JP3106197B2 - Method for manufacturing high resistance compound semiconductor - Google Patents

Method for manufacturing high resistance compound semiconductor

Info

Publication number
JP3106197B2
JP3106197B2 JP05081756A JP8175693A JP3106197B2 JP 3106197 B2 JP3106197 B2 JP 3106197B2 JP 05081756 A JP05081756 A JP 05081756A JP 8175693 A JP8175693 A JP 8175693A JP 3106197 B2 JP3106197 B2 JP 3106197B2
Authority
JP
Japan
Prior art keywords
compound semiconductor
heat treatment
ppmw
pressure
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05081756A
Other languages
Japanese (ja)
Other versions
JPH06295864A (en
Inventor
敬司 甲斐荘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP05081756A priority Critical patent/JP3106197B2/en
Publication of JPH06295864A publication Critical patent/JPH06295864A/en
Application granted granted Critical
Publication of JP3106197B2 publication Critical patent/JP3106197B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、OEIC、HEMT、
イオン注入型FETなどの電子デバイスに用いる高抵抗
化合物半導体の製造方法に関し、特に熱処理により高抵
抗化を図る技術に関する。
This invention relates to OEIC, HEMT,
The present invention relates to a method for manufacturing a high-resistance compound semiconductor used for an electronic device such as an ion-implanted FET, and more particularly to a technique for increasing resistance by heat treatment.

【0002】[0002]

【従来の技術】III−V族化合物半導体を抵抗率が106
Ω・cm以上に高抵抗化(即ち、半絶縁性化)するにあた
り、浅いドナーとなるSiやSを含む結晶では、深いア
クセプタとなるFe、Co又はCr等を添加する方法が
工業的に用いられている。この高抵抗化は、浅いドナー
を深いアクセプタで補償するという機構によるものであ
る。従って、深いアクセプタとなる元素を、結晶中に含
有されている浅いドナーの濃度よりも多くなるように添
加しなければ、高抵抗化することはできないとされてい
る。
2. Description of the Related Art A group III-V compound semiconductor having a resistivity of 10 6
For increasing the resistance to Ω · cm or more (ie, semi-insulating), in the case of a crystal containing Si or S as a shallow donor, a method of adding Fe, Co or Cr as a deep acceptor is industrially used. Have been. This increase in resistance is due to a mechanism that compensates for a shallow donor with a deep acceptor. Therefore, it is said that the resistance cannot be increased unless an element serving as a deep acceptor is added so as to be higher than the concentration of a shallow donor contained in the crystal.

【0003】ところが、Fe、Co又はCr等をドープ
して高抵抗化する場合、これらの濃度はできるだけ低い
ことが望ましい。なぜならば、Fe、Co、Cr等は、
深いアクセプタとして作用するため、イオン注入型の電
子デバイス(FETなど)においてはイオン注入した浅
いドナー型不純物の活性化率を低下させたり、また高周
波で動作させるデバイス(OEICやHEMTなど)に
おいてはエピタキシャル成長膜中にこれらの元素が拡散
しトラップとして作用して高周波且つ高速化を妨げてし
まうからである。さらに、これらFe等の元素は偏析し
易く、結晶の上下でFe等の濃度が異なり上記の活性化
率が不均一となり、歩留りが低くなってしまう。
However, when the resistance is increased by doping with Fe, Co, Cr or the like, it is desirable that their concentrations be as low as possible. Because Fe, Co, Cr, etc.
Since it acts as a deep acceptor, it lowers the activation rate of ion-implanted shallow donor-type impurities in an ion-implanted electronic device (such as an FET), and epitaxially grows in a device operated at a high frequency (such as an OEIC or HEMT). This is because these elements diffuse into the film and act as traps to hinder high frequency and high speed. Further, these elements such as Fe are easily segregated, and the concentration of Fe and the like is different between the upper and lower portions of the crystal, so that the above-mentioned activation rate is not uniform, and the yield is reduced.

【0004】従来、例えば半絶縁性のInPとしてはF
eドープInPが主として用いられている。しかし、F
eの含有濃度が0.2ppmw未満であると、抵抗率が10
6Ω・cmより低くなってしまい、半絶縁性が低下してしま
う。これを半絶縁性結晶とするためには、Fe等の含有
濃度を一定濃度(0.2ppmw)以上にしなければならな
かった。一般に、III−V族化合物半導体でFe、Cr等
の含有濃度が低くなると抵抗率が下がってしまうのは、
浅いドナーとなる不純物元素がその水準まで残留不純物
として結晶中に存在するためと考えられていた。ところ
が、本発明者は、InP単結晶の高抵抗化の機構は、浅
いドナーと深いアクセプタによる補償のみでなく、さら
に電気的に活性な点欠陥も関与していると考え、鋭意研
究の結果、結晶を熱処理して点欠陥の濃度を制御するこ
とにより、深いアクセプタの不純物元素濃度が従来に比
して格段に低くても半絶縁性のIII−V族化合物半導体を
得ることができることを見い出した。
Conventionally, for example, as semi-insulating InP, F
e-doped InP is mainly used. But F
If the concentration of e is less than 0.2 ppmw, the resistivity becomes 10%.
It will be lower than 6 Ω · cm, and the semi-insulating property will be reduced. In order to make this a semi-insulating crystal, the concentration of Fe or the like had to be higher than a certain concentration (0.2 ppmw). In general, the lower the concentration of Fe, Cr, etc. in a III-V compound semiconductor, the lower the resistivity is,
It has been considered that the impurity element serving as a shallow donor exists in the crystal as a residual impurity up to that level. However, the present inventor believes that the mechanism of increasing the resistance of the InP single crystal involves not only compensation by a shallow donor and a deep acceptor, but also an electrically active point defect. By controlling the concentration of point defects by heat-treating the crystal, it has been found that a semi-insulating III-V compound semiconductor can be obtained even if the impurity element concentration of the deep acceptor is much lower than the conventional one. .

【0005】これにより本発明者は先に、Fe,Co又
はCrの何れか1種以上の含有濃度の合計が0.2ppmw
以下であり且つ抵抗率が107Ω・cm以上である化合物半
導体の製造技術を提案した(特開平2−69307
号)。即ち、図1に示すように、Fe、Co又はCrを
0.2ppmw以下含有する例えば融液成長法で作製した単
結晶より切り出したInPウェハ(化合物半導体)1を
石英アンプル2内に真空封入するとともに、石英アンプ
ル2内に例えば赤リン3を配置してアンプル2内のリン
分圧をInPの解離圧以上となる圧力とし、石英アンプ
ル2を400〜640℃で加熱するというものである。
この先願発明にあっては、その後の我々の研究により、
アンドープ又はFe、Co又はCrの何れか1種以上の
不純物元素の含有濃度が0.05ppmw以下のInP単結
晶を熱処理しても、半絶縁性化しないことが分かった。
Accordingly, the present inventor has previously determined that the total concentration of any one or more of Fe, Co and Cr is 0.2 ppmw.
The present invention has proposed a technique for manufacturing a compound semiconductor having a resistivity of 10 7 Ω · cm or more (Japanese Patent Laid-Open No. 2-69307).
issue). That is, as shown in FIG. 1, an InP wafer (compound semiconductor) 1 cut from a single crystal manufactured by, for example, a melt growth method and containing 0.2 ppmw or less of Fe, Co or Cr is vacuum-sealed in a quartz ampule 2. At the same time, for example, red phosphorus 3 is arranged in the quartz ampoule 2 so that the phosphorus partial pressure in the ampoule 2 is set to a pressure higher than the dissociation pressure of InP, and the quartz ampule 2 is heated at 400 to 640 ° C.
According to our research,
It was found that undoping or heat treatment of an InP single crystal having a concentration of one or more impurity elements of at least 0.05 ppmw of Fe, Co, or Cr did not provide semi-insulating properties.

【0006】そこで、本発明者はさらに研究を重ね、そ
の改良案として先に、例えば図1に示すように、石英ア
ンプル2内に赤リン3とともに、故意に不純物を添加す
ることなく、且つ残留不純物として存在するFe、Co
又はCrの何れか1種以上の含有濃度の合計が0.05
ppmw以下であるInPウェハ1を、6kg/cm2を超えるリ
ン分圧を有する雰囲気で熱処理する方法により、それら
不純物元素の含有濃度の合計が0.05ppmw以下であ
り、且つ300Kでの抵抗率が106Ω・cm以上で、移動
度が3000cm2/V・sを超える半絶縁性のIII−V族化合
物半導体(InP)を製造する技術を提案した(特開平
3−279299号)。前記の技術により得られるべき
半絶縁性のIII−V族化合物半導体(InP)は、結晶中
に含有する不純物、特にFe、Co又はCrの何れか1
種以上の含有濃度の合計を0.05ppmw以下とすること
で、含有不純物による移動度の低下を抑え、移動度を所
望の値以上としたものである。従来より、上述した熱処
理工程において、不純物の汚染について相当の注意が払
われていた。例えば、V族元素(リン)蒸気の発生に用
いる蒸気源材料(赤リン)は、少なくとも純度が99.
9999%程度のもの、多くの場合は「6N」と称する
純度のものを用いてした。前記純度「6N」を有するも
のは、純度が99.9999%、即ちそれに含まれる不
純物元素(当該V族元素リン以外の元素)の含有濃度は
0.1ppmwを超え、1ppmwである。例えば、赤リンをリ
ンの蒸気に変えて用いる化合物半導体(InP)の合成
に、前記の純度「6N」を有する材料(赤リン)を用い
た場合にも、充分高い純度の化合物半導体を得ることが
できるものである。
The present inventor has further studied and, as an improvement plan, first, as shown in FIG. 1, together with red phosphorus 3 in a quartz ampoule 2 without intentionally adding impurities and remaining. Fe, Co existing as impurities
Or the total content of any one or more of Cr is 0.05
By performing a heat treatment on the InP wafer 1 having a ppmw or less in an atmosphere having a phosphorus partial pressure exceeding 6 kg / cm 2 , the total concentration of the impurity elements is 0.05 ppmw or less, and the resistivity at 300 K is not more than 0.05 ppmw. A technique for producing a semi-insulating group III-V compound semiconductor (InP) having a mobility of at least 10 6 Ω · cm and exceeding 3000 cm 2 / V · s has been proposed (Japanese Patent Application Laid-Open No. 3-279299). The semi-insulating group III-V compound semiconductor (InP) to be obtained by the above-mentioned technique is composed of impurities contained in the crystal, particularly any one of Fe, Co and Cr.
By making the total concentration of the contents of the species or more to be 0.05 ppmw or less, a decrease in the mobility due to the contained impurities is suppressed, and the mobility is set to a desired value or more. Conventionally, considerable attention has been paid to impurity contamination in the above-described heat treatment process. For example, a vapor source material (red phosphorus) used to generate a group V element (phosphorus) vapor has a purity of at least 99.
A material having a purity of about 9999%, in most cases, a purity called "6N" was used. Those having the purity “6N” have a purity of 99.9999%, that is, a concentration of an impurity element (an element other than the group V element phosphorus) contained therein exceeding 0.1 ppmw and 1 ppmw. For example, a compound semiconductor with sufficiently high purity can be obtained even when the material (red phosphorus) having the above-mentioned purity “6N” is used for the synthesis of a compound semiconductor (InP) in which red phosphorus is changed to phosphorus vapor. Can be done.

【0007】[0007]

【発明が解決しようとする課題】しかし、その後の我々
の研究により特開平3−279299号において提案し
た発明にあっては、以下のように抵抗率を除く、電気的
特性の再現性が乏しいことがわかった。即ち、900
℃、15atm(約15kg/cm2)のリン分圧を有する雰囲
気において、Fe、Co又はCrの何れか1種以上の不
純物元素の含有濃度が0.05ppmw以下のInPウェハ
を6組(一組数枚ずつ)用意して1ラン(Run)あた
り20時間の熱処理を6ラン行ったところ、処理後、ウ
ェハの電気的特性の一つである移動度は、図2に示すよ
うに、各ラン間においてばらついているだけでなく、同
一ランにおいてもばらついていた。さらに、移動度が所
望の値3000cm2/V・s以上とならないものが相当数に
のぼっていた。
However, in the invention proposed in Japanese Patent Application Laid-Open No. 3-279299 based on our research, the reproducibility of electrical characteristics excluding resistivity as described below is poor. I understood. That is, 900
In an atmosphere having a phosphorus partial pressure of 15 atm (about 15 kg / cm 2 ) at 6 ° C., six sets (one set) of InP wafers having a concentration of at least one of Fe, Co or Cr of at least 0.05 ppmw or less are contained. (Several wafers) were prepared and subjected to 6 heat treatments for 20 hours per run (Run). After the treatment, the mobility, which is one of the electrical characteristics of the wafer, was as shown in FIG. Not only did it fluctuate between the runs, but also in the same run. Furthermore, there were quite a few of them whose mobility did not exceed the desired value of 3000 cm 2 / V · s.

【0008】本発明はかかる事情に鑑みてなされたもの
で、その目的とするところは、電気的特性の再現性に優
れた高抵抗化合物半導体の製造方法を提供することにあ
る。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method of manufacturing a high-resistance compound semiconductor having excellent reproducibility of electric characteristics.

【0009】[0009]

【課題を解決するための手段】上述した移動度における
ばらつきの原因を究明すべく、本発明者はドーピング処
理や熱処理などを一切行っていないInPやGaPの単
結晶、及びそれら単結晶より切り出し上述したように熱
処理して得られたウェハの元素分析をGDMS法(グロ
ー放電質量分析法)により行った。その結果、表1に示
すように、Fe元素の濃度が、InPでは熱処理前0.
002ppmw(分析検出下限値)未満だったのが熱処理後
0.008〜0.089ppmwに、GaPでは熱処理前
0.005ppmw未満だったのが熱処理後0.68〜1.
4ppmwに高くなっており、何れの場合も熱処理中に外部
から結晶内にFe元素が混入したことがわかった。
In order to investigate the cause of the above-mentioned variation in the mobility, the present inventor cut out an InP or GaP single crystal without any doping treatment or heat treatment, and cut out the single crystal from the single crystal. Elemental analysis of the wafer obtained by the heat treatment as described above was performed by the GDMS method (glow discharge mass spectrometry). As a result, as shown in Table 1, in the case of InP, the concentration of Fe element was 0.1 mm before heat treatment.
Less than 002 ppmw (lower detection limit) was 0.008 to 0.089 ppmw after heat treatment, and GaP was less than 0.005 ppmw before heat treatment after heat treatment 0.68 to 1.89 ppmw.
It was as high as 4 ppmw, and in any case, it was found that the Fe element was mixed into the crystal from the outside during the heat treatment.

【表1】 [Table 1]

【0010】このFe元素を発生させた汚染源は、結晶
の近くにあるもの、例えば図1に示す石英アンプル2や
スペーサ等の石英製治具4、ヒータ5や炉部材6、石英
アンプル2内に置いた赤リン3のいずれかであると考
え、その汚染源を特定すべく、以下に記す種々の実験を
行った。リンの純度が99.9999%(含有する不純
物元素の濃度が1ppmwである。以下、「6N」と略記す
る。)の赤リンを用いて、熱処理前に含有するFe元素
濃度が0.002ppmw未満であるInP結晶を5atm、
15atm、25atmの各リン分圧において、Feが拡散に
より結晶中に混入するのを促進できる熱処理条件である
985℃で40時間の熱処理をして元素分析を行った結
果、表2に示すように、リン分圧が高いほど結晶中のF
e濃度が高くなっていることがわかった。また、純度が
99.99999%(含有する不純物元素の濃度が0.
1ppmwである。以下、「7N」と略記する。)の赤リン
を用いて985℃、25atmのリン分圧で40時間熱処
理をして元素分析を行った結果、表3に示すように、赤
リンの純度が低いほど結晶中のFe濃度が高くなってい
ることがわかった。
The contaminant that generated the Fe element is located in the vicinity of the crystal, for example, a quartz jig 4 such as a quartz ampoule 2 or a spacer, a heater 5, a furnace member 6, and a quartz ampoule 2 shown in FIG. Various types of experiments described below were carried out in order to identify the source of red phosphorus 3 and to identify the source of the contamination. Using red phosphorus having a purity of 99.9999% (concentration of an impurity element contained is 1 ppmw; hereinafter abbreviated as “6N”), the concentration of Fe element contained before heat treatment is less than 0.002 ppmw. 5 atm of InP crystal
At each of the phosphorus partial pressures of 15 atm and 25 atm, heat treatment was performed at 985 ° C. for 40 hours, which is a heat treatment condition capable of promoting the incorporation of Fe into the crystal by diffusion, and elemental analysis was performed. , The higher the phosphorus partial pressure, the more F
e It was found that the concentration was high. Further, the purity is 99.99999% (the concentration of the contained impurity element is 0.9%).
1 ppmw. Hereinafter, it is abbreviated as “7N”. As a result of elemental analysis by performing a heat treatment at 985 ° C. and a phosphorus partial pressure of 25 atm for 40 hours using red phosphorus as shown in Table 3), as shown in Table 3, the lower the purity of red phosphorus, the higher the Fe concentration in the crystal. It turned out that it was.

【表2】 [Table 2]

【表3】 [Table 3]

【0011】これらの結果より、Fe元素の汚染源は赤
リン3であると推測した。更にGaAsの単結晶、及び
その単結晶より切り出しGaAsの解離圧以上のヒ素圧
において赤リンを用いずに熱処理して得られたウェハの
元素分析を行った。その結果、表1に示すように、Fe
元素の濃度は何れも分析検出下限値以下であり、熱処理
中における結晶内へのFe元素の混入は認められなかっ
た。従って、赤リンのない条件においてはFe元素によ
る汚染はなく、赤リンのある条件においてのみFe元素
による汚染があることがわかり、Fe元素の汚染源は赤
リン3であることが判明した。つまり、赤リン3中に不
純物として含まれるFe元素であることが判明した。し
かも、このような結晶を半絶縁性化させるための熱処理
においては、従来十分であると考えられていた6N(含
有する不純物元素の濃度が1ppwmである。)の純度
の赤リンでは結晶が汚染されてしまうことがわかった。
From these results, it was presumed that the source of Fe element contamination was red phosphorus 3. Further, elemental analysis was performed on a GaAs single crystal and a wafer obtained by heat treatment without red phosphorus at an arsenic pressure higher than the dissociation pressure of GaAs cut out from the single crystal. As a result, as shown in Table 1,
The element concentrations were all lower than the analytical detection lower limit, and no Fe element was mixed into the crystal during the heat treatment. Therefore, it was found that there was no contamination by the Fe element under the condition without red phosphorus, and there was contamination by the Fe element only under the condition with red phosphorus, and it was found that the contamination source of the Fe element was red phosphorus 3. That is, it was found that the Fe element was included in the red phosphorus 3 as an impurity. Moreover, in such a heat treatment for making the crystal semi-insulating, the crystal is contaminated with red phosphorus having a purity of 6N (concentration of the impurity element contained is 1 ppwm) which has been considered to be sufficient conventionally. I knew it would be done.

【0012】本発明は上記知見に基づいてなされたもの
であり、熱処理により高抵抗化合物半導体を製造するに
あたり、アンプル内に化合物半導体の結晶と、前記化合
物半導体を構成する複数の元素のうち最も高い飽和蒸気
圧を有する元素の前記アンプル内における分圧を前記化
合物半導体の解離圧より高い所定の圧力に保つ蒸気源材
料とを、封入して熱処理を行う際、前記蒸気源材料につ
いては、不純物元素の含有量が0.1ppmw以下であ
る前記化合物半導体を構成する複数の元素のうち最も高
い飽和蒸気圧を有する元素の同素体からなる群より選ば
れる1種又は2種以上の材料を用いることを提案するも
のである。また、本発明は、上記化合物半導体がIII-V
族化合物半導体であるとき、当該III-V族化合物半導体
を構成するV族元素の分圧を所定の圧力に保つためにア
ンプル内に封入する蒸気源材料に付いては、不純物元素
(当該V族元素以外の元素)の含有濃度が0.1ppmw以
下である前記V族元素の同素体よりなる材料を用いるこ
とを提案するものである。即ち、具体的には、III-V族
化合物半導体を構成するV族元素がリンであるとき、従
来十分であると考えられていた純度6N、不純物元素
(リン以外の元素)の含有濃度が0.1ppmwを超え、1
ppmwである赤リンに代えて、不純物元素(リン以外の元
素)の含有濃度が0.1ppmw以下である、即ち純度7N
以上の赤リンをInPやGaPなどよりなる化合物半導
体の結晶とともにアンプル内に封入して、熱処理を行う
ものである。なお、上記でいう同素体とは同じ元素の単
体で、互いに性質の異なる物質のことであり、例えばリ
ンについては、赤リンや黄リン等がある。
The present invention has been made on the basis of the above findings. In producing a high-resistance compound semiconductor by heat treatment, the crystal of the compound semiconductor and the highest element among the plurality of elements constituting the compound semiconductor are contained in an ampoule. When performing a heat treatment by encapsulating a vapor source material that maintains a partial pressure of the element having a saturated vapor pressure in the ampoule at a predetermined pressure higher than the dissociation pressure of the compound semiconductor, the vapor source material contains an impurity element. It is proposed to use one or more materials selected from the group consisting of allotropes of the element having the highest saturated vapor pressure among the plurality of elements constituting the compound semiconductor having a content of 0.1 ppmw or less. Is what you do. Further, the present invention provides the compound semiconductor, wherein the compound semiconductor is III-V
In the case of a group V compound semiconductor, the vapor source material sealed in the ampoule to maintain the partial pressure of the group V element constituting the group III-V compound semiconductor at a predetermined pressure may be an impurity element (the V group compound). It is proposed to use a material consisting of an allotrope of the group V element having a concentration of 0.1 ppmw or less (an element other than the element). That is, specifically, when the group V element constituting the III-V group compound semiconductor is phosphorus, the purity of 6N and the concentration of the impurity element (element other than phosphorus) which have been considered to be sufficient conventionally are 0%. Over 1 ppmw
In place of red phosphorus which is ppmw, the concentration of impurities (elements other than phosphorus) is 0.1 ppmw or less, ie, the purity is 7N.
The above-described red phosphorus is sealed in an ampoule together with a compound semiconductor crystal made of InP, GaP, or the like, and heat treatment is performed. Note that the above-mentioned allotrope is a simple substance of the same element and different in properties from each other. For example, phosphorus includes red phosphorus and yellow phosphorus.

【0013】[0013]

【作用】上記した手段によれば、化合物半導体とともに
アンプル内に封入する、前記化合物半導体を構成する複
数の元素のうち最も高い飽和蒸気圧を有する元素の前記
アンプル内における分圧を前記化合物半導体の解離圧よ
り高い所定の圧力に保つ蒸気源材料に付いては、不純物
元素の含有濃度が0.1ppmw以下である前記化合物半導
体を構成する複数の元素のうち最も高い飽和蒸気圧を有
する元素の同素体を用いるので、蒸気源材料より発生す
る汚染蒸気(前記化合物半導体に対して不純物元素とな
るものを含む気体)を僅かな量に抑えることができる。
従って、熱処理中に前記化合物半導体の結晶内に混入す
る不純物元素の量を低く抑えることができる。例えば、
高抵抗III-V族化合物半導体を製造する際、Fe元素等
の不純物元素含有濃度が0.1ppmw以下であるV族元素
の同素体よりなる材料、即ち当該V族元素の純度7N以
上である材料を用いるので、純度7N以上のV族元素よ
りなる蒸気源材料中に含有されているFe元素等の不純
物の濃度は純度6Nのものに比べて低いので、熱処理中
に発生するFeやFe元素を含む化合物よりなる汚染蒸
気の量は従来に比べて格段と少なくなり、III−V族化合
物半導体の結晶がFe元素により汚染されるのが防止さ
れる。従って、熱処理後における結晶中のFe元素濃度
の増加をきわめて低く抑えることができる。所定のV族
元素の分圧を印加し熱処理することで、結晶を高抵抗化
させることができる。例えば、本出願人が先願の特開平
3−279299号において提案した発明に従い、F
e、Co又はCrの何れか1種類以上の不純物元素の含
有濃度の合計が0.05ppmw未満のInP単結晶を出発
材料に用い、所定のリン分圧、つまり6Kg/cm2以上の
リン分圧を印加して、熱処理することで、Fe、Co又
はCrの何れか1種類以上の不純物元素の含有濃度の合
計が0.05ppmw以下であり、移動度が所望の3000
cm2/V・sを超え、300Kでの抵抗率が106Ω・cm以上
の高抵抗InP単結晶を製造することができる。
According to the above means, the partial pressure of the element having the highest saturated vapor pressure among the plurality of elements constituting the compound semiconductor, which is sealed in the ampoule together with the compound semiconductor, is determined by the partial pressure of the compound semiconductor. For the vapor source material kept at a predetermined pressure higher than the dissociation pressure, the allotrope of the element having the highest saturated vapor pressure among the plurality of elements constituting the compound semiconductor in which the content of the impurity element is 0.1 ppmw or less Is used, the amount of contaminant vapor (a gas containing an impurity element for the compound semiconductor) generated from the vapor source material can be suppressed to a small amount.
Therefore, the amount of the impurity element mixed into the crystal of the compound semiconductor during the heat treatment can be reduced. For example,
When manufacturing a high-resistance III-V compound semiconductor, a material consisting of an allotrope of a group V element having an impurity element content such as Fe element of 0.1 ppmw or less, that is, a material having a purity of the group V element of 7N or more is used. Since it is used, the concentration of impurities such as Fe element contained in the vapor source material composed of a Group V element having a purity of 7N or more is lower than that of the 6N purity element, and thus contains Fe and Fe elements generated during heat treatment. The amount of the contaminant vapor composed of the compound is much smaller than in the past, and the crystal of the group III-V compound semiconductor is prevented from being contaminated by the Fe element. Therefore, the increase in the Fe element concentration in the crystal after the heat treatment can be suppressed to an extremely low level. By applying a predetermined partial pressure of a group V element and performing a heat treatment, the resistance of the crystal can be increased. For example, according to the invention proposed by the present applicant in Japanese Patent Application Laid-Open No. 3-279299,
e, a predetermined phosphorus partial pressure, that is, a phosphorus partial pressure of 6 kg / cm 2 or more, using an InP single crystal having a total content of one or more impurity elements of at least one of Co and Cr less than 0.05 ppmw as a starting material. And heat treatment, the total concentration of the content of any one or more of Fe, Co or Cr is 0.05 ppmw or less, and the mobility is 3000
A high-resistance InP single crystal exceeding cm 2 / V · s and having a resistivity at 300 K of 10 6 Ω · cm or more can be manufactured.

【0014】[0014]

【実施例】以下、実施例及び比較例を挙げて、本発明の
特徴とするところを明らかにする。 (実施例)InPの原料多結晶から液体封止チョクラル
スキー法で引き上げたFe、Co、Crの含有濃度が何
れも分析検出下限(0.002ppmw)以下である単結晶
より切り出した厚さ0.5mmのInPウェハ(薄板)
1,1,…を、図1に示すように、石英アンプル2内に
スペーサとなる石英製治具4を用いて間隔を開けて複数
並べた。続いて、純度が7Nの赤リン3を石英アンプル
2内に配置し、石英アンプル2内を1×10-6torr(約
1.3×10-9kg/cm2)まで真空排気した後、酸水素バ
ーナーにより石英アンプル2の開口部を封止した。この
際、赤リン3の量は、特開平3−279299号に提案
された発明に従い、リン分圧が6Kg/cm2(約6atm)以
上となるように、例えば石英アンプル2内のリン分圧が
熱処理温度で25atmとなるように調整した。次に、こ
の石英アンプル2を横型加熱炉内に設置し、熱処理温度
985℃で40時間加熱保持した後、約30℃/分の降
温速度で冷却した。上記横型加熱炉は密閉型で100kg
/cm2の圧力まで加圧できるものを使用し、昇降温時に、
その温度に対応するリン分圧に見合う圧力のアルゴンガ
スを加熱炉内に導入して、石英アンプル2の内外の圧力
のバランスを保ち、石英アンプル2の破壊を防止した。
EXAMPLES Hereinafter, the features of the present invention will be clarified with reference to examples and comparative examples. (Example) A thickness 0 cut out from a single crystal in which the content of Fe, Co, and Cr is less than or equal to the lower limit of analysis detection (0.002 ppmw), which is pulled up from the raw material polycrystal of InP by the liquid-sealed Czochralski method. .5mm InP wafer (thin plate)
As shown in FIG. 1, a plurality of 1, 1,... Were arranged in a quartz ampule 2 at intervals using a quartz jig 4 serving as a spacer. Subsequently, red phosphorus 3 having a purity of 7N is placed in the quartz ampule 2, and the inside of the quartz ampule 2 is evacuated to 1 × 10 −6 torr (about 1.3 × 10 −9 kg / cm 2 ). The opening of the quartz ampule 2 was sealed with an oxyhydrogen burner. At this time, according to the invention proposed in Japanese Patent Application Laid-Open No. 3-279299, the amount of red phosphorus 3 is adjusted so that the phosphorus partial pressure is 6 kg / cm 2 (about 6 atm) or more, for example, the phosphorus partial pressure in the quartz ampoule 2. Was adjusted to 25 atm at the heat treatment temperature. Next, the quartz ampoule 2 was placed in a horizontal heating furnace, heated and maintained at a heat treatment temperature of 985 ° C. for 40 hours, and then cooled at a rate of about 30 ° C./min. The above horizontal heating furnace is 100kg in closed type
/ cm 2 pressure can be used.
An argon gas having a pressure corresponding to the phosphorus partial pressure corresponding to the temperature was introduced into the heating furnace to maintain a balance between the pressure inside and outside the quartz ampule 2 and prevent the quartz ampule 2 from being broken.

【0015】(比較例)比較のために、純度が6Nの赤
リンを用いて上記実施例と同様にして熱処理を行った。
その他の条件は、上記実施例1と同じであった。
(Comparative Example) For comparison, a heat treatment was carried out in the same manner as in the above example using red phosphorus having a purity of 6N.
Other conditions were the same as those in Example 1.

【0016】上記実施例及び比較例で得られたウェハに
ついて、ウェハに含有されていたFe元素の濃度を元素
分析により調べた。その結果を表3に示す。同表より、
リンの純度を7Nにした結果、ウェハに含有されていた
Fe元素の濃度は純度6Nの場合の1/3〜1/2程度
になっており、Fe元素の汚染に対して7N以上の純度
の赤リンを用いることがきわめて有効であることがわか
る。
With respect to the wafers obtained in the above Examples and Comparative Examples, the concentration of Fe element contained in the wafer was examined by elemental analysis. Table 3 shows the results. From the table,
As a result of setting the purity of phosphorus to 7N, the concentration of the Fe element contained in the wafer is about 3 to の of the case of the purity of 6N. It turns out that it is very effective to use red phosphorus.

【0017】なお、上記実施例においては、本発明をI
nPの熱処理に適用した例に付いて説明したが、GaP
などV族元素がPである化合物半導体(混晶組成のもの
も含む。)の熱処理に適用可能であるのは勿論である。
さらに、温度、V族元素分圧(リン圧)、処理時間など
の熱処理条件も上記実施例の条件に限らず、種々変更し
ても移動度の低下をもたらすFe元素による汚染を抑え
つつ優れた再現性で高抵抗III−V族化合物半導体を製造
することができる。また、例えばII−VI族化合物半導体
においては、当該II−VI族化合物半導体を構成する複数
の元素のうち最も飽和蒸気圧の高いII族元素の分圧を前
記II−VI族化合物半導体の解離圧より高い所定の圧力と
するに用いる蒸気源材料として、不純物元素の含有濃度
が0.1ppmw以下であるII族元単体よりなる材料を用い
ることで、熱処理中に蒸気源材料より発生する汚染蒸気
を僅かの量に抑えることができ、移動度の低下を引き起
こす不純物元素による汚染を抑えることができる。
In the above embodiment, the present invention is applied to
Although the example applied to the heat treatment of nP has been described, GaP
It is needless to say that the present invention can be applied to heat treatment of a compound semiconductor having a group V element of P (including a mixed crystal composition).
Furthermore, the heat treatment conditions such as temperature, group V element partial pressure (phosphorous pressure), and treatment time are not limited to the conditions in the above-described embodiment. A high-resistance III-V compound semiconductor can be manufactured with high reproducibility. Further, for example, in a II-VI compound semiconductor, the partial pressure of a group II element having the highest saturated vapor pressure among a plurality of elements constituting the II-VI compound semiconductor is set to a dissociation pressure of the II-VI compound semiconductor. As a vapor source material used for a higher predetermined pressure, by using a material composed of a group II element alone having an impurity element content of 0.1 ppmw or less, contaminated vapor generated from the vapor source material during heat treatment can be reduced. The amount can be suppressed to a small amount, and contamination by an impurity element which causes a decrease in mobility can be suppressed.

【0018】[0018]

【発明の効果】本発明に係る高抵抗化合物半導体の製造
方法よれば、アンプル内に化合物半導体の結晶と、前記
化合物半導体を構成する複数の元素のうち最も高い飽和
蒸気圧を有する元素の前記アンプル内における分圧を前
記化合物半導体の解離圧より高い所定の圧力に保つ蒸気
源材料とを、封入して熱処理を行うにあたり、前記蒸気
源材料については、不純物元素の含有濃度が0.1ppmw
以下である前記化合物半導体を構成する複数の元素のう
ち最も高い飽和蒸気圧を有する元素の同素体からなる群
より選ばれる1種又は2種以上の材料を用いるこてで、
熱処理中に蒸気源材料より発生する汚染蒸気(前記化合
物半導体に対して不純物元素となるものを含む気体)を
僅かな量に抑えることができる。例えば、高抵抗III-V
族化合物半導体を製造する際、不純物元素の含有濃度が
0.1ppmw以下であるV族元素の同素体よりなる材料を
用いることで、熱処理中に発生するFeやFe元素を含
む化合物よりなる汚染蒸気の量は従来の純度6Nの蒸気
源材料に比べて格段と少なくなり、Fe元素による汚染
を抑えつつ結晶の熱処理を行うことができ、例えばFe
元素等の不純物の含有濃度が0.05ppmw以下で、移動
度が所望の値以上であり、且つ抵抗率が106Ω・cm以上
の高抵抗III−V族化合物半導体を再現性よく製造するこ
とができる。
According to the method of manufacturing a high-resistance compound semiconductor according to the present invention, the crystal of the compound semiconductor and the ampoule of the element having the highest saturated vapor pressure among the plurality of elements constituting the compound semiconductor are contained in the ampoule. And a vapor source material for maintaining a partial pressure in the inside at a predetermined pressure higher than the dissociation pressure of the compound semiconductor, when performing heat treatment by encapsulation, the content of the impurity element in the vapor source material is 0.1 ppmw
A trowel using one or more materials selected from the group consisting of allotropes of the element having the highest saturated vapor pressure among the plurality of elements constituting the compound semiconductor,
Contaminant vapor (a gas containing an impurity element for the compound semiconductor) generated from the vapor source material during the heat treatment can be suppressed to a small amount. For example, high resistance III-V
When manufacturing a Group III compound semiconductor, by using a material consisting of an allotrope of a Group V element having a concentration of an impurity element of 0.1 ppmw or less, a contaminant vapor of Fe or a compound containing the Fe element generated during heat treatment is used. The amount is much smaller than that of the conventional vapor source material having a purity of 6N, and the heat treatment of the crystal can be performed while suppressing the contamination by the Fe element.
To produce a high-resistance III-V compound semiconductor having a concentration of impurities such as elements of 0.05 ppmw or less, a mobility of not less than a desired value, and a resistivity of 10 6 Ω · cm or more with good reproducibility. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】高抵抗化合物半導体の製造に使用される加熱炉
内にウェハが設置された状態の概略図である。
FIG. 1 is a schematic diagram showing a state in which a wafer is installed in a heating furnace used for manufacturing a high-resistance compound semiconductor.

【図2】従来の製造方法において得られたウェハの移動
度を示す特性図である。
FIG. 2 is a characteristic diagram showing the mobility of a wafer obtained by a conventional manufacturing method.

【符号の説明】[Explanation of symbols]

1 ウェハ(III−V族化合物半導体の結晶) 2 石英アンプル(アンプル) 3 赤リン(蒸気源材料) Reference Signs List 1 wafer (crystal of III-V compound semiconductor) 2 quartz ampule (ampule) 3 red phosphorus (vapor source material)

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 21/324 C30B 29/00 C30B 33/00 H01L 21/205 H01L 21/31 ──────────────────────────────────────────────────の Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) H01L 21/324 C30B 29/00 C30B 33/00 H01L 21/205 H01L 21/31

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アンプル内に化合物半導体の結晶と、前
記化合物半導体を構成する複数の元素のうち最も高い飽
和蒸気圧を有する元素の前記アンプル内における分圧を
前記化合物半導体の解離圧より高い所定の圧力に保つ蒸
気源材料とを、封入して熱処理を行うにあたり、前記蒸
気源材料については、不純物元素の含有濃度が0.1pp
mw以下である前記化合物半導体を構成する複数の元素の
うち最も高い飽和蒸気圧を有する元素の同素体からなる
群より選ばれる1種又は2種以上の材料を用いることを
特徴とする高抵抗化合物半導体の製造方法。
1. A compound semiconductor crystal in an ampoule and a predetermined partial pressure in an ampoule of an element having the highest saturated vapor pressure among a plurality of elements constituting the compound semiconductor, higher than a dissociation pressure of the compound semiconductor. When the heat treatment is performed by enclosing the vapor source material and keeping the pressure of the vapor source material, the concentration of the impurity element in the vapor source material is 0.1 pp.
a high-resistance compound semiconductor characterized by using one or more materials selected from the group consisting of allotropes of elements having the highest saturated vapor pressure among a plurality of elements constituting the compound semiconductor having a mw or less. Manufacturing method.
【請求項2】 上記化合物半導体がIII-V族化合物半導
体であるとき、上記蒸気源材料に付いては、当該III-V
族化合物半導体を構成するV族元素の同素体よりなる材
料を用いることを特徴とする請求項1に記載の高抵抗化
合物半導体の製造方法。
2. When the compound semiconductor is a III-V group compound semiconductor, the III-V compound is used for the vapor source material.
2. The method for producing a high-resistance compound semiconductor according to claim 1, wherein a material comprising an allotrope of a group V element constituting the group III compound semiconductor is used.
JP05081756A 1993-04-08 1993-04-08 Method for manufacturing high resistance compound semiconductor Expired - Fee Related JP3106197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05081756A JP3106197B2 (en) 1993-04-08 1993-04-08 Method for manufacturing high resistance compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05081756A JP3106197B2 (en) 1993-04-08 1993-04-08 Method for manufacturing high resistance compound semiconductor

Publications (2)

Publication Number Publication Date
JPH06295864A JPH06295864A (en) 1994-10-21
JP3106197B2 true JP3106197B2 (en) 2000-11-06

Family

ID=13755293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05081756A Expired - Fee Related JP3106197B2 (en) 1993-04-08 1993-04-08 Method for manufacturing high resistance compound semiconductor

Country Status (1)

Country Link
JP (1) JP3106197B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102474176B1 (en) * 2020-11-04 2022-12-02 단국대학교 천안캠퍼스 산학협력단 Exposed ecological pathway assembly for amphibians and method for making the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102474176B1 (en) * 2020-11-04 2022-12-02 단국대학교 천안캠퍼스 산학협력단 Exposed ecological pathway assembly for amphibians and method for making the same

Also Published As

Publication number Publication date
JPH06295864A (en) 1994-10-21

Similar Documents

Publication Publication Date Title
EP0038915B1 (en) A capless annealing method for ion-implanted iii-v compounds
US6056817A (en) Process for producing semi-insulating InP single crystal and semi-insulating InP single crystal substrate
JP3106197B2 (en) Method for manufacturing high resistance compound semiconductor
JP2819244B2 (en) Method for producing semi-insulating InP single crystal
JP2572291B2 (en) Method of manufacturing semi-insulating InP single crystal substrate
Miller et al. Low-temperature growth of GaAs and AlGaAs by MBE and effects of post-growth thermal annealing
Hopkins et al. Incorporation of boron during the growth of GaAs single crystals
JPH0543679B2 (en)
JP3793934B2 (en) Method for producing semi-insulating InP single crystal
JPH0269307A (en) Compound semiconductor and its production
US5173127A (en) Semi-insulating inp single crystals, semiconductor devices having substrates of the crystals and processes for producing the same
JPH0557240B2 (en)
JPH06295863A (en) Production of high resistance compound semiconductor
JP2572297B2 (en) Method of manufacturing semi-insulating InP single crystal substrate
JPH06295865A (en) Production of high resistance compound semiconductor
JPH08175899A (en) Production of semi-insulating indium phosphide single crystal
JPH0597596A (en) Gaas crystal and gaas device using the same
JPH04108696A (en) Semi-insulating inp single crystal and its production
JPH111397A (en) Production of semi-insulating inp single crystal and semi-insulating inp single crystal substrate
JP2750307B2 (en) Method for producing InP single crystal
JPH08301697A (en) Production of semiinsulating indium-phosphorus single crystal
JP2516641B2 (en) Annealing method for inorganic compound single crystal substrate
JPS6296388A (en) Quartz glass crucible for pulling up silicon single crystal
JP2000313699A (en) PRODUCTION OF SEMIINSULATING InP SINGLE CRYSTAL
JP3617128B2 (en) Heat treatment method of compound semiconductor single crystal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees