to a phosphorous pressure of 5 bar (about 5 kg / cm 2 ).
It is reported that an InP wafer having a resistivity of 2 × 10 7 Ω · cm was obtained by performing a heat treatment at a concentration of 900 ° C. for 80 hours. This is considered to be due to the fact that electrically active point defects are involved as in the above-mentioned invention.

[発明が解決しようとする課題] しかし、その後の我々の研究により上記先願発明にあ
っては、ノンドープすなわちFe,CoまたはCrのいずれか
1種以上の不純物の含有濃度が0.05ppmw以下のInP単結
晶を熱処理しても、半絶縁性化しないことが分かった。
[Problems to be Solved by the Invention] However, according to our subsequent studies, in the above-mentioned prior invention, the non-doped, that is, the concentration of one or more impurities of Fe, Co or Cr is 0.05 ppmw or less. It was found that the heat treatment of the single crystal did not make it semi-insulating.

また、D.Hofmannの方法によると、キャリア濃度が3.5
×1015cm-3のノンドープInP単結晶を熱処理すると、抵
抗率は106Ω・cm以上となるものがあったものの、移動
度は4500cm2/V・s以上あったものが3000cm2/V・s以下
に下がってしまう。また、InP単結晶のキャリア濃度が
高いと、抵抗率は101〜105Ω・cmとなり、容易には抵抗
率107Ω・cm以上を達成できなかった。
According to the method of D. Hofmann, the carrier concentration is 3.5
When a non-doped InP single crystal of × 10 15 cm -3 was heat-treated, the resistivity was 10 6 Ωcm or more, but the mobility was 4500 cm 2 / Vs or more, but 3000 cm 2 / V・ It drops to s or less. Also, when the carrier concentration of the InP single crystal was high, the resistivity was 10 1 to 10 5 Ω · cm, and it was not easy to achieve a resistivity of 10 7 Ω · cm or more.

[課題を解決するための手段] 発明者らは、これらの結果を総合的に検討し、熱処理
温度に対するリン蒸気圧がある限度値以上でなければ十
分な移動度を持つ半絶縁性InP単結晶を得ることができ
ないとの結論に達した。
[Means for Solving the Problems] The present inventors have comprehensively examined these results, and have found that a semi-insulating InP single crystal having sufficient mobility unless the phosphorus vapor pressure with respect to the heat treatment temperature exceeds a certain limit value. Came to the conclusion that it could not be obtained.

本発明は上記知見に基づいてなされたものであり、キ
ャリア濃度が3×1015cm-3以下の原料多結晶InPから製
造され、故意に不純物を添加することなく、かつ残留不
純物として存在するFe,CoまたはCrのいずれか1種以上
の含有濃度の合計が0.05ppmw以下であるInP単結晶薄板
を、6kg/cm2を超えるリン蒸気圧雰囲気で熱処理するこ
とを提案するものである。
The present invention has been made based on the above findings, and is manufactured from a raw material polycrystalline InP having a carrier concentration of 3 × 10 15 cm −3 or less, without intentionally adding impurities, and presenting Fe present as a residual impurity. It is proposed to heat-treat an InP single-crystal thin plate having a total concentration of at least one of Co, Cr and at least 0.05 ppmw in a phosphorus vapor pressure atmosphere exceeding 6 kg / cm 2 .

[実施例] (第1実施例) キャリア濃度1×1015cm-3の原料多結晶InPから液体
封止チョクラルスキー法で引上げたFe,Co,Crのいずれも
分析下限(0.05ppmw)以下である厚さ0.5mmのアズカッ
トのノンドープInPウェハ(薄板)と赤リンとを石英ア
ンプル内にセットし、石英アンプル内を1×10-6Torrま
で真空排気した後、酸水素バーナーにより石英アンプル
の開口部を封止した。この際、赤リンの量は、石英アン
プル内のリン蒸気圧が熱処理温度で15kg/cm2(絶対圧)
となるように調整した。次に、この石英アンプルを横型
加熱炉内に設置し、熱処理温度900℃で20時間加熱保持
した後、冷却した。
[Examples] (First Example) Fe, Co, and Cr pulled up from liquid polycrystalline InP having a carrier concentration of 1 × 10 15 cm −3 by the liquid sealing Czochralski method are all lower than the analysis lower limit (0.05 ppmw). A 0.5 mm thick as-cut non-doped InP wafer (thin plate) and red phosphorus are set in a quartz ampoule, the inside of the quartz ampule is evacuated to 1 × 10 -6 Torr, and then the quartz ampoule is evacuated by an oxyhydrogen burner. The opening was sealed. At this time, the amount of red phosphorus is determined as follows: the phosphorus vapor pressure in the quartz ampoule is 15 kg / cm 2 (absolute pressure) at the heat treatment temperature.
It was adjusted to be. Next, this quartz ampule was placed in a horizontal heating furnace, heated and maintained at a heat treatment temperature of 900 ° C. for 20 hours, and then cooled.

上記横型加熱炉は密閉型で100kg/cm2(ゲージ圧)の
圧力まで加圧できるものを使用し、昇温時および冷却時
に、その温度に対するリン蒸気圧に見合う圧力のアルゴ
ンガスを加熱炉内に導入して、石英アンプルの内外の圧
力のバランスを保ち、石英アンプルの破壊を防止した。
The horizontal heating furnace is a closed type that can be pressurized to a pressure of 100 kg / cm 2 (gauge pressure). At the time of heating and cooling, argon gas with a pressure corresponding to the phosphorus vapor pressure for that temperature is used in the heating furnace. To prevent the destruction of the quartz ampule while maintaining the balance between the pressure inside and outside the quartz ampule.

(第2実施例) 赤リンの量を、石英アンプル内のリン蒸気圧が、熱処
理温度(900℃)で7.5kg/cm2(絶対圧)となる量に調整
した。その他の条件は、第1実施例と同様にして行なっ
た。
(Example 2) The amount of red phosphorus was adjusted so that the phosphorus vapor pressure in the quartz ampoule was 7.5 kg / cm 2 (absolute pressure) at the heat treatment temperature (900 ° C). Other conditions were the same as in the first example.

上記各実施例で得られたウェハについて、電気特性を
調べるためウェハの表面を50μmラッピングにより除去
した後、Van der Pauw法によって抵抗率および移動度を
300Kで測定した。
For the wafer obtained in each of the above examples, the surface of the wafer was removed by 50 μm lapping in order to examine the electrical characteristics, and then the resistivity and mobility were measured by the Van der Pauw method.
Measured at 300K.

その結果を表1に示す。 Table 1 shows the results.

上記表にはHofmannの結果すなわち熱処理温度900℃、
リン蒸気圧5kg/cm2(絶対圧)で80時間の熱処理を行な
ったノンドープInP単結晶の抵抗率と移動度を、比較例
として示してある。
The above table shows the results of Hofmann, namely, heat treatment temperature of 900 ° C,
As a comparative example, the resistivity and mobility of a non-doped InP single crystal subjected to a heat treatment at a phosphorus vapor pressure of 5 kg / cm 2 (absolute pressure) for 80 hours are shown.

上記表の測定値をグラフとして示したのが第1図であ
る。
FIG. 1 shows the measured values in the above table as a graph.

同図より、ノンドープInP単結晶を使用し、熱処理時
のリン蒸気圧を6kg/cm2(絶対圧)を超える値にするこ
とによって、抵抗率が1×106以上で、移動度が3000cm2
/V・sを超える半絶縁性InP単結晶が得られることが分
かる。
According to the figure, by using a non-doped InP single crystal and increasing the phosphorus vapor pressure during heat treatment to a value exceeding 6 kg / cm 2 (absolute pressure), the resistivity is 1 × 10 6 or more and the mobility is 3000 cm 2.
It can be seen that a semi-insulating InP single crystal exceeding / V · s can be obtained.

さらに、上記実施例で得られた高移動度の半絶縁性In
P単結晶を用いてデバイスを作成したときに抵抗率が下
がらないか確認するため、1500ÅのSiNx膜を付けて、70
0℃で15分間のキャップアニールを施してから、抵抗率
を測定した。その結果を第2図および第3図に示す。同
図において、●印はキャップアニール前の値を、また○
印はキャップアニール後の値を示す。第2図より、リン
圧力の如何にかかわらず、アニール前後で抵抗率はほと
んど低下しないことが分かる。また、移動度は第3図に
示すように若干下がるものの3200cm2/V・s以上であ
り、充分に実用的範囲に入っていることが分かる。
Furthermore, the high mobility semi-insulating In obtained in the above example
In order to confirm that the resistivity does not decrease when a device is created using P single crystal, a 1500 Å SiNx film was
After performing cap annealing at 0 ° C. for 15 minutes, the resistivity was measured. The results are shown in FIGS. 2 and 3. In the figure, the closed circles indicate the values before cap annealing,
The marks indicate the values after cap annealing. FIG. 2 shows that the resistivity hardly decreases before and after annealing regardless of the phosphorus pressure. In addition, although the mobility is slightly lowered as shown in FIG. 3, it is 3200 cm 2 / V · s or more, and it can be seen that the mobility is sufficiently within a practical range.

(第3実施例) キャリア濃度が5×1014cm-3の原料多結晶InPから液
体封止チョクラルスキー法で引上げたInP単結晶から切
り出した厚さ0.5mmのアズカットのInPウェハを第1の実
施例と同様な条件の下で熱処理した。すなわち、上記In
Pウェハを赤リンとともに石英アンプル内にセットし、
各石英アンプル内を1×10-6Torrまで真空排気した後、
バーナにより石英アンプルを封止した。この際、赤リン
の量は、石英アンプル内のリン蒸気圧が熱処理温度で3.
0kg/cm2,7.5kg/cm2,15.0kg/cm2(絶対圧)となるように
それぞれ調整した。次に、これらの石英アンプルを横型
加熱炉内に設置し、それぞれ熱処理温度900℃で20時間
加熱保持した後、冷却した。
(Third Embodiment) A 0.5 mm thick as-cut InP wafer cut out from an InP single crystal pulled up by a liquid-sealed Czochralski method from a raw material polycrystalline InP having a carrier concentration of 5 × 10 14 cm −3 was first used. The heat treatment was carried out under the same conditions as in the above example. That is, the above In
Place the P wafer in a quartz ampoule with red phosphorus,
After evacuating each quartz ampule to 1 × 10 -6 Torr,
The quartz ampule was sealed with a burner. At this time, the amount of red phosphorus depends on the phosphorus vapor pressure in the quartz ampoule at the heat treatment temperature.
The pressure was adjusted to be 0 kg / cm 2 , 7.5 kg / cm 2 , and 15.0 kg / cm 2 (absolute pressure). Next, these quartz ampoules were placed in a horizontal heating furnace, heated and held at a heat treatment temperature of 900 ° C. for 20 hours, and then cooled.

上記ウェハの表面を50μmラッピングにより除去した
後、Van der Pauw法によって抵抗率および移動度を300K
で測定した。
After removing the surface of the above wafer by 50 μm lapping, the resistivity and the mobility were set to 300K by Van der Pauw method.
Was measured.

その結果を第4図に示す。 The result is shown in FIG.

同図において、●印は本実施例を適用したInPウェー
ハの抵抗率を、また△印はキャリア濃度5×1015cm-3
原料多結晶InPから液体封止チョクラルスキー法で引上
げたノンドープInP単結晶を上記と同様の条件の下で熱
処理した場合の抵抗率を示す。
In the same figure, the mark ● represents the resistivity of the InP wafer to which the present embodiment was applied, and the mark △ represents the non-doped material pulled up from the raw material polycrystalline InP having a carrier concentration of 5 × 10 15 cm -3 by the liquid sealing Czochralski method. This shows the resistivity when the InP single crystal was heat-treated under the same conditions as above.

第4図より、キャリア濃度5×1015cm-3の原料多結晶
を用いたInPウェーハでは、7.5kg/cm2(絶対値)以上の
リン圧を印加して熱処理しても高抵抗化できないのに対
し、キャリア濃度5×1014cm-3の原料多結晶を用いたIn
Pウェーハでは6kg/cm2(絶対圧)を超えるリン圧を印加
して熱処理することによって、高抵抗率化できることが
分かる。また、移動度はいずれも4000cm2/V・s以上あ
った。
As can be seen from FIG. 4, in the case of an InP wafer using a raw material polycrystal having a carrier concentration of 5 × 10 15 cm −3 , even if a phosphorus pressure of 7.5 kg / cm 2 (absolute value) or more is applied and heat treatment is performed, the resistance cannot be increased. On the other hand, In using a raw material polycrystal having a carrier concentration of 5 × 10 14 cm −3
It can be seen that the resistivity of the P wafer can be increased by applying a phosphorus pressure exceeding 6 kg / cm 2 (absolute pressure) and performing heat treatment. In addition, the mobilities were all 4000 cm 2 / V · s or more.

また、第5図及び第6図にキャリア濃度の異なる原料
多結晶InPから液体封止引上げ法で引上げたノンドープI
nP単結晶を用いて、7.5kg/cm2(絶対圧)のリン圧を印
加して同様の熱処理をした場合の抵抗率及び移動度を示
す。
FIGS. 5 and 6 show that the non-doped I.P.
The resistivity and the mobility when the same heat treatment is performed by applying a phosphorus pressure of 7.5 kg / cm 2 (absolute pressure) using an nP single crystal are shown.

第5図及び第6図より原料多結晶InPのキャリア濃度
が3×1015cm-3以下でないと抵抗率106Ωcm以上、移動
度300cm2/V・s以上にならないことがわかる。なお、第
6図でキャリア濃度5×1015cm-3以上で移動度が高くな
っているのは半絶縁性化しないためである。
From FIGS. 5 and 6, it can be seen that the resistivity does not exceed 10 6 Ωcm and the mobility does not exceed 300 cm 2 / V · s unless the carrier concentration of the raw material polycrystalline InP is 3 × 10 15 cm −3 or less. In FIG. 6, the reason why the mobility is high when the carrier concentration is 5 × 10 15 cm −3 or more is that the material does not become semi-insulating.

なお、上記実施例ではいずれもInP単結晶の熱処理温
度を900℃とした場合について説明したが、故意に不純
物を添加することなく、かつ残留不純物として存在する
Fe,CoまたはCrのいずれか1種以上の含有濃度の合計が
0.05ppmw以下のノンドープInP単結晶薄板を用いること
で、他の温度条件下でもリン蒸気圧下の熱処理によっ
て、300Kでの抵抗率106Ω・cm以上で、移動度が3000cm2
/V・sを超える半絶縁性InP単結晶が得られる。
Note that, in each of the above embodiments, the case where the heat treatment temperature of the InP single crystal was set to 900 ° C. was described. However, without intentionally adding impurities, there is a residual impurity.
The sum of the concentrations of at least one of Fe, Co and Cr is
By using a non-doped InP single crystal thin plate of 0.05 ppmw or less, even under other temperature conditions, by heat treatment under a phosphorus vapor pressure, the resistivity at 300 K is 10 6 Ωcm or more, and the mobility is 3000 cm 2
A semi-insulating InP single crystal exceeding / V · s can be obtained.

[発明の効果] 以上のように、本発明のInP単結晶にあっては、故意
に不純物を添加することなく、かつ残留不純物として存
在するFe,CoまたはCrのいずれか1種以上の含有濃度の
合計が0.05ppmw以下であるにも拘らず、高抵抗率で高移
動度を有しているので、特に電子デバイス用の半絶縁性
化合物半導体基板として最適である。
[Effects of the Invention] As described above, in the InP single crystal of the present invention, the concentration of at least one of Fe, Co, and Cr present as residual impurities without intentionally adding impurities. Is high, and has high mobility, despite being less than 0.05 ppmw, so that it is particularly suitable as a semi-insulating compound semiconductor substrate for electronic devices.

なお、故意に不純物を添加することなく、かつ残留不
純物として存在するFe,Co,またはCrのいずれか1種以上
の含有濃度の合計が0.05ppmw以下のInP単結晶をOEICやH
EMT用基板として用いれば、Fe濃度が低いため、エピタ
キシャル膜中にFeの拡散がなく、高周波かつ高速化が可
能となる。また、イオン注入型FET用には、Fe濃度が低
いため注入イオンの活性化率が高くなり、さらに結晶の
上下でのFe濃度の偏析が無視でき活性化率が均一となる
ため歩留りが向上する。
In addition, an InP single crystal in which the total concentration of at least one of Fe, Co, and Cr present as residual impurities is 0.05 ppmw or less without intentionally adding impurities is OEIC or H
When used as an EMT substrate, since the Fe concentration is low, there is no diffusion of Fe in the epitaxial film, and high frequency and high speed can be achieved. In addition, for ion-implanted FETs, the activation rate of implanted ions is high due to the low Fe concentration, and the segregation of the Fe concentration above and below the crystal is negligible, and the activation rate is uniform, thus improving the yield. .

また、本発明のInP単結晶の製造方法によれば、ノン
ドープのInP単結晶薄板を用いてこれを石英アンプル内
に真空封入し、所定条件下で熱処理するだけで、抵抗率
が高くしかも移動度の高い半絶縁性InP単結晶を得るこ
とができるという効果がある。
Further, according to the method for producing an InP single crystal of the present invention, a non-doped InP single crystal thin plate is vacuum-enclosed in a quartz ampoule and heat-treated under predetermined conditions to obtain a high resistivity and high mobility. This has the effect that a semi-insulating InP single crystal having a high density can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図はノンドープInP単結晶ウェハの熱処理時のリン
蒸気圧と移動度との関係を示すグラフ、 第2図上記熱処理後のInP単結晶ウェハをキャプアニー
ルしたときの抵抗率の変化を示すグラフ、 第3図は上記熱処理後のInP単結晶ウェハをキャプアニ
ールしたときの移動度の変化を示すグラフ、 第4図はキャリア濃度の異なる原料多結晶InPから製造
したInP単結晶ウェハの熱処理時のリン蒸気圧と抵抗率
との関係を示すグラフ、 第5図は原料多結晶InPのキャリア濃度と熱処理後のInP
単結晶ウェハの抵抗率との関係を示すグラフ、 第6図は原料多結晶InPのキャリア濃度と熱処理後のInP
単結晶ウェハの移動度との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the phosphorus vapor pressure and the mobility of a non-doped InP single crystal wafer during heat treatment, and FIG. 2 is a graph showing the change in resistivity when the above-mentioned heat-treated InP single crystal wafer is cap-annealed. FIG. 3 is a graph showing a change in mobility when the InP single crystal wafer after the above heat treatment is subjected to cap annealing, and FIG. 4 is a graph showing a change in mobility of an InP single crystal wafer produced from raw material polycrystalline InP having different carrier concentrations. FIG. 5 is a graph showing a relationship between phosphorus vapor pressure and resistivity, and FIG. 5 is a graph showing carrier concentration of raw material polycrystalline InP and InP after heat treatment.
FIG. 6 is a graph showing the relationship between the resistivity of a single-crystal wafer and FIG.
4 is a graph showing a relationship with the mobility of a single crystal wafer.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】キャリア濃度が3×1015cm-3以下の原料多
結晶InPから製造され、故意に不純物を添加することな
く、かつ残留不純物として存在するFe,CoまたはCrのい
ずれか1種以上の含有濃度の合計が0.05ppmw以下である
InP単結晶薄板を、6kg/cm2を超えるリン蒸気圧雰囲気で
熱処理することを特徴とする半絶縁性InP単結晶基板の
製造方法。
1. One of Fe, Co or Cr, which is produced from a raw material polycrystalline InP having a carrier concentration of 3 × 10 15 cm -3 or less and which is present as a residual impurity without intentionally adding impurities. The total of the above concentrations is 0.05 ppmw or less
A method for producing a semi-insulating InP single crystal substrate, comprising heat-treating an InP single crystal thin plate in a phosphorus vapor pressure atmosphere exceeding 6 kg / cm 2 .
JP2115403A 1990-03-02 1990-05-01 Method of manufacturing semi-insulating InP single crystal substrate Expired - Lifetime JP2572291B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2115403A JP2572291B2 (en) 1990-03-02 1990-05-01 Method of manufacturing semi-insulating InP single crystal substrate
US07/661,616 US5173127A (en) 1990-03-02 1991-02-28 Semi-insulating inp single crystals, semiconductor devices having substrates of the crystals and processes for producing the same
DE69103464T DE69103464T2 (en) 1990-03-02 1991-03-01 Semi-insulating indium phosphide single crystals and process for their manufacture.
EP91301722A EP0455325B1 (en) 1990-03-02 1991-03-01 Single crystals of semi-insulating indium phosphide and processes for making them
US07/943,686 US5254507A (en) 1990-03-02 1992-09-11 Semi-insulating InP single crystals, semiconductor devices having substrates of the crystals and processes for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5137090 1990-03-02
JP2-51370 1990-03-02
JP2115403A JP2572291B2 (en) 1990-03-02 1990-05-01 Method of manufacturing semi-insulating InP single crystal substrate

Publications (2)

Publication Number Publication Date
JPH03279299A JPH03279299A (en) 1991-12-10
JP2572291B2 true JP2572291B2 (en) 1997-01-16

Family

ID=26391910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2115403A Expired - Lifetime JP2572291B2 (en) 1990-03-02 1990-05-01 Method of manufacturing semi-insulating InP single crystal substrate

Country Status (1)

Country Link
JP (1) JP2572291B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2572297B2 (en) * 1990-08-03 1997-01-16 株式会社ジャパンエナジー Method of manufacturing semi-insulating InP single crystal substrate
US6036769A (en) * 1994-06-29 2000-03-14 British Telecommunications Public Limited Company Preparation of semiconductor substrates

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5179698A (en) * 1975-01-08 1976-07-12 Nippon Electric Co Rinkainjiumuno seizohoho
JPS62275099A (en) * 1986-05-20 1987-11-30 Showa Denko Kk Semi-insulating indium phosphide single crystal
JPH0269307A (en) * 1988-09-02 1990-03-08 Nippon Mining Co Ltd Compound semiconductor and its production
JPH02239195A (en) * 1989-03-09 1990-09-21 Nippon Mining Co Ltd Compound semiconductor single crystal
JPH02239199A (en) * 1989-03-14 1990-09-21 Sumitomo Electric Ind Ltd Production of semiinsulating inp single crystal

Also Published As

Publication number Publication date
JPH03279299A (en) 1991-12-10

Similar Documents

Publication Publication Date Title
Fewster et al. The effect of silicon doping on the lattice parameter of gallium arsenide grown by liquid-phase epitaxy, vapour-phase epitaxy and gradient-freeze techniques
US6056817A (en) Process for producing semi-insulating InP single crystal and semi-insulating InP single crystal substrate
JP2572291B2 (en) Method of manufacturing semi-insulating InP single crystal substrate
EP0455325B1 (en) Single crystals of semi-insulating indium phosphide and processes for making them
JP2819244B2 (en) Method for producing semi-insulating InP single crystal
JP2572297B2 (en) Method of manufacturing semi-insulating InP single crystal substrate
JPH0750692B2 (en) <III>-<V> Group compound semiconductor heat treatment method
JP3106197B2 (en) Method for manufacturing high resistance compound semiconductor
JPH0543679B2 (en)
JP3793934B2 (en) Method for producing semi-insulating InP single crystal
JPH0269307A (en) Compound semiconductor and its production
JP2829403B2 (en) Method for manufacturing compound semiconductor
JPH0632699A (en) Production of semi-insulating inp single crystal
JPH04108696A (en) Semi-insulating inp single crystal and its production
US5254507A (en) Semi-insulating InP single crystals, semiconductor devices having substrates of the crystals and processes for producing the same
JPH06295863A (en) Production of high resistance compound semiconductor
JPH0476355B2 (en)
JPH0597596A (en) Gaas crystal and gaas device using the same
JP2000313699A (en) PRODUCTION OF SEMIINSULATING InP SINGLE CRYSTAL
JPH08208396A (en) Production of semiconducting inp single crystal
JPH08175899A (en) Production of semi-insulating indium phosphide single crystal
JPS6296388A (en) Quartz glass crucible for pulling up silicon single crystal
JP2750307B2 (en) Method for producing InP single crystal
JPS63195199A (en) Production of gallium arsenide crystal
JPH06295865A (en) Production of high resistance compound semiconductor

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 14