JPH06295863A - Production of high resistance compound semiconductor - Google Patents

Production of high resistance compound semiconductor

Info

Publication number
JPH06295863A
JPH06295863A JP8175593A JP8175593A JPH06295863A JP H06295863 A JPH06295863 A JP H06295863A JP 8175593 A JP8175593 A JP 8175593A JP 8175593 A JP8175593 A JP 8175593A JP H06295863 A JPH06295863 A JP H06295863A
Authority
JP
Japan
Prior art keywords
compound semiconductor
vapor
heat treatment
group
closed container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8175593A
Other languages
Japanese (ja)
Inventor
Takashi Kaisou
敬司 甲斐荘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP8175593A priority Critical patent/JPH06295863A/en
Publication of JPH06295863A publication Critical patent/JPH06295863A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To produce a high resistance group III-V compound semiconductor with high reproducibility by placing a compound semiconductor crystal in an enclosed vessel transmitting the vapor of group V element but not transmitting the contaminant vapor, disposing a vapor source on the outside of the enclosed vessel, and performing heat treatment while preventing contamination due to Fe element. CONSTITUTION:An InP wafer 1 is placed in an enclosed vessel 10 made of high density graphite or the like which transmits the vapor of phosphorus but not transmit the vapor of Fe or iron phosphide. A red phosphorus 3 is disposed on the outside of the enclosed vessel 10 which is vacuum encapsulated in a silicon ampul 2 together with the red phosphorus 3. The ampul 2 is then heated uniformly thus increasing the resistance of the wafer 1. A red phosphorus 3 containing impurities by 0.1ppmw or less is preferably employed. Furthermore, a plurality of wafers 1, 1,... are brought into tight contact each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、OEIC、HEMT、
イオン注入型FETなどの電子デバイスに用いる高抵抗
化合物半導体の製造方法に関し、特に熱処理により高抵
抗化を図る技術に関する。
The present invention relates to OEIC, HEMT,
The present invention relates to a method for producing a high resistance compound semiconductor used for an electronic device such as an ion implantation type FET, and particularly to a technique for increasing the resistance by heat treatment.

【0002】[0002]

【従来の技術】III−V族化合物半導体を抵抗率が106
Ω・cm以上に高抵抗化(即ち、半絶縁性化)するにあた
り、浅いドナーとなるSiやSを含む結晶では、深いア
クセプタとなるFe、Co又はCr等を添加する方法が
工業的に用いられている。この高抵抗化は、浅いドナー
を深いアクセプタで補償するという機構によるものであ
る。従って、深いアクセプタとなる元素を、結晶中に含
有されている浅いドナーの濃度よりも多くなるように添
加しなければ、高抵抗化することはできないとされてい
る。
2. Description of the Related Art A III-V compound semiconductor has a resistivity of 10 6
In order to increase the resistance to Ω · cm or more (that is, to make semi-insulating), a method of adding Fe, Co, Cr, or the like, which becomes a deep acceptor, is industrially used for a crystal containing Si or S that becomes a shallow donor. Has been. This increase in resistance is due to the mechanism of compensating the shallow donor with the deep acceptor. Therefore, it is said that the resistance cannot be increased unless the element serving as a deep acceptor is added so as to have a concentration higher than the concentration of the shallow donor contained in the crystal.

【0003】ところが、Fe、Co又はCr等をドープ
して高抵抗化する場合、これらの含有濃度はできるだけ
少ないことが望ましい。なぜならば、Fe、Co、Cr
等は、深いアクセプタとして作用するため、イオン注入
型の電子デバイス(FETなど)においてはイオン注入
した浅いドナー型不純物の活性化率を低下させたり、ま
た高周波で動作させるデバイス(OEICやHEMTな
ど)においてはエピタキシャル成長膜中にこれらの元素
が拡散しトラップとして作用して高周波且つ高速化を妨
げてしまうからである。さらに、これらFe等の元素は
偏析し易く、結晶の上下でFe等の濃度が異なり上記の
活性化率が不均一となり、歩留りが低くなってしまう。
However, when Fe, Co, Cr or the like is doped to increase the resistance, it is desirable that the content concentration of these is as low as possible. Because, Fe, Co, Cr
, Etc., act as a deep acceptor, so in an ion-implanted electronic device (FET, etc.), the activation rate of ion-implanted shallow donor-type impurities is lowered, and a device operated at high frequency (OEIC, HEMT, etc.) In the above, since these elements diffuse in the epitaxial growth film and act as a trap, high frequency and high speed are hindered. Further, these elements such as Fe tend to segregate, the concentrations of Fe and the like differ between the upper and lower sides of the crystal, and the above activation rate becomes non-uniform, resulting in a low yield.

【0004】従来、例えば半絶縁性のInPとしてはF
eドープInPが主として用いられている。しかし、F
e等の含有濃度が0.2ppmw未満であると、抵抗率が1
6Ω・cmより低くなってしまい、半絶縁性が低下してし
まう。これを半絶縁性結晶とするためには、Fe等の含
有濃度を一定濃度(0.2ppmw)以上にしなければなら
なかった。一般に、III−V族化合物半導体でFe、Cr
等の含有濃度が低くなると抵抗率が下がってしまうの
は、浅いドナーとなる不純物元素がその水準まで残留不
純物として結晶中に存在するためと考えられていた。と
ころが、本発明者は、InP単結晶の高抵抗化の機構
は、浅いドナーと深いアクセプタによる補償のみでな
く、さらに電気的に活性な点欠陥も関与していると考
え、鋭意研究の結果、結晶を熱処理して点欠陥の濃度を
制御することにより、深いアクセプタの不純物元素濃度
が従来に比して格段に低くても半絶縁性のIII−V族化合
物半導体を得ることができることを見い出した。
Conventionally, for example, as semi-insulating InP, F
e-doped InP is mainly used. But F
If the content concentration of e, etc. is less than 0.2 ppmw, the resistivity is 1
It becomes lower than 0 6 Ω · cm, and the semi-insulating property deteriorates. In order to make it a semi-insulating crystal, the content concentration of Fe and the like had to be a certain concentration (0.2 ppmw) or more. Generally, III-V group compound semiconductors such as Fe and Cr
It has been considered that the reason why the resistivity decreases when the content concentration of etc. becomes low is that the impurity element serving as a shallow donor is present in the crystal as a residual impurity to that level. However, the present inventors believe that the mechanism for increasing the resistance of InP single crystal involves not only compensation by a shallow donor and a deep acceptor but also an electrically active point defect, and as a result of earnest research, It was found that by controlling the concentration of point defects by heat-treating the crystal, a semi-insulating III-V compound semiconductor can be obtained even if the impurity element concentration of the deep acceptor is much lower than before. .

【0005】これにより本発明者は先に、Fe,Co又
はCrの何れか1種以上の含有濃度の合計が0.2ppmw
以下であり且つ抵抗率が107Ω・cm以上である化合物半
導体の製造技術を提案した(特開平2−69307
号)。即ち、図4に示すように、例えば同時に複数のウ
ェハを処理するために、治具を用い各ウェハを略等しい
間隔を開けて整列させ、石英アンプル2内に配置する方
法を応用して、Fe、Co又はCrを0.2ppmw以下含
有する例えば融液成長法で作製した単結晶より切り出し
たInPウェハ(化合物半導体)1を石英アンプル2内
に真空封入するとともに、石英アンプル2内に例えば赤
リン3を配置してアンプル2内のリン分圧をInPの解
離圧以上となる圧力とし、石英アンプル2を400〜6
40℃で加熱するというものである。この先願発明にあ
っては、その後の我々の研究により、アンドープ又はF
e、Co又はCrの何れか1種以上の不純物元素の含有
濃度が0.05ppmw以下のInP単結晶を熱処理して
も、半絶縁性化しないことが分かった。
As a result, the present inventor first found that the total content concentration of at least one of Fe, Co and Cr was 0.2 ppmw.
A technique for manufacturing a compound semiconductor having a resistivity of 10 7 Ω · cm or more was proposed (Japanese Patent Laid-Open No. 2-69307).
issue). That is, as shown in FIG. 4, for example, in order to process a plurality of wafers at the same time, a method of aligning the wafers at substantially equal intervals using a jig and arranging them in the quartz ampoule 2 is applied. InP wafer (compound semiconductor) 1 containing 0.2 ppmw or less of Co, Cr or less, for example, cut from a single crystal produced by a melt growth method is vacuum-sealed in a quartz ampoule 2 and, for example, red phosphorus is contained in the quartz ampoule 2. 3 is arranged so that the partial pressure of phosphorus in the ampoule 2 is equal to or higher than the dissociation pressure of InP.
It is to heat at 40 ° C. According to our subsequent research, the invention of this prior application was undoped or F
It was found that even if the InP single crystal in which the content concentration of any one or more of the impurity elements of e, Co or Cr is 0.05 ppmw or less is heat-treated, it does not become semi-insulating.

【0006】そこで、本発明者はさらに研究を重ね、そ
の改良案として先に、例えば図4に示すように、石英ア
ンプル2内に赤リン3とともに、故意に不純物を添加す
ることなく、且つ残留不純物として存在するFe、Co
又はCrの何れか1種以上の含有濃度の合計が0.05
ppmw以下であるInPウェハ1を、6kg/cm2を超えるリ
ン分圧を有する雰囲気で熱処理する方法により、それら
不純物元素の含有濃度の合計が0.05ppmw以下であ
り、且つ300Kでの抵抗率が106Ω・cm以上で、移動
度が3000cm2/V・sを超える半絶縁性のIII−V族化合
物半導体(InP)を製造する技術を提案した(特開平
3−279299号)。前記の技術により得られるべき
半絶縁性のIII−V族化合物半導体(InP)は、結晶中
に含有する不純物、特にFe、Co又はCrの何れか1
種以上の含有濃度の合計を0.05ppmw以下とすること
で、含有不純物による移動度の低下を抑え、移動度を所
望の値以上としたものである。従来、上述した熱処理工
程において、不純物の汚染について相当の注意が払われ
ていた。例えば、V族元素(リン)蒸気の発生に用いる
蒸気源材料(赤リン)は、少なくとも純度が99.99
99%程度のもの、多くは「6N」と称する純度のもの
を用いていた。前記純度を有するものは、不純物元素の
含有濃度は0.1ppmwを超え、1ppmw以下である。
Therefore, the present inventor has conducted further research, and as an improvement plan thereof, for example, as shown in FIG. 4, the red phosphorus 3 was left in the quartz ampoule 2 without intentionally adding impurities, and the residue was left. Fe and Co existing as impurities
Or, the total content concentration of any one or more of Cr is 0.05
By the method of heat-treating the InP wafer 1 having a ppmw or less in an atmosphere having a phosphorus partial pressure of more than 6 kg / cm 2 , the total content concentration of these impurity elements is 0.05 ppmw or less, and the resistivity at 300K is A technique for producing a semi-insulating III-V group compound semiconductor (InP) having a mobility of more than 10 6 Ω · cm and exceeding 3000 cm 2 / V · s has been proposed (Japanese Patent Laid-Open No. 3-279299). The semi-insulating group III-V compound semiconductor (InP) to be obtained by the above-mentioned technique is an impurity contained in the crystal, particularly Fe, Co or Cr.
By setting the total content concentration of seeds or more to be 0.05 ppmw or less, it is possible to suppress the decrease in mobility due to the contained impurities and to set the mobility to a desired value or more. Heretofore, considerable attention has been paid to the contamination of impurities in the heat treatment process described above. For example, a vapor source material (red phosphorus) used to generate a Group V element (phosphorus) vapor has at least a purity of 99.99.
About 99% was used, and most of them had a purity called "6N". Those having the above-mentioned purity have an impurity element content concentration of more than 0.1 ppmw and 1 ppmw or less.

【0007】[0007]

【発明が解決しようとする課題】しかし、その後の我々
の研究により特開平3−279299号において提案し
た発明にあっては、以下のように抵抗率を除く、電気的
特性の再現性が乏しいことがわかった。即ち、900
℃、15atm(約15kg/cm2)のリン分圧を有する雰囲
気において、Fe、Co又はCrの何れか1種以上の不
純物元素の含有濃度が0.05ppmw以下のInPウェハ
を6組(一組数枚ずつ)用意して1ラン(Run)あた
り20時間の熱処理を6ラン行ったところ、処理後、ウ
ェハの電気的特性の一つである移動度は、図5に示すよ
うに、各ラン間においてばらついているだけでなく、同
一ランにおいてもばらついていた。さらに、移動度が所
望の値3000cm2/V・s以上とならないものが相当数に
のぼっていた。
However, in the invention proposed in Japanese Patent Laid-Open No. 3-279299 by the subsequent research conducted by us, the reproducibility of the electrical characteristics is poor except for the resistivity as described below. I understood. That is, 900
In an atmosphere having a phosphorus partial pressure of 15 atm (about 15 kg / cm 2 ) at 60 ° C., 6 sets (one set) of InP wafers containing 0.05 ppmw or less of the concentration of one or more impurity elements of Fe, Co, and Cr. After several heat treatments were performed for 6 runs of heat for 20 hours per run, the mobility, which is one of the electrical characteristics of the wafer, was measured for each run as shown in FIG. Not only did they vary among different runs, but they also varied over the same run. Furthermore, there were a considerable number of those whose mobility did not reach the desired value of 3000 cm 2 / V · s or more.

【0008】本発明はかかる事情に鑑みてなされたもの
で、その目的とするところは、電気的特性の再現性に優
れた高抵抗化合物半導体の製造方法を提供することにあ
る。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a method of manufacturing a high-resistance compound semiconductor excellent in reproducibility of electrical characteristics.

【0009】[0009]

【課題を解決するための手段】上述した移動度における
ばらつきの原因を究明すべく、本発明者はドーピング処
理や熱処理などを一切行っていないInPやGaPの単
結晶、及びそれら単結晶より切り出し上述したように熱
処理して得られたウェハの元素分析をGDMS法(グロ
ー放電質量分析法)により行った。その結果、表1に示
すように、Fe元素の濃度が、InPでは熱処理前0.
002ppmw(分析検出下限値)未満だったのが熱処理後
0.008〜0.089ppmwに、GaPでは熱処理前
0.005ppmw未満だったのが熱処理後0.68〜1.
4ppmwに高くなっており、何れの場合も熱処理中に外部
から結晶内にFe元素が混入したことがわかった。即
ち、この熱処理中に混入したFeにより、移動度が低下
し、ばらつきを引き起こしたものであることがわかっ
た。
In order to investigate the cause of the above-mentioned variation in mobility, the present inventor has made InP and GaP single crystals that have not been subjected to any doping treatment or heat treatment, and cut them out from the above single crystals. The elemental analysis of the wafer obtained by heat treatment as described above was performed by the GDMS method (glow discharge mass spectrometry). As a result, as shown in Table 1, the Fe element concentration of InP was less than 0.
Less than 002 ppmw (analysis detection lower limit value) was 0.008 to 0.089 ppmw after heat treatment, and for GaP, less than 0.005 ppmw before heat treatment was 0.68 to 1.89 after heat treatment.
It was as high as 4 ppmw, and it was found that Fe element was mixed into the crystal from the outside during the heat treatment in each case. That is, it was found that Fe mixed in during the heat treatment reduced the mobility and caused variations.

【表1】 [Table 1]

【0010】このFe元素を発生させた汚染源は、結晶
の近くにあるもの、例えば図4に示す石英アンプル2や
スペーサ等の石英製治具4、ヒータ5や炉部材6、石英
アンプル2内に置いた赤リン3のいずれかであると考
え、その汚染源を特定すべく、以下に記す種々の実験を
行った。熱処理前に含有するFe元素濃度が0.002
ppmw未満であったInPウェハを5atm、15atm、25
atmの各リン分圧において、Feが拡散により結晶中に
混入するのを促進できる熱処理条件である985℃で4
0時間の熱処理をして元素分析を行った結果、表2に示
すように、リン分圧が高いほど結晶中のFe濃度が高く
なっていることがわかった。また、純度が99.999
9%(含有する不純物元素濃度が1ppmwである。以下、
「6N」と略記する。)と99.99999%(含有す
る不純物元素濃度が0.1ppmwである。以下、「7N」
と略記する。)の赤リンを用いて985℃、25atmの
リン分圧で40時間熱処理をして元素分析を行った結
果、表3に示すように、赤リンの純度が低いほど結晶中
のFe濃度が高くなっていることがわかった。
Contamination sources that have generated this Fe element are those near the crystal, such as the quartz ampoule 2 shown in FIG. 4, a quartz jig 4 such as a spacer, the heater 5, the furnace member 6, and the quartz ampoule 2. It was thought that it was one of the placed red phosphorus 3, and various experiments described below were conducted in order to identify the pollution source. Fe element concentration before heat treatment is 0.002
InP wafers that were less than ppmw were 5 atm, 15 atm, 25
At each phosphorus partial pressure of atm, 4 at 985 ° C., which is a heat treatment condition that can promote mixing of Fe into the crystal by diffusion.
As a result of performing elemental analysis by performing heat treatment for 0 hour, it was found that, as shown in Table 2, the higher the phosphorus partial pressure, the higher the Fe concentration in the crystal. Moreover, the purity is 99.999.
9% (concentration of contained impurity element is 1 ppmw.
Abbreviated as "6N". ) And 99.99999% (concentration of contained impurity element is 0.1 ppmw. Hereinafter, “7N”)
Is abbreviated. ), The elemental analysis was carried out for 40 hours at a phosphorus partial pressure of 25 atm at 985 ° C. As a result, as shown in Table 3, the lower the purity of red phosphorus, the higher the Fe concentration in the crystal. I found out that.

【表2】 [Table 2]

【表3】 [Table 3]

【0011】これらの結果より、Fe元素の汚染源は赤
リン3であると推測した。更にGaAsの単結晶、及び
その単結晶より切り出しGaAsの解離圧以上のヒ素分
圧において赤リンを用いずに熱処理して得られたウェハ
の元素分析を行った。その結果、表1に示すように、F
e元素の濃度は何れも分析検出下限値以下であり、熱処
理中における結晶内へのFe元素の混入は認められなか
った。従って、赤リンのない条件においてはFe元素に
よる汚染はなく、赤リンのある条件においてのみFe元
素による汚染があることがわかり、Fe元素の汚染源は
赤リン3であることが判明した。つまり、赤リン3中に
不純物として含まれるFe元素であることが判明した。
From these results, it was estimated that the source of contamination of Fe element was red phosphorus 3. Further, elemental analysis was performed on a single crystal of GaAs and a wafer obtained by cutting the single crystal and subjecting it to a heat treatment without using red phosphorus at an arsenic partial pressure higher than the dissociation pressure of GaAs. As a result, as shown in Table 1, F
The concentrations of the e element were all lower than the lower limit of analysis and detection, and no Fe element was mixed into the crystal during the heat treatment. Therefore, it was found that there was no Fe element contamination under the condition without red phosphorus, and there was Fe element contamination only under the condition with red phosphorus, and it was found that the source of Fe element contamination was red phosphorus 3. That is, it was found that it was an Fe element contained as an impurity in the red phosphorus 3.

【0012】本発明は上記知見にもとづいてなされたも
のであり、熱処理により高抵抗化合物半導体を製造する
にあたり、アンプル内に化合物半導体の結晶と、前記化
合物半導体を構成する複数の元素のうち最も高い飽和蒸
気圧を有する元素の前記アンプル内における分圧を前記
化合物半導体の解離圧より高い所定の圧力に保つ蒸気源
材料とを、封入して熱処理を行うにあたり、前記化合物
半導体を構成する複数の元素のうち最も高い飽和蒸気圧
を有する元素からなる気体は透過でき、且つ前記化合物
半導体を構成する複数の元素のうち最も高い飽和蒸気圧
を有する元素の原子半径より大きな原子半径を有する元
素であって前記化合物半導体において深いアクセプタと
なる元素を含む気体は透過できない材料よりなる密閉容
器内に前記結晶を入れ、前記蒸気源材料と前記密閉容器
とをアンプル内に封入して熱処理を行うことを提案する
ものである。また、本発明は、上記化合物半導体がIII
−V族化合物半導体であるとき、当該III−V族化合物半
導体の構成元素であるV族元素よりなる蒸気源材料を用
い、アンプル内における前記V族元素の分圧を所定の圧
力に保ちつつ、前記V族元素からなる気体は透過でき、
且つ前記V族元素の原子半径より大きな原子半径を有す
る元素であって前記化合物半導体において深いアクセプ
タとなる元素を含む気体は透過できない材料よりなる密
閉容器内に当該III−V族化合物半導体の結晶を入れ、前
記蒸気源材料と前記密閉容器とをアンプル内に封入して
熱処理を行うことを提案するものである。
The present invention has been made based on the above findings, and in manufacturing a high-resistance compound semiconductor by heat treatment, the crystal of the compound semiconductor in the ampoule and the highest element among the plurality of elements constituting the compound semiconductor are the highest. A vapor source material for maintaining a partial pressure of an element having a saturated vapor pressure in the ampoule at a predetermined pressure higher than the dissociation pressure of the compound semiconductor, in encapsulating and performing heat treatment, a plurality of elements constituting the compound semiconductor A gas consisting of an element having the highest saturated vapor pressure among the plurality of elements constituting the compound semiconductor having an atomic radius larger than the atomic radius of the element having the highest saturated vapor pressure, The crystal is placed in a closed container made of a material that is impermeable to a gas containing an element that serves as a deep acceptor in the compound semiconductor. Is and proposes to carry out heat treatment by enclosing said closed container and said vapor source material into the ampoule. Further, the present invention provides the compound semiconductor according to III
In the case of a group V compound semiconductor, a vapor source material composed of a group V element which is a constituent element of the III-V compound semiconductor is used, and while maintaining a partial pressure of the group V element in the ampoule at a predetermined pressure, The gas composed of the group V element is permeable,
In addition, the crystal of the III-V group compound semiconductor is placed in a closed container made of a material that does not allow a gas containing an element having an atomic radius larger than that of the V group element to be a deep acceptor in the compound semiconductor to pass through. It is proposed to put the vapor source material and the hermetically sealed container in an ampoule and perform heat treatment.

【0013】具体的には、少なくとも熱処理温度で化学
的に安定である高密度(密度1.77g/cm3以上であ
る)のグラファイト、炭化珪素、窒化硼素などの層状構
造を有する材料あるいは多孔質材料からなり、リンの蒸
気(P原子あるいはP4、P2分子)は透過するがFeや
リン化鉄(Fexy)などの汚染蒸気は透過することが
できない密閉容器内にInPなどのウェハを入れ、その
密閉容器の外に蒸気源材料として赤リンを置き、それら
密閉容器及び赤リンを石英アンプル内に真空封入して該
アンプルを均一に加熱することにより、前記ウェハを高
抵抗化させる。加えて、望ましくは赤リンの不純物元素
含有濃度が0.1ppmw以下、即ちリンの純度が7N以上
であるのがよい。また、複数のウェハを同時に熱処理す
る場合には、それらウェハの面同士を密着させておくと
なおよい。この場合、並べたウェハ群の両端にダミーウ
ェハを配置するか、又は両端のウェハの各外側面が露出
しないようにその面に他の部材を密着させればよい。な
お、上記密閉容器の作製に用いて好適な材料、即ち、高
密度のグラファイト、炭化珪素、窒化硼素は、高温の反
応により人工的に製造され、層状構造の微小結晶を配向
させた、あるいは高純度の結晶粒界を形成するようにし
た多結晶体として得られるものであり、通常多孔質体と
してなっている。これらの材料を原子のスケールでみる
と、格子配列が乱れている結晶粒界には、ミクロな隙間
があり、外部より他の元素よりなる分子(又は原子)が
内部に侵入することができ、物理的あるいは化学的吸着
を起こす一種の多孔質・吸着材料となっている。更に、
グラファイトのように層状構造をとる物質では、その物
質を構成する元素より陽性な元素が層間に入り込み、挿
入化合物と呼ばれる層状構造に特有な化合物を形成す
る。例えば、炭素(C)からなるグラファイトでは、ア
ルカリ金属元素等の陽性な金属元素は安定な挿入化合物
を形成する。また、芳香族化合物のように共役二重結合
を有する化合物(あるいは類似する構造を有する物質)
と最外核電子としてd電子を有するFe,Co,Cr等
の遷移金属元素とは、サンドイッチ化合物と呼ばれる特
殊な化合物を安定に形成する。この化合物は、共役二重
結合を有する平面的化合物(あるいは類似する構造を有
する物質)が遷移金属元素の原子を上下より平行に配向
した構造である。一方、リン等のV族元素は、炭素元素
より陰性な元素であり、挿入化合物あるいはサンドイッ
チ化合物を形成しない。
Specifically, a material having a layered structure or porous material such as high density (density of 1.77 g / cm 3 or more) graphite, silicon carbide, boron nitride, etc., which is chemically stable at least at the heat treatment temperature. It is made of a material that allows phosphorus vapor (P atoms or P 4 , P 2 molecules) to pass through, but does not allow contaminated vapors such as Fe and iron phosphide (Fe x P y ) to pass through. Put a wafer, put red phosphorus as a vapor source material outside the closed container, vacuum-enclose the closed container and red phosphorus in a quartz ampoule, and uniformly heat the ampoule to increase the resistance of the wafer. Let In addition, it is desirable that the impurity element content concentration of red phosphorus is 0.1 ppmw or less, that is, the phosphorus purity is 7N or more. Further, when heat-treating a plurality of wafers at the same time, it is more preferable to bring the surfaces of the wafers into close contact with each other. In this case, dummy wafers may be arranged at both ends of the aligned wafer group, or other members may be brought into close contact with the wafers at both ends so that the outer surfaces of the wafers are not exposed. Materials suitable for use in producing the above-mentioned closed container, that is, high-density graphite, silicon carbide, and boron nitride are artificially produced by a high-temperature reaction, and are oriented in a layered structure of fine crystals, or have a high degree of orientation. It is obtained as a polycrystalline body that forms crystal grain boundaries of high purity, and is usually a porous body. When these materials are viewed on an atomic scale, there are microscopic gaps in the grain boundaries where the lattice arrangement is disturbed, and molecules (or atoms) made of other elements can invade from the outside, It is a kind of porous / adsorption material that causes physical or chemical adsorption. Furthermore,
In a substance having a layered structure such as graphite, an element more positive than the element constituting the substance intercalates into the layer to form a compound called an intercalation compound that is unique to the layered structure. For example, in graphite composed of carbon (C), a positive metal element such as an alkali metal element forms a stable insertion compound. In addition, a compound having a conjugated double bond (or a substance having a similar structure) such as an aromatic compound
And a transition metal element such as Fe, Co, or Cr having a d-electron as the outermost nuclear electron stably forms a special compound called a sandwich compound. This compound has a structure in which a planar compound having a conjugated double bond (or a substance having a similar structure) has atoms of a transition metal element oriented in parallel from above and below. On the other hand, group V elements such as phosphorus are elements that are more negative than carbon elements and do not form insertion compounds or sandwich compounds.

【0014】[0014]

【作用】上記した手段によれば、化合物半導体を構成す
る複数の元素のうち最も高い飽和蒸気圧を有する元素の
前記アンプル内における分圧を前記化合物半導体の解離
圧より高い所定の圧力に保ちつつ、化合物半導体の結晶
を熱処理するとき、蒸気源から発生する化合物半導体を
構成する複数の元素のうち最も高い飽和蒸気圧を有する
元素の蒸気は結晶を入れる密閉容器を透過可能であるた
め、その蒸気によって当該化合物半導体を構成する複数
の元素のうち最も高い飽和蒸気圧を有する元素の前記密
閉容器内における分圧も前記アンプル内における分圧と
等しくなり、即ち、前記化合物半導体の解離圧より高い
所定の圧力に保たれる。一方、前記化合物半導体を構成
する複数の元素のうち最も高い飽和蒸気圧を有する元素
の原子半径より大きな原子半径を有する元素であって前
記化合物半導体において深いアクセプタとなる元素を含
む気体、即ち汚染蒸気は、密閉容器を作製している材料
を透過して密閉容器内に侵入することができない。その
ため、熱処理中に密閉容器内の結晶が密閉容器外からの
汚染蒸気により汚染されるのが抑制される。具体的に
は、高抵抗III−V族化合物半導体の製造に適用する場
合、蒸気源からのV族元素の蒸気は密閉容器を透過可能
であるため、その蒸気によってV族元素の密閉容器内分
圧はIII−V族化合物半導体の解離圧より高い所定の圧力
に保たれる。一方V族元素の原子半径より大きな原子半
径を有するFeやFe元素を含む化合物よりなる汚染蒸
気は密閉容器内に侵入することができないため、熱処理
中に密閉容器内のIII−V族化合物半導体の結晶がFe元
素により汚染されるのが抑制される。従って、熱処理後
における結晶中のFe元素濃度の増加をきわめて低く抑
えることができる。所定のV族元素の分圧を印加し熱処
理することで、結晶を高抵抗化させることができる。例
えば、本出願人が先願の特開平3−279299号にお
いて提案した発明に従い、Fe、Co又はCrの何れか
1種類以上の不純物元素の含有濃度の合計が0.05pp
mw未満のInP単結晶を出発材料に用い、所定のリン分
圧、つまり6Kg/cm2以上のリン分圧を印加して、熱処
理することで、Fe、Co又はCrの何れか1種類以上
の不純物元素の含有濃度の合計が0.05ppmw以下であ
り、移動度が所望の3000cm2/V・sを超え、300K
での抵抗率が106Ω・cm以上の高抵抗InP単結晶を製
造することができる。
According to the above-mentioned means, the partial pressure in the ampoule of the element having the highest saturated vapor pressure among the plurality of elements forming the compound semiconductor is maintained at a predetermined pressure higher than the dissociation pressure of the compound semiconductor. , When heat-treating a crystal of a compound semiconductor, the vapor of the element having the highest saturated vapor pressure of the plurality of elements constituting the compound semiconductor generated from the vapor source can pass through the closed container containing the crystal, so that vapor The partial pressure in the closed container of the element having the highest saturated vapor pressure among the plurality of elements constituting the compound semiconductor is also equal to the partial pressure in the ampoule, that is, a predetermined value higher than the dissociation pressure of the compound semiconductor. Kept at the pressure of. On the other hand, a gas containing an element having an atomic radius larger than the atomic radius of the element having the highest saturated vapor pressure among the plurality of elements constituting the compound semiconductor, which element becomes a deep acceptor in the compound semiconductor, that is, a contaminated vapor Cannot penetrate the material of which the closed container is made to penetrate into the closed container. Therefore, it is possible to prevent the crystals in the closed container from being contaminated by the contaminated vapor from the outside of the closed container during the heat treatment. Specifically, when applied to the production of a high resistance III-V group compound semiconductor, since the vapor of the group V element from the vapor source can pass through the closed container, the vapor is used to divide the group V element into the closed container. The pressure is maintained at a predetermined pressure higher than the dissociation pressure of the III-V compound semiconductor. On the other hand, since a contaminated vapor composed of Fe or a compound containing an Fe element having an atomic radius larger than the atomic radius of the group V element cannot enter the closed container, during the heat treatment, the III-V group compound semiconductor in the closed container Contamination of the crystal with Fe element is suppressed. Therefore, the increase in the Fe element concentration in the crystal after the heat treatment can be suppressed to an extremely low level. By applying a predetermined partial pressure of the group V element and performing heat treatment, the crystal can have a high resistance. For example, according to the invention proposed by the present applicant in Japanese Patent Application Laid-Open No. 3-279299, the total content concentration of at least one impurity element of Fe, Co or Cr is 0.05 pp.
By using InP single crystal of less than mw as a starting material and applying a predetermined phosphorus partial pressure, that is, a phosphorus partial pressure of 6 kg / cm 2 or more, and performing heat treatment, one or more of Fe, Co, and Cr are selected. The total content concentration of impurity elements is 0.05ppmw or less, the mobility exceeds the desired 3000 cm 2 / Vs, 300K
It is possible to manufacture a high resistance InP single crystal having a resistivity of 10 6 Ω · cm or more.

【0015】また、7N以上の純度の即ち、不純物元素
の含有濃度が0.1ppmw以下のV族元素よりなる蒸気源
材料を用いることにより、蒸気源から生じる汚染蒸気の
量をきわめて微量に抑えることができ、結晶中に混入す
るFe元素の量を抑制することができる。さらに、結晶
がウェハ状になっている場合には、複数のウェハの面同
士を密着させておくことにより、万一密閉容器内に汚染
蒸気が漏れ入ったとしても、その汚染蒸気に曝されるの
はウェハの露出している外周縁のみであるため、汚染蒸
気との接触面積が非常に小さくなり、混入するFe元素
の量は微量となる。しかも、電子デバイスを作製する領
域、即ち外周縁よりも内側のウェハ面の大半の領域は汚
染されておらず、例えばその面を鏡面に仕上げる際など
に外周縁を削り取ることにより、汚染されていない高抵
抗のウェハが得られる。
Further, by using a vapor source material consisting of a Group V element having a purity of 7 N or more, that is, an impurity element content concentration of 0.1 ppmw or less, the amount of polluted vapor generated from the vapor source can be suppressed to an extremely small amount. Therefore, the amount of Fe element mixed in the crystal can be suppressed. Further, when the crystal is in the form of a wafer, by making the surfaces of a plurality of wafers in close contact with each other, even if the contaminated vapor leaks into the closed container, it is exposed to the contaminated vapor. Since only the outer peripheral edge of the wafer is exposed, the contact area with the contaminated vapor is extremely small, and the amount of Fe element mixed in is very small. Moreover, the area where the electronic device is manufactured, that is, most of the wafer surface inside the outer peripheral edge is not contaminated, and is not contaminated by scraping the outer peripheral edge, for example, when the surface is mirror-finished. A high resistance wafer is obtained.

【0016】[0016]

【実施例】先ず、本発明の実施に用いられる密閉容器の
一例を図1に示し、説明する。同図に示すように、この
密閉容器10は、ウェハ1を納める筒体11とその両端
を閉塞する一対の蓋体13,13とから構成されてい
て、リンの蒸気は透過するがFeやリン化鉄の蒸気は透
過することができないようになっている。即ち、それら
筒体11及び蓋体13は密度が1.77g/cm3以上であ
る高密度のグラファイトなどの層状構造を有する材料あ
るいは多孔質体より作製されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, an example of a closed container used for carrying out the present invention is shown in FIG. 1 and described. As shown in the figure, the hermetically sealed container 10 is composed of a cylindrical body 11 for accommodating the wafer 1 and a pair of lids 13 and 13 for closing both ends thereof. The vapor of iron oxide is impermeable. That is, the cylindrical body 11 and the lid body 13 are made of a material having a layered structure such as high density graphite having a density of 1.77 g / cm 3 or more, or a porous body.

【0017】前記蓋体13は、筒体11にパッキン15
等を介して取り付けられる。密閉容器10の内部に設け
る固定治具18により複数のウェハ1,1,…を、互い
にその面を密着させた状態とすることもできる。その
際、過大な力が作用してウェハ1が破損するのを防ぐた
めに、ウェハ1に当接する当板部17が設けられてい
る。なお、当板部17、固定治具18及びパッキン15
はウェハ1を汚染しない材質でできているのはいうまで
もない。
The lid 13 has a cylindrical body 11 and a packing 15
And the like. A plurality of wafers 1, 1, ... Can be brought into a state where their surfaces are in close contact with each other by a fixing jig 18 provided inside the closed container 10. At that time, in order to prevent the wafer 1 from being damaged due to an excessive force, a contact plate portion 17 that contacts the wafer 1 is provided. In addition, the contact plate portion 17, the fixing jig 18, and the packing 15
Needless to say, is made of a material that does not contaminate the wafer 1.

【0018】次に、実施例及び比較例を挙げて具体的に
説明する。 (実施例1)InPの原料多結晶から液体封止チョクラ
ルスキー法で引き上げたFe、Co、Crの含有濃度が
何れも分析検出下限(0.002ppmw)以下である単結
晶より切り出された厚さ0.5mmのInPウェハ(薄
板)1,1,…をグラファイト製の密閉容器10の筒体
11内に、スペーサとなる石英製治具4を用いて間隔を
開けて複数並べた。そして、筒体11に蓋体13,13
を取り付けて容器10内を密閉状態とした。
Next, a concrete description will be given with reference to examples and comparative examples. (Example 1) Thickness cut out from a single crystal in which the content concentrations of Fe, Co, and Cr, which were pulled up from the InP raw material polycrystal by the liquid sealed Czochralski method, were all lower than the analytical detection lower limit (0.002 ppmw). A plurality of 0.5 mm thick InP wafers (thin plates) 1, 1, ... Are arranged in the cylindrical body 11 of the graphite hermetic container 10 at intervals using a quartz jig 4 serving as a spacer. Then, the cylindrical body 11 has lids 13, 13
Was attached and the inside of the container 10 was sealed.

【0019】続いて、図2に示すように、この密閉容器
10と純度が6Nの赤リン3を石英アンプル2内に配置
し、石英アンプル2内を1×10-6torr(約1.3×1
-9kg/cm2)まで真空排気した後、酸水素バーナーによ
り石英アンプル2の開口部を封止した。この際、赤リン
3の量は、特開平3−279299号に提案された発明
に従い、リン分圧が6Kg/cm2(約6atm)以上となるよ
うに、例えば石英アンプル2内のリン圧が熱処理温度で
25atmとなるように調整した。次に、この石英アンプ
ル2を横型加熱炉内に設置し、熱処理温度985℃で4
0時間加熱保持した後、約30℃/分の降温速度で冷却
した。上記横型加熱炉は密閉型で100kg/cm2の圧力ま
で加圧できるものを使用し、昇降温時に、その温度に対
応するリン分圧に見合う圧力のアルゴンガスを加熱炉内
に導入して、石英アンプル2の内外の圧力のバランスを
保ち、石英アンプル2の破壊を防止した。なお、アンプ
ル2及びスペーサ等の治具は溶融石英製であった。
Subsequently, as shown in FIG. 2, the closed container 10 and red phosphorus 3 having a purity of 6N are placed in a quartz ampoule 2 and the inside of the quartz ampoule 2 is 1 × 10 −6 torr (about 1.3). × 1
After evacuation to 0 -9 kg / cm 2 ), the opening of the quartz ampoule 2 was sealed with an oxyhydrogen burner. At this time, according to the invention proposed in Japanese Patent Laid-Open No. 3-279299, the amount of red phosphorus 3 is set so that the phosphorus partial pressure becomes 6 kg / cm 2 (about 6 atm) or more, for example, the phosphorus pressure in the quartz ampoule 2 is The heat treatment temperature was adjusted to 25 atm. Next, this quartz ampoule 2 was placed in a horizontal heating furnace and heated at a heat treatment temperature of 985 ° C. for 4 hours.
After heating and holding for 0 hour, it was cooled at a temperature lowering rate of about 30 ° C./min. The horizontal heating furnace is a closed type that can pressurize up to a pressure of 100 kg / cm 2 , and at the time of raising and lowering temperature, an argon gas having a pressure corresponding to the phosphorus partial pressure corresponding to the temperature is introduced into the heating furnace. The balance between the pressure inside and outside the quartz ampoule 2 was maintained to prevent the quartz ampoule 2 from being broken. The jigs such as the ampoule 2 and the spacer were made of fused silica.

【0020】(比較例1〜3)比較のために、以下の3
実験を行った。比較例1及び2では、図4に示すよう
に、密閉容器10を用いずに熱処理を行った。リンの純
度は、比較例1では6N、比較例2では7Nであった。
比較例3では、図6に示すように、pBN(熱分解窒化
ホウ素)製の密閉していない容器20(ウェハを収納す
る筒体とその両端を閉塞する一対の蓋体とから構成され
ている。)と純度が6Nの赤リン3を用いた。その他の
条件は、上記実施例1と同様にして行なった。
Comparative Examples 1 to 3 For comparison, the following 3
An experiment was conducted. In Comparative Examples 1 and 2, heat treatment was performed without using the closed container 10, as shown in FIG. The purity of phosphorus was 6N in Comparative Example 1 and 7N in Comparative Example 2.
In Comparative Example 3, as shown in FIG. 6, an unsealed container 20 made of pBN (pyrolytic boron nitride) (a cylindrical body for housing a wafer and a pair of lids for closing both ends thereof) is configured. ) And red phosphorus 3 having a purity of 6N. Other conditions were the same as in Example 1 above.

【0021】上記実施例1及び比較例1〜3で得られた
ウェハについて、熱処理後のウェハに含有されていたF
e元素の濃度を元素分析により調べた。その結果を表4
に示す。実施例1と比較例1とを較べると、実施例1の
方がFe元素の濃度が小さくなっており(比較例1の1
/3〜1/2程度である。)、赤リン3に不純物元素と
して含まれていたFe元素によるウェハ結晶の汚染に対
して、グラファイト製の密閉容器10が有効であること
がわかる。即ち、Fe又はFe元素を含む化合物の汚染
蒸気が密閉容器10内に侵入するのを密閉容器10が抑
制していることがわかる。また、実施例1と比較例2と
を較べることにより、密閉容器10による汚染防止効果
は、リンの純度を7Nにするのと同等であることがわか
る。さらに、実施例1と比較例3とを較べることによ
り、pBN製の密閉していない容器20においては明確
な汚染防止効果は認められず、密閉容器10であり材質
としてグラファイトを用いたものが好適であることがわ
かる。
Regarding the wafers obtained in Example 1 and Comparative Examples 1 to 3, F contained in the wafer after the heat treatment
The concentration of element e was examined by elemental analysis. The results are shown in Table 4.
Shown in. Comparing Example 1 and Comparative Example 1, the concentration of Fe element is lower in Example 1 (Comparative Example 1
It is about / 3 to 1/2. ), The sealed container 10 made of graphite is effective for the contamination of the wafer crystal by the Fe element contained in the red phosphorus 3 as the impurity element. That is, it can be seen that the closed container 10 suppresses the entry of the contaminated vapor of Fe or the compound containing the Fe element into the closed container 10. In addition, by comparing Example 1 and Comparative Example 2, it can be seen that the effect of preventing contamination by the closed container 10 is equivalent to setting the purity of phosphorus to 7N. Furthermore, by comparing Example 1 with Comparative Example 3, no clear pollution prevention effect was observed in the unsealed container 20 made of pBN, and it is preferable that the sealed container 10 is made of graphite. It can be seen that it is.

【表4】 [Table 4]

【0022】(参考例)リンの純度、即ち、不純物元素
の含有濃度の影響を調べるために、純度7Nの赤リンを
用いて上記比較例3と同様の条件で熱処理を行った。な
お、図6に示すように、比較例3と同じpBN製の密閉
していない容器20を用いた。また、石英アンプル2や
石英製治具4は溶融石英より純度の高い合成石英製のも
のを用いた。 (比較例4)比較のために、純度6Nの赤リンを用い
た。なお、図4に示すように、ウェハを収納する容器は
用いなかった。その他の条件は、上記参考例と同様であ
った。
(Reference Example) In order to investigate the effect of the purity of phosphorus, that is, the content concentration of the impurity element, a heat treatment was performed under the same conditions as in Comparative Example 3 using red phosphorus having a purity of 7N. In addition, as shown in FIG. 6, the same unsealed container 20 made of pBN as in Comparative Example 3 was used. The quartz ampoule 2 and the quartz jig 4 were made of synthetic quartz having a higher purity than fused quartz. (Comparative Example 4) For comparison, red phosphorus having a purity of 6N was used. In addition, as shown in FIG. 4, a container for storing the wafer was not used. Other conditions were the same as in the above reference example.

【0023】上記参考例及び比較例4で得られたウェハ
に含有されていたFe元素の濃度を元素分析により調べ
た。その結果を表4に示す。同表より、参考例と比較例
3ならびに4とを較べると、リンの純度を7Nにした結
果、含有されていたFe元素の濃度は1/2以下になっ
ており、Fe元素の汚染に関して7N以上の純度の赤リ
ンを用いることが有効であることがわかる。
The concentration of Fe element contained in the wafers obtained in Reference Example and Comparative Example 4 was examined by elemental analysis. The results are shown in Table 4. From the table, comparing the reference example with the comparative examples 3 and 4, as a result of making the purity of phosphorus 7N, the concentration of Fe element contained was 1/2 or less, and the contamination of Fe element was 7N. It turns out that it is effective to use red phosphorus having the above-mentioned purity.

【0024】上記表4及び上記表2におけるFe元素の
含有濃度の測定値をリン分圧に対してプロットしたグラ
フを図3に示す。同図において、○印はリンの純度が6
Nで且つグラファイト製の密閉容器10を用いなかった
もの、□印はリンの純度が6Nで且つグラファイト製の
密閉容器10を用いたもの、△印はリンの純度が7Nで
且つグラファイト製の密閉容器10を用いなかったも
の、を夫々示す。同図より、汚染防止効果については、
リンの純度が7N以上であるか、又はグラファイト製の
密閉容器10を用いることが有効であることがわかり、
その何れかを用いて熱処理を行うことにより、高抵抗化
合物半導体を優れた再現性でもって製造することができ
る。さらに、グラファイト製の密閉容器10の使用に加
えて、純度7N以上の赤リンを同時に用いれば、両者の
相乗効果によりFe元素による汚染をきわめて有効に抑
制することができ、高抵抗III−V族化合物半導体をより
優れた再現性でもって製造することができると判断され
る。
FIG. 3 is a graph in which the measured values of the Fe element content in Tables 4 and 2 are plotted against the phosphorus partial pressure. In the figure, ○ indicates that the purity of phosphorus is 6
N and without using the graphite closed container 10, □ indicates the phosphorus purity is 6N and uses the graphite closed container 10, and Δ indicates the phosphorus purity is 7N and the graphite closed container. The container 10 is not used, respectively. From the figure, regarding the pollution prevention effect,
It is found that the purity of phosphorus is 7 N or more, or it is effective to use the closed container 10 made of graphite,
By performing heat treatment using either of them, a high resistance compound semiconductor can be manufactured with excellent reproducibility. Furthermore, in addition to the use of the closed vessel 10 made of graphite, if red phosphorus having a purity of 7N or more is used at the same time, the contamination by Fe element can be extremely effectively suppressed by the synergistic effect of both, and the high resistance III-V group It is judged that the compound semiconductor can be manufactured with higher reproducibility.

【0025】なお、密閉容器10は上記実施例のものに
限らず、ウェハ1を収納し且つ蓋等により閉塞すること
ができればその形状を如何ように設計変更してもよい
し、またその材質も、リンの蒸気は透過するがFeやリ
ン化鉄などの汚染蒸気は透過することができない様なも
のであれば、グラファイトに限らず如何なる材質でもよ
い。例えば炭化珪素や窒化硼素などを利用してもよい。
The hermetically sealed container 10 is not limited to the one used in the above embodiment, and the shape of the hermetically sealed container 10 may be changed as long as the wafer 1 can be accommodated and can be closed by a lid or the like, and the material thereof can be changed. Any material may be used as long as it is not limited to graphite as long as it is permeable to phosphorus vapor but impermeable to contaminated vapor such as Fe and iron phosphide. For example, silicon carbide or boron nitride may be used.

【0026】また、上記実施例においては、本発明をI
nPの熱処理に適用した例に付いて説明したが、GaP
など構成するV族元素がPである化合物半導体(混晶組
成のものも含む。)の熱処理に適用可能であるのは勿論
である。さらに、温度、V族元素分圧(リン分圧)、処
理時間などの熱処理条件も上記実施例の条件に限らず、
種々変更しても汚染蒸気(Fe元素等)による汚染を抑
えつつ優れた再現性で高抵抗III−V族化合物半導体を製
造することができる。また、高抵抗II−VI族化合物半導
体を製造する工程においては、II−VI族化合物半導体を
構成する複数の元素の内で最も高い飽和蒸気圧を有する
元素、即ちII族元素よりなる蒸気源材料を用い、当該II
−VI族化合物半導体の解離圧より高い所定の圧力に保ち
つつ熱処理する。このとき、当該II族元素よりなる気体
は透過可能であり、且つ前記II−VI族化合物半導体を汚
染する前記II族元素の原子半径より大きな原子半径を有
する元素であって当該II−VI族化合物半導体において深
いアクセプタとなる元素を含む気体は透過できない材料
よりなる密閉容器内に結晶を入れると、前記II族元素の
原子半径より大きな原子半径を有する元素であって当該
II−VI族化合物半導体において深いアクセプタとなる元
素を含む気体、即ち汚染蒸気が前記密閉容器内に侵入す
るのを抑えることができ、汚染を抑制できる。
In the above embodiment, the present invention is
Although the example applied to the heat treatment of nP has been described, GaP
Of course, the present invention can be applied to the heat treatment of compound semiconductors (including those having a mixed crystal composition) in which the group V element constituting the element is P. Furthermore, the heat treatment conditions such as temperature, V group element partial pressure (phosphorus partial pressure), and treatment time are not limited to the conditions of the above-mentioned embodiment,
Even if various changes are made, it is possible to manufacture a high-resistivity III-V group compound semiconductor with excellent reproducibility while suppressing contamination by contaminated vapor (such as Fe element). Further, in the step of producing a high resistance II-VI group compound semiconductor, an element having the highest saturated vapor pressure among a plurality of elements constituting the II-VI group compound semiconductor, that is, a vapor source material consisting of a Group II element. II
-Heat treatment is performed while maintaining a predetermined pressure higher than the dissociation pressure of the Group VI compound semiconductor. At this time, the gas consisting of the group II element is permeable, and is an element having an atomic radius larger than the atomic radius of the group II element contaminating the group II-VI compound semiconductor, and the group II-VI compound. When a crystal is placed in a closed container made of a material that is impermeable to a gas that is an element that serves as a deep acceptor in a semiconductor, it is an element having an atomic radius larger than that of the Group II element.
In the II-VI group compound semiconductor, a gas containing an element that serves as a deep acceptor, that is, a contaminated vapor can be suppressed from entering the closed container, and contamination can be suppressed.

【0027】さらに、密閉容器10内でウェハ1,1,
…の面同士を密着させておけば、万一密閉容器10内に
Feやリン化鉄などの蒸気が侵入しても、露出している
のはウェハ1の外周縁のみであるため、その汚染蒸気に
曝されるのは外周縁のみである。つまり、汚染蒸気との
接触面積が非常に小さくなり、混入するFe元素の量は
微量であるのに加えて、電子デバイスを作製するウェハ
面の大半の領域は汚染されていないので、熱処理後に外
周縁を削り取れば汚染されていない高抵抗のウェハが得
られる。従って、きわめて有効にFe元素による汚染を
抑制することができ、高抵抗III−V族化合物半導体をよ
り優れた再現性でもって製造することができる。この場
合、7N以上の純度のリンを使用すれば、熱処理中に混
入するFe元素の量をさらに低減し略零とすることがで
き、再現性はより一層優れたものとなる。
Furthermore, the wafers 1, 1,
If the surfaces of ... Are brought into close contact with each other, even if vapor such as Fe or iron phosphide intrudes into the closed container 10, since only the outer peripheral edge of the wafer 1 is exposed, the contamination thereof is caused. Only the outer periphery is exposed to steam. In other words, the contact area with the contaminated vapor becomes extremely small, the amount of Fe element mixed in is very small, and most of the area of the wafer surface where the electronic device is manufactured is not contaminated, so after the heat treatment, If the peripheral edge is shaved off, a high-resistance wafer having no contamination can be obtained. Therefore, the contamination with Fe element can be suppressed very effectively, and the high resistance III-V group compound semiconductor can be manufactured with more excellent reproducibility. In this case, if phosphorus having a purity of 7N or more is used, the amount of Fe element mixed during the heat treatment can be further reduced to almost zero, and the reproducibility is further improved.

【0028】[0028]

【発明の効果】本発明に係る高抵抗化合物半導体の製造
方法によれば、化合物半導体を構成する複数の元素のう
ち最も高い飽和蒸気圧を有する元素の蒸気は透過させる
が、前記化合物半導体を構成する複数の元素のうち最も
高い飽和蒸気圧を有する元素の原子半径より大きな原子
半径を有する元素であって前記化合物半導体において深
いアクセプタとなる元素を含む気体、即ち汚染蒸気は透
過させない密閉容器内に当該化合物半導体の結晶を入
れ、且つ密閉容器外に蒸気源を配置することにより、前
記化合物半導体を構成する複数の元素のうち最も高い飽
和蒸気圧を有する元素の前記密閉容器内における分圧を
当該化合物半導体の解離圧より高い所定の圧力に保つと
ともに、汚染蒸気による汚染を抑制しつつ熱処理を行う
ことができ、具体的には、高抵抗III−V族化合物半導体
を製造する工程に適用する場合、V族元素の蒸気は透過
させるが汚染蒸気は透過させない密閉容器内にIII−V族
化合物半導体材料の結晶を入れ、且つ密閉容器の外に蒸
気源を配置することにより、III−V族化合物半導体の結
晶に所定のV族元素分圧を印加できるとともにFe元素
による汚染を防ぎつつ熱処理を行うことができ、例えば
Fe元素等の不純物の含有濃度が0.05ppmw以下で、
移動度が所望の値以上であり、且つ抵抗率が106Ω・cm
以上の高抵抗III−V族化合物半導体を再現性よく製造す
ることができる。
According to the method for producing a high resistance compound semiconductor according to the present invention, the vapor of the element having the highest saturated vapor pressure among the plurality of elements constituting the compound semiconductor is transmitted, but the compound semiconductor is constituted. A gas containing an element having an atomic radius larger than the atomic radius of the element having the highest saturated vapor pressure among the plurality of elements, the element being a deep acceptor in the compound semiconductor, that is, a contaminated vapor in a closed container that is impermeable. By placing a crystal of the compound semiconductor and arranging a vapor source outside the closed container, the partial pressure in the closed container of the element having the highest saturated vapor pressure among the plurality of elements forming the compound semiconductor is concerned. It is possible to maintain a predetermined pressure higher than the dissociation pressure of the compound semiconductor and perform heat treatment while suppressing contamination by contaminated vapor. When applied to the step of producing a high resistance III-V compound semiconductor, the crystal of the III-V compound semiconductor material is placed in a closed container which allows the vapor of the group V element to permeate but does not permeate the contaminated vapor, and By disposing the vapor source outside the closed container, it is possible to apply a predetermined partial pressure of the group V element to the crystal of the III-V group compound semiconductor and perform heat treatment while preventing contamination by the Fe element. When the content concentration of impurities such as 0.05ppmw or less,
Mobility is above the desired value and resistivity is 10 6 Ω · cm
The high resistance III-V group compound semiconductor described above can be manufactured with good reproducibility.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る製造方法に用いられる密閉容器及
びその容器内にウェハが収納された状態の一例を示す概
略図である。
FIG. 1 is a schematic view showing an example of a closed container used in a manufacturing method according to the present invention and a state where wafers are stored in the container.

【図2】その密閉容器が加熱炉内に設置された状態の概
略図である。
FIG. 2 is a schematic view of a state in which the closed container is installed in a heating furnace.

【図3】熱処理におけるリン分圧と熱処理後におけるウ
ェハ中のFe元素の含有濃度との関係を示す特性図であ
る。
FIG. 3 is a characteristic diagram showing the relationship between the phosphorus partial pressure in the heat treatment and the Fe element content concentration in the wafer after the heat treatment.

【図4】従来の熱処理方法において加熱炉内にウェハが
設置された状態の概略図である。
FIG. 4 is a schematic view showing a state where a wafer is installed in a heating furnace in a conventional heat treatment method.

【図5】従来の熱処理方法において得られたウェハの移
動度を示す特性図である。
FIG. 5 is a characteristic diagram showing the mobility of a wafer obtained by a conventional heat treatment method.

【図6】密閉していない容器が加熱炉内に設置された状
態の概略図である。
FIG. 6 is a schematic view showing a state where an unsealed container is installed in a heating furnace.

【符号の説明】[Explanation of symbols]

1 ウェハ(III−V族化合物半導体の結晶) 2 石英アンプル(アンプル) 3 赤リン(蒸気源材料) 10 密閉容器 1 Wafer (Crystal of III-V Group Compound Semiconductor) 2 Quartz Ampoule (Ampule) 3 Red Phosphorus (Vapor Source Material) 10 Closed Container

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 アンプル内に化合物半導体の結晶と、前
記化合物半導体を構成する複数の元素のうち最も高い飽
和蒸気圧を有する元素の前記アンプル内における分圧を
前記化合物半導体の解離圧より高い所定の圧力に保つ蒸
気源材料とを、封入して熱処理を行うにあたり、前記化
合物半導体を構成する複数の元素のうち最も高い飽和蒸
気圧を有する元素からなる気体は透過でき、且つ前記化
合物半導体を構成する複数の元素のうち最も高い飽和蒸
気圧を有する元素の原子半径より大きな原子半径を有す
る元素であって前記化合物半導体において深いアクセプ
タとなる元素を含む気体は透過できない材料よりなる密
閉容器内に前記結晶を入れ、前記蒸気源材料と前記密閉
容器とをアンプル内に封入して熱処理を行うことを特徴
とする高抵抗化合物半導体の製造方法。
1. A crystal of a compound semiconductor in an ampoule, and a partial pressure in the ampoule of an element having a highest saturated vapor pressure among a plurality of elements constituting the compound semiconductor is higher than a dissociation pressure of the compound semiconductor. At the time of performing heat treatment by encapsulating the vapor source material which is kept at a pressure of, the gas composed of the element having the highest saturated vapor pressure among the plurality of elements constituting the compound semiconductor is permeable, and constitutes the compound semiconductor. A gas containing an element having an atomic radius larger than the atomic radius of the element having the highest saturated vapor pressure among the plurality of elements, the element being a deep acceptor in the compound semiconductor, is contained in a closed container made of a material that is impermeable. A high-resistance compound characterized by containing crystals, enclosing the vapor source material and the closed container in an ampoule, and performing heat treatment. Semiconductor manufacturing method.
【請求項2】 上記化合物半導体がIII−V族化合物半導
体であり、上記蒸気源材料はV族元素よりなることを特
徴とする請求項1記載の高抵抗化合物半導体の製造方
法。
2. The method for producing a high resistance compound semiconductor according to claim 1, wherein the compound semiconductor is a III-V group compound semiconductor, and the vapor source material is a V group element.
【請求項3】 前記密閉容器を作製する材料は、高密度
のグラファイト、炭化珪素、窒化硼素よりなる群から選
ばれた一種又は二種以上の材料であることを特徴とする
請求項1又は2記載の高抵抗化合物半導体の製造方法。
3. The material for forming the closed container is one or more materials selected from the group consisting of high-density graphite, silicon carbide and boron nitride. A method for producing the high-resistance compound semiconductor described.
【請求項4】 前記蒸気源材料は、不純物元素の含有濃
度が0.1ppmw以下であり、且つ上記化合物半導体を構
成する複数の元素のうち最も高い飽和蒸気圧を有する元
素よりなることを特徴とする請求項1、2又は3記載の
高抵抗化合物半導体の製造方法。
4. The vapor source material has an impurity element content concentration of 0.1 ppmw or less and is composed of an element having the highest saturated vapor pressure among a plurality of elements constituting the compound semiconductor. The method for producing a high resistance compound semiconductor according to claim 1, 2, or 3.
【請求項5】 複数の前記薄板からなる化合物半導体の
結晶を、それら結晶の面同士を接触させて設置すること
を特徴とする請求項1、2、3又は4記載の高抵抗化合
物半導体の製造方法。
5. The production of a high-resistance compound semiconductor according to claim 1, wherein a crystal of a compound semiconductor composed of a plurality of the thin plates is placed with the surfaces of the crystals in contact with each other. Method.
JP8175593A 1993-04-08 1993-04-08 Production of high resistance compound semiconductor Pending JPH06295863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8175593A JPH06295863A (en) 1993-04-08 1993-04-08 Production of high resistance compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8175593A JPH06295863A (en) 1993-04-08 1993-04-08 Production of high resistance compound semiconductor

Publications (1)

Publication Number Publication Date
JPH06295863A true JPH06295863A (en) 1994-10-21

Family

ID=13755263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8175593A Pending JPH06295863A (en) 1993-04-08 1993-04-08 Production of high resistance compound semiconductor

Country Status (1)

Country Link
JP (1) JPH06295863A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6451640B1 (en) 1996-12-20 2002-09-17 Nec Corporation Semiconductor device having NMOS and PMOS transistors on common substrate and method of fabricating the same
EP1739213A1 (en) * 2005-07-01 2007-01-03 Freiberger Compound Materials GmbH Apparatus and method for annealing of III-V wafers and annealed III-V semiconductor single crystal wafers

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6451640B1 (en) 1996-12-20 2002-09-17 Nec Corporation Semiconductor device having NMOS and PMOS transistors on common substrate and method of fabricating the same
EP1739213A1 (en) * 2005-07-01 2007-01-03 Freiberger Compound Materials GmbH Apparatus and method for annealing of III-V wafers and annealed III-V semiconductor single crystal wafers
US8025729B2 (en) 2005-07-01 2011-09-27 Freiberger Compound Materials Gmbh Device and process for heating III-V wafers, and annealed III-V semiconductor single crystal wafer
US9181633B2 (en) 2005-07-01 2015-11-10 Freiberger Compound Materials Gmbh Device and process for heating III-V wafers, and annealed III-V semiconductor single crystal wafer

Similar Documents

Publication Publication Date Title
EP0038915B1 (en) A capless annealing method for ion-implanted iii-v compounds
US6872248B2 (en) Liquid-phase growth process and liquid-phase growth apparatus
US7217324B2 (en) Method and device for producing an electronic GaAs detector for x-ray detection for imaging
US6056817A (en) Process for producing semi-insulating InP single crystal and semi-insulating InP single crystal substrate
US20210269937A1 (en) Silicon carbide crystals and methods for producing same
JPH06295863A (en) Production of high resistance compound semiconductor
Miller et al. Low-temperature growth of GaAs and AlGaAs by MBE and effects of post-growth thermal annealing
EP0455325B1 (en) Single crystals of semi-insulating indium phosphide and processes for making them
JP4307913B2 (en) Method for producing high-purity silicon carbide single crystal
JP2572291B2 (en) Method of manufacturing semi-insulating InP single crystal substrate
CA2726986C (en) Annealing of semi-insulating cdznte crystals
JP3106197B2 (en) Method for manufacturing high resistance compound semiconductor
Rudolph et al. Casting of undoped CdTe crystals with high electrical resistivity
Georgobiani et al. Vapour phase and liquid phase doping of ZnSe by group III elements
JP2819244B2 (en) Method for producing semi-insulating InP single crystal
JPH0632699A (en) Production of semi-insulating inp single crystal
JP3793934B2 (en) Method for producing semi-insulating InP single crystal
JPH06295865A (en) Production of high resistance compound semiconductor
US5254507A (en) Semi-insulating InP single crystals, semiconductor devices having substrates of the crystals and processes for producing the same
JPH08175899A (en) Production of semi-insulating indium phosphide single crystal
JP2572297B2 (en) Method of manufacturing semi-insulating InP single crystal substrate
JPH04108696A (en) Semi-insulating inp single crystal and its production
JPH08301697A (en) Production of semiinsulating indium-phosphorus single crystal
Imaizumi et al. Undoped semi‐insulating GaAs epitaxial layers and their characterization
JPS59136925A (en) Heat treatment of compound semiconductor