JPH11268998A - Gallium arsenic single crystal ingot, its production, and gallium arsenic single crystal wafer using the same - Google Patents

Gallium arsenic single crystal ingot, its production, and gallium arsenic single crystal wafer using the same

Info

Publication number
JPH11268998A
JPH11268998A JP7408998A JP7408998A JPH11268998A JP H11268998 A JPH11268998 A JP H11268998A JP 7408998 A JP7408998 A JP 7408998A JP 7408998 A JP7408998 A JP 7408998A JP H11268998 A JPH11268998 A JP H11268998A
Authority
JP
Japan
Prior art keywords
gaas
crystal
ingot
concentration
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7408998A
Other languages
Japanese (ja)
Inventor
Tomohiro Kawase
Makoto Kiyama
Masashi Yamashita
Hiroaki Yoshida
浩章 吉田
正史 山下
智博 川瀬
誠 木山
Original Assignee
Sumitomo Electric Ind Ltd
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Ind Ltd, 住友電気工業株式会社 filed Critical Sumitomo Electric Ind Ltd
Priority to JP7408998A priority Critical patent/JPH11268998A/en
Publication of JPH11268998A publication Critical patent/JPH11268998A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make the production of wafers suitable for the ion injection producible in a high yield by obtaining GaAs single crystal that has a low EL2 concentration and high uniformity from the top to the tail. SOLUTION: Seed crystal 3 of GaAs single crystal 3 is arranged in the lower part of the crucible 5 in the rack 8 and GaAs polycrystal is charged in the remaining space of the crucible 5 and the polycrystal are covered with B2 O3 as a sealant 4. Then, an inert gas is introduced into the air-tight vessel 10 and the pressure is adjusted to a prescribed value. The crucible is heated, with the heater 6 so that the temperature in the upper part may become more than 5 deg.C higher than the bottom temperature to melt the GaAs polycrystal. Then, the rack 8 is allowed to move downward with the lower shaft 19 to solidify the polycrystal melt 2 thereby growing a single crystal of GaAs. The resultant GaAs single crystal ingot has the EL concentration ranging of from 0.8 to 1.4×10<16> cm<-3> , the change rate of the EL2 concentration is <=10% at the top and the tail and the single crystal is homogeneous.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、GaAs単結晶インゴットおよびその製造方法ならびにそれを用いたGa
As単結晶ウエハに関するものであり、特に、集積回路やマイクロ波素子に用いられるGaAs単結晶ウエハおよび該ウエハを採取するためのGaAs単結晶インゴットならびにその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a GaAs single crystal ingot, a method of manufacturing the same, and a method of producing a Ga ingot using the same.

The present invention relates to an As single crystal wafer, and more particularly to a GaAs single crystal wafer used for integrated circuits and microwave devices, a GaAs single crystal ingot for collecting the wafer, and a method of manufacturing the same. The present invention relates to an As single crystal wafer, and more particularly to a GaAs single crystal wafer used for integrated circuits and microwave devices, a GaAs single crystal ingot for collecting the wafer, and a method of manufacturing the same.

【0002】 [0002]

【従来の技術】従来、GaAs単結晶の育成方法としては、主として液体封止引上げ法(liquid encapsulated
Czochralski method:LEC法)が用いられていた。
2. Description of the Related Art Conventionally, GaAs single crystals have been mainly grown by a liquid encapsulated pulling method (liquid encapsulated pulling method).
Czochralski method (LEC method) was used.

【0003】しかしながら、LEC法により育成された
GaAs結晶基板を集積回路やマイクロ波素子に用いた
場合、周波数分散や低周波数発振等のデバイス特性不良
が生じるという問題があった。これは、LEC法により
育成されたGaAs結晶は、EL2濃度が約1.5×1
16cm-3と高いことが原因の1つではないかと考えら
れていた。
However, when a GaAs crystal substrate grown by the LEC method is used for an integrated circuit or a microwave device, there has been a problem that device characteristics such as frequency dispersion and low-frequency oscillation occur. This is because the GaAs crystal grown by the LEC method has an EL2 concentration of about 1.5 × 1.
It was thought that one of the causes was a high value of 0 16 cm -3 . It was thought that one of the causes was a high value of 0 16 cm -3 .

【0004】また、「化合物半導体の結晶成長と評価
その3(西澤潤一編,半導体研究29,pp.3〜p
p.29)1.GaAsIC用引上結晶の量産化技術の開発」(文献1)には、LEC法により育成されたGa
As結晶における原料融液組成とEL2濃度との関係が開示されている。
In addition, "Crystal growth and evaluation of compound semiconductors"
Part 3 (Edited by Junichi Nishizawa, Semiconductor Research 29, pp.3-p
p. 29) 1. Development of Mass Production Technology for Pulled Crystals for GaAsIC ”(Reference 1) discloses that Ga grown by the LEC method is used.

The relationship between the composition of the raw material melt and the EL2 concentration in the As crystal is disclosed. The relationship between the composition of the raw material melt and the EL2 concentration in the As crystal is disclosed.

【0005】文献1によれば、原料融液のヒ素比率(A
s/(Ga+As))が0.501の場合には、EL2
濃度は得られたインゴットの全長にわたってほぼ一定である。しかしながら、ヒ素比率がこれより高いとインゴットの尾部に向かってEL2濃度が次第に高くなり、一方、ヒ素比率がこれより低いとインゴットの尾部に向かってEL2濃度が次第に低くなってしまい、インゴットの頭部と尾部との間でEL2濃度が大きく変化してしまうことが示されている。
According to Document 1, the arsenic ratio (A
When s / (Ga + As)) is 0.501, EL2

The concentration is almost constant over the entire length of the obtained ingot. However, when the arsenic ratio is higher than this, the EL2 concentration gradually increases toward the tail of the ingot, while when the arsenic ratio is lower than this, the EL2 concentration gradually decreases toward the tail of the ingot, and the head of the ingot is reduced. It is shown that the EL2 concentration changes significantly between the tail and the tail. The concentration is almost constant over the entire length of the obtained ingot. However, when the arsenic ratio is higher than this, the EL2 concentration gradually increases toward the tail of the ingot, while when the arsenic ratio is lower than this, the EL2 concentration It is shown that the EL2 concentration changes significantly between the tail and the tail. It is shown that the EL2 concentration changes significantly between the tail and the tail.

【0006】また、特開平9−8048号公報(文献2)には、GaAsウエハをウエハアニールして表面近傍をGaリッチとすることにより、素子に用いた場合に周波数分散を抑制する効果があることが開示されている。 Japanese Unexamined Patent Application Publication No. 9-8048 (Reference 2) has an effect of suppressing frequency dispersion when used in an element by annealing a GaAs wafer to make the vicinity of the surface Ga rich. It is disclosed.

【0007】一方、「Growth and properties of semi
insulating VGF-GaAs; E. Buhrig et al; Materials Sc
ience & Engineering B44(1997)pp.248
〜pp.251)(文献3)には、縦型温度傾斜法(Ve

rtical Gradient Freezing method:VGF法)により育成されたGaAs単結晶において、EL2濃度が1.3 In the GaAs single crystal grown by the rtical Gradient Freezing method (VGF method), the EL2 concentration is 1.3.
×10 16 cm -3と低濃度であったという記載がある。 There is a description that the concentration was as low as × 10 16 cm -3 . また、特開平3−122097号公報(文献4)にも、縦型ブリッジマン法(Vertical Bridgman method: VB In addition, Japanese Patent Application Laid-Open No. 3-122097 (Reference 4) also describes the Vertical Bridgman method (VB).
法)により育成されたGaAs単結晶においてEL2濃度が0.85〜1.1×10 16 cm -3であり、VGF法により育成されたGaAs単結晶においてEL2濃度が0.4〜0.66×10 16 cm -3であった、という記載がある。 The EL2 concentration of the GaAs single crystal grown by the method) is 0.85 to 1.1 × 10 16 cm -3 , and the EL2 concentration of the GaAs single crystal grown by the VGF method is 0.4 to 0.66 ×. There is a description that it was 10 16 cm -3 . On the other hand, "Growth and properties of semi On the other hand, "Growth and properties of semi
insulating VGF-GaAs; E. Buhrig et al; Materials Sc insulating VGF-GaAs; E. Buhrig et al; Materials Sc
ience & Engineering B44 (1997) pp. 248 ience & Engineering B44 (1997) pp. 248
~ Pp. 251) (Reference 3) includes a vertical temperature gradient method (Ve ~ Pp. 251) (Reference 3) includes a vertical temperature gradient method (Ve
r2 in a GaAs single crystal grown by the rtical Gradient Freezing method (VGF method). r2 in a GaAs single crystal grown by the rtical Gradient Freezing method (VGF method).
There is a statement that the concentration was as low as × 10 16 cm -3 . Also, Japanese Patent Application Laid-Open No. HEI 3-122097 (Document 4) discloses a vertical Bridgman method: VB There is a statement that the concentration was as low as × 10 16 cm -3 . Also, Japanese Patent Application Laid-Open No. HEI 3-122097 (Document 4) respectively a vertical Bridgman method: VB
Method, the EL2 concentration is 0.85 to 1.1 × 10 16 cm −3 in the GaAs single crystal grown by the method, and the EL2 concentration is 0.4 to 0.66 × in the GaAs single crystal grown by the VGF method. There was a statement that it was 10 16 cm -3 . Method, the EL2 concentration is 0.85 to 1.1 × 10 16 cm −3 in the GaAs single crystal grown by the method, and the EL2 concentration is 0.4 to 0.66 × in the GaAs single crystal grown by the VGF method. There was a statement that it was 10 16 cm -3 .

【0008】しかしながら、文献3および文献4においては、単結晶インゴットの全長にわたってそのようなE
L2濃度の低い値が得られているか否かについては、何ら記載されていない。 There is no description as to whether or not a low value of L2 concentration is obtained. [0008] However, in References 3 and 4, such an E is provided over the entire length of the single crystal ingot. [0008] However, in References 3 and 4, such an E is provided over the entire length of the single crystal ingot.
There is no description as to whether or not a low value of the L2 concentration is obtained. There is no description as to whether or not a low value of the L2 concentration is obtained.

【0009】 [0009]

【発明が解決しようとする課題】この発明の目的は、デ
バイス特性の不良の原因の1つとなり得るEL2濃度
が、低く、かつ、インゴットの頭部から尾部にわたって
均一であることにより、高い歩留りでイオン注入に適し
たウエハを得ることができる、GaAs単結晶インゴッ
トおよびその製造方法ならびにそれを用いたGaAs単
結晶ウエハを提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a device having a high yield because the EL2 concentration, which may be one of the causes of the device characteristic failure, is low and uniform from the head to the tail of the ingot. An object of the present invention is to provide a GaAs single crystal ingot, a method for manufacturing the same, and a GaAs single crystal wafer using the same, which can obtain a wafer suitable for ion implantation.

【0010】 [0010]

【課題を解決するための手段】請求項1の発明によるG
aAs単結晶インゴットは、GaAs単結晶からなるインゴットであって、インゴットの頭部から尾部までの全領域において、EL2濃度が0.8〜1.4×10 16
-3の範囲であることを特徴としている。
According to the present invention, G is provided.
The aAs single crystal ingot is an ingot made of a GaAs single crystal, and has an EL2 concentration of 0.8 to 1.4 × 10 16 c in the entire region from the head to the tail of the ingot.
m- 3 .

【0011】なお、本願明細書において、「インゴット
の頭部」とは、図1に示すように、GaAs単結晶イン
ゴット1の全長をL(cm)、GaAs単結晶インゴッ
ト1の種結晶3側端部からの長さをx(cm)としたと
き、x/L=0.1で表わされる位置をいうものとす
る。ここで、このx/L=0.1で表わされる位置は、
GaAs単結晶インゴット1の種結晶3側端部の固化率gを0としたとき、固化率g=0.1として表わすこともできる。 When the solidification rate g of the seed crystal 3 side end of the GaAs single crystal ingot 1 is 0, the solidification rate g = 0.1 can also be expressed. In the specification of the present application, the "head of the ingot" means the total length of the GaAs single crystal ingot 1 as L (cm) and the seed crystal 3 side end of the GaAs single crystal ingot 1 as shown in FIG. Assuming that the length from the part is x (cm), it means a position represented by x / L = 0.1. Here, the position represented by x / L = 0.1 is In the specification of the present application, the "head of the ingot" means the total length of the GaAs single crystal ingot 1 as L (cm) and the seed crystal 3 side end of the GaAs single crystal ingot 1 as shown in FIG. Assuming that the length from the part is x (cm), it means a position represented by x / L = 0.1. Here, the position represented by x / L = 0.1 is
When the solidification rate g at the end of the seed crystal 3 side of the GaAs single crystal ingot 1 is set to 0, the solidification rate g can be expressed as g = 0.1. When the solidification rate g at the end of the seed crystal 3 side of the GaAs single crystal ingot 1 is set to 0, the solidification rate g can be expressed as g = 0.1.

【0012】また、本願明細書において、「インゴット
の尾部」とは、x/L=0.8で表わされる位置をいう
ものとする。ここで、このx/L=0.8で表わされる
位置は、固化率g=0.8として表わすこともできる。
In the specification of the present application, the "tail of the ingot" means a position represented by x / L = 0.8. Here, the position represented by x / L = 0.8 can also be represented as a solidification ratio g = 0.8.

【0013】請求項2の発明によるGaAs単結晶イン
ゴットは、請求項1の発明の構成において、インゴット
の頭部におけるEL2濃度と、インゴットの尾部におけ
るEL2濃度との変化の割合が、10%未満であること
を特徴としている。
[0013] In the GaAs single crystal ingot according to the second aspect of the present invention, in the configuration of the first aspect of the present invention, the rate of change between the EL2 concentration at the head of the ingot and the EL2 concentration at the tail of the ingot is less than 10%. It is characterized by having.

【0014】請求項3の発明によるGaAs単結晶イン
ゴットは、請求項1または請求項2の発明の構成におい
て、GaAs単結晶の平均転位密度は10,000cm
-2未満であり、GaAs単結晶の平均残留歪み(|Sr
−St|)は1×10-5未満であり、インゴットの直径
は3インチ以上であることを特徴としている。
According to a third aspect of the present invention, there is provided a GaAs single crystal ingot according to the first or second aspect of the present invention, wherein the GaAs single crystal has an average dislocation density of 10,000 cm.
−2 , and the average residual strain of the GaAs single crystal (| Sr
−St |) is less than 1 × 10 −5 , and the diameter of the ingot is 3 inches or more.

【0015】請求項4の発明によるGaAs単結晶ウエ
ハは、GaAs単結晶からなるインゴットから採取した
ウエハであって、インゴットの頭部から尾部までの全領
域において、EL2濃度が0.8〜1.4×1016cm
-3の範囲であることを特徴としている。
A GaAs single crystal wafer according to a fourth aspect of the present invention is a wafer obtained from an ingot made of a GaAs single crystal, and has an EL2 concentration of 0.8 to 1.0 in the entire region from the head to the tail of the ingot. 4 × 10 16 cm
-3 range.

【0016】請求項5の発明によるGaAs単結晶ウエ
ハは、請求項4の発明の構成において、インゴットの頭
部におけるEL2濃度と、インゴットの尾部におけるE
L2濃度との変化の割合が、10%未満であることを特
徴としている。
According to a fifth aspect of the present invention, there is provided a GaAs single crystal wafer according to the fourth aspect of the present invention, wherein the EL2 concentration at the head of the ingot and the E2 concentration at the tail of the ingot.
The rate of change from the L2 concentration is less than 10%.

【0017】請求項6の発明によるGaAs単結晶ウエ
ハは、GaAs単結晶からなるインゴットから採取した
複数のウエハであって、複数のウエハの各々のEL2濃
度は0.8〜1.4×1016cm-3の範囲であり、複数
のウエハの互いに隣接するウエハ間でのEL2濃度の変
化の割合の平均が、0.1%未満であることを特徴とし
ている。
The GaAs single crystal wafer according to the invention of claim 6 is a plurality of wafers collected from an ingot made of GaAs single crystal, and each of the plurality of wafers has an EL2 concentration of 0.8 to 1.4 × 10 16. cm -3 , wherein the average of the rate of change in EL2 concentration between adjacent wafers of the plurality of wafers is less than 0.1%.

【0018】請求項7の発明によるGaAs単結晶ウエ
ハは、請求項4〜請求項6のいずれかの発明の構成にお
いて、GaAs単結晶の平均転位密度は10,000c
-2未満であり、GaAs単結晶の平均残留歪みは1×
10-5未満であり、ウエハの直径は3インチ以上である
ことを特徴としている。
According to a seventh aspect of the present invention, there is provided a GaAs single crystal wafer according to any one of the fourth to sixth aspects, wherein the average dislocation density of the GaAs single crystal is 10,000 c.
m −2 and the average residual strain of the GaAs single crystal is 1 ×
Less than 10 -5 , and the diameter of the wafer is 3 inches or more.

【0019】請求項8の発明によるGaAs単結晶イン
ゴットの製造方法は、頭部から尾部までの全領域におい
てEL2濃度が0.8〜1.4×1016cm-3の範囲で
あるGaAs単結晶インゴットの製造方法であって、垂
直に配置したるつぼの底部に、単結晶のGaAs化合物
からなる種結晶を配置するステップと、るつぼの残部
に、多結晶のGaAs化合物原料を配置するステップ
と、るつぼを加熱手段中に配置するステップと、加熱手
段により、るつぼの底部の温度に対してるつぼの上部の
温度が5℃以上高くなるように設定して加熱することに
より、GaAs化合物原料を溶融した後、るつぼの底部
より溶融したGaAs化合物原料を固化して、GaAs
単結晶を成長するステップと、を備えている。 It has a step of growing a single crystal. According to the method of manufacturing a GaAs single crystal ingot according to the present invention, the GaAs single crystal has an EL2 concentration of 0.8 to 1.4 × 10 16 cm -3 in the entire region from the head to the tail. A method for manufacturing an ingot, comprising: disposing a seed crystal made of a single-crystal GaAs compound on the bottom of a vertically arranged crucible; disposing a polycrystalline GaAs compound raw material on the remainder of the crucible; Disposing the GaAs compound raw material in the heating means by setting the temperature of the top of the crucible to be higher than the temperature of the bottom of the crucible by 5 ° C. or more by the heating means and heating. The GaAs compound raw material melted from the bottom of the crucible is solidified to form GaAs. According to the method of manufacturing a GaAs single crystal ingot according to the present invention, the GaAs single crystal has an EL2 concentration of 0.8 to 1.4 × 10 16 cm -3 in the entire region from the head to the tail. A method for manufacturing an ingot, comprising: disposing a seed crystal made of a single-crystal GaAs compound on the bottom of a vertically arranged crucible; disposing a similarly GaAs compound raw material on the remainder of the crucible; Disposing the GaAs compound raw material in the heating means by setting the temperature of the top of the crucible to be higher than the temperature of the bottom of the crucible by 5 ° C. or more by the heating means and heating. The GaAs compound raw material melted from the bottom of the crucible is solidified to form GaAs.
Growing a single crystal. Growing a single crystal.

【0020】 [0020]

【発明の実施の形態】図2は、本発明によるGaAs単結晶インゴットの製造に用いられる、VB法によるGa
As単結晶育成装置の一例を示す断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 is a view showing a VB method of producing a GaAs single crystal ingot according to the present invention.
It is sectional drawing which shows an example of an As single crystal growing apparatus.

【0021】図2を参照して、このGaAs単結晶育成装置100は、気密容器10と、支持台8と、ヒータ6
と、断熱材7とを備えている。 And the heat insulating material 7. 支持台8の下部には下軸19が取付けられ、結晶成長の際に支持台8を矢印の方向へ移動させることができる。 A lower shaft 19 is attached to the lower part of the support base 8, and the support base 8 can be moved in the direction of the arrow during crystal growth. また、支持台8内には、 In addition, in the support base 8,
るつぼ5が設置される。 A crucible 5 is installed. Referring to FIG. 2, this GaAs single crystal growing apparatus 100 includes an airtight container 10, a support 8 and a heater 6. 2, this GaAs single crystal growing apparatus 100 includes an airtight container 10, a support 8 and a heater 6.
And a heat insulating material 7. A lower shaft 19 is attached to a lower portion of the support 8 so that the support 8 can be moved in the direction of an arrow during crystal growth. Moreover, in the support stand 8, And a heat insulating material 7. A lower shaft 19 is attached to a lower portion of the support 8 so that the support 8 can be moved in the direction of an arrow during crystal growth. Moreover, in the support stand 8,
The crucible 5 is installed. The crucible 5 is installed.

【0022】次に、このように構成されるGaAs単結晶育成装置を用いて、GaAs単結晶インゴットを製造する方法について説明する。 Next, a method of manufacturing a GaAs single crystal ingot using the GaAs single crystal growing apparatus configured as described above will be described.

【0023】まず、るつぼ5の下部に、GaAs単結晶からなる種結晶3を配置し、続いてるつぼ5の残部にG
aAs多結晶原料を収容する。次に、GaAs多結晶原料の上に、封止剤4としてたとえばB 23を収容する。
First, a seed crystal 3 made of a GaAs single crystal is placed below the crucible 5, and G is placed on the rest of the crucible 5.

The aAs polycrystalline raw material is accommodated. Next, for example, B 2 O 3 is housed as a sealant 4 on the GaAs polycrystalline raw material. The aAs crystallite raw material is accommodated. Next, for example, B 2 O 3 is housed as a sealant 4 on the GaAs crystals raw material.

【0024】次に、気密容器10内に、Ar等の不活性ガス、またはN 2ガス等を導入し、気密容器10内を所定の圧力に調整する。 Next, an inert gas such as Ar or an N 2 gas is introduced into the hermetic container 10 to adjust the inside of the hermetic container 10 to a predetermined pressure.

【0025】続いて、GaAs多結晶原料が収容されたるつぼ5を、ヒータ6により加熱する。このようにして、GaAs多結晶原料を溶融し、原料融液2を作製する。 Subsequently, the crucible 5 containing the GaAs polycrystalline raw material is heated by the heater 6. In this way, the GaAs polycrystalline raw material is melted, and a raw material melt 2 is produced.

【0026】次に、下軸19を矢印に示すように下方へ移動させることにより、るつぼ5の底部より原料融液2
を固化して、GaAs単結晶1を成長する。
Next, the lower shaft 19 is moved downward as shown by the arrow, so that the raw material melt 2 is moved from the bottom of the crucible 5.

Is solidified to grow the GaAs single crystal 1. Is solidified to grow the GaAs single crystal 1.

【0027】ここで、GaAs多結晶原料の溶融からG
aAs単結晶成長までを通じてのヒータ6による加熱の際には、図3に示すように、るつぼ5の底部の温度は、
GaAs単結晶の融点1238℃よりもやや高いT
1 (℃)に設定され、一方、るつぼ5の上部の温度は、
1 (℃)よりもさらに高いT 2 (℃)に設定される。
この実施の形態によれば、るつぼ5の上部の温度T
2 (℃)は、るつぼ5の底部の温度T 1 (℃)よりも5
℃以上高く設定される。
Here, from melting of the GaAs polycrystalline raw material, G

At the time of heating by the heater 6 until the growth of the aAs single crystal, the temperature at the bottom of the crucible 5 is, as shown in FIG. At the time of heating by the heater 6 until the growth of the aAs single crystal, the temperature at the bottom of the crucible 5 is, as shown in FIG.
T slightly higher than the melting point of 1238 ° C. of GaAs single crystal T slightly higher than the melting point of 1238 ° C. of GaAs single crystal
1 (° C.), while the temperature at the top of crucible 5 1 (° C.), while the temperature at the top of crucible 5
T 2 (° C.) is set higher than T 1 (° C.). T 2 (° C.) is set higher than T 1 (° C.).
According to this embodiment, the temperature T of the upper part of the crucible 5 According to this embodiment, the temperature T of the upper part of the crucible 5
2 (° C.) is 5 degrees lower than the temperature T 1 (° C.) at the bottom of the crucible 5. 2 (° C.) is 5 degrees lower than the temperature T 1 (° C.) at the bottom of the crucible 5.
Set higher than ℃. Set higher than ℃.

【0028】なお、上述した例では、VB法を用いたG
aAs単結晶の成長について説明したが、本発明によるGaAs単結晶インゴットは、VGF法等の他の縦型ボート法を用いても製造することができる。 Although the growth of aAs single crystal has been described, the GaAs single crystal ingot according to the present invention can also be produced by using another vertical boat method such as the VGF method. In the above-described example, G in the VB method is used. In the above-described example, G in the VB method is used.
Although the growth of the aAs single crystal has been described, the GaAs single crystal ingot according to the present invention can also be manufactured by using another vertical boat method such as the VGF method. Although the growth of the aAs single crystal has been described, the GaAs single crystal ingot according to the present invention can also be manufactured by using another vertical boat method such as the VGF method.

【0029】このようにして得られたGaAs単結晶インゴットは、直径が3インチ以上の場合にも、平均転位密度が10,000cm -2未満であり、平均残留歪みが1×10 -5未満となる。 The GaAs single crystal ingot thus obtained has an average dislocation density of less than 10,000 cm -2 and an average residual strain of less than 1 × 10 -5 even when the diameter is 3 inches or more. Become.

【0030】また、GaAs単結晶インゴットの頭部から尾部までの全領域において、EL2濃度が0.8〜
1.4×10 16 cm -3の範囲内となる。さらに、GaA

s単結晶インゴットの頭部におけるEL2濃度と、インゴットの尾部におけるEL2濃度との変化の割合は10 s The rate of change between the EL2 concentration at the head of the single crystal ingot and the EL2 concentration at the tail of the ingot is 10.
%未満となり、EL2濃度はインゴットの全長にわたって均一となる。 Less than%, the EL2 concentration is uniform over the entire length of the ingot. Further, in the entire region from the head to the tail of the GaAs single crystal ingot, the EL2 concentration is 0.8 to 0.8. Further, in the entire region from the head to the tail of the GaAs single crystal ingot, the EL2 concentration is 0.8 to 0.8.
It is in the range of 1.4 × 10 16 cm −3 . In addition, GaA It is in the range of 1.4 × 10 16 cm −3 . In addition, GaA
The rate of change between the EL2 concentration at the head of the s single crystal ingot and the EL2 concentration at the tail of the ingot is 10 The rate of change between the EL2 concentration at the head of the s single crystal ingot and the EL2 concentration at the tail of the ingot is 10
% And the EL2 concentration is uniform over the entire length of the ingot. % And the EL2 concentration is uniform over the entire length of the ingot.

【0031】このようなGaAs単結晶インゴットから、本発明によるGaAs単結晶ウエハが得られる。 From such a GaAs single crystal ingot, a GaAs single crystal wafer according to the present invention is obtained.

【0032】以上説明したように、本願発明によるGa
As単結晶インゴットは、全長にわたってEL2濃度が均一であり、かつ、EL2濃度が低くなる。 The EL2 concentration of the As single crystal ingot is uniform over the entire length, and the EL2 concentration is low. また、本発明によるGaAs単結晶インゴットは、結晶中のストイキオメトリー(GaAs中のAsの組成割合)が安定である。 Further, the GaAs single crystal ingot according to the present invention has stable stoichiometry (composition ratio of As in GaAs) in the crystal. その結果、高い歩留りでイオン注入に適した高特性のGaAs単結晶ウエハを製造することができる。 As a result, it is possible to manufacture a GaAs single crystal wafer having high characteristics suitable for ion injection with a high yield. As described above, Ga according to the present invention is As described above, Ga according to the present invention is
In the As single crystal ingot, the EL2 concentration is uniform over the entire length, and the EL2 concentration is low. Further, the GaAs single crystal ingot according to the present invention has stable stoichiometry (composition ratio of As in GaAs) in the crystal. As a result, a GaAs single crystal wafer having high characteristics and suitable for ion implantation with a high yield can be manufactured. In the As single crystal ingot, the EL2 concentration is uniform over the entire length, and the EL2 concentration is low. Further, the GaAs single crystal ingot according to the present invention has stable stoichiometry (composition ratio of As in GaAs) in the crystal As a result, a GaAs single crystal wafer having high characteristics and suitable for ion implantation with a high yield can be manufactured.

【0033】上述したように、全長にわたりEL2濃度
が均一で、かつ、ストイキオメトリーの安定した結晶が
得られるのは、本実施の形態によれば、結晶成長におい
てVB法またはVGF法等の縦型ボート法が用いられる
ためであると考えられる。すなわち、図2に示したよう
に、結晶成長中、GaAs単結晶1が原料融液2に保護
された状態となるため、結晶からAsが飛散することが
ない。さらに、縦型ボート法においては、結晶成長中、
原料融液2が攪拌されることがないため、ストイキオメ
トリーの攪乱要因が極めて小さくなる。また、B2 3
からなる封止剤と原料融液2とが反応して酸化ガリウムが生成した場合にも、B 23からなる封止剤4と原料融液2との界面がGaAs単結晶1から距離が離れているため、GaAs単結晶1に影響を及ぼすことが少ない。 Even when the encapsulant composed of B 2 O 3 reacts with the raw material melt 2 to form gallium oxide, the interface between the encapsulant 4 composed of B 2 O 3 and the raw material melt 2 is separated from the GaAs single crystal 1. Since they are separated from each other, they have little effect on the GaAs single crystal 1. As described above, a crystal having a uniform EL2 concentration over the entire length and a stable stoichiometric crystal can be obtained according to the present embodiment by a vertical growth method such as a VB method or a VGF method in the crystal growth. This is probably because the type boat method is used. That is, as shown in FIG. 2, the GaAs single crystal 1 is protected by the raw material melt 2 during the crystal growth, so that As does not scatter from the crystal. Furthermore, in the vertical boat method, during crystal growth, As described above, a crystal having a uniform EL2 concentration over the entire length and a stable stoichiometric crystal can be obtained according to the present embodiment by a vertical growth method such as a VB method or a VGF method in the crystal growth. This is probably Because the type boat method is used. That is, as shown in FIG. 2, the GaAs single crystal 1 is protected by the raw material melt 2 during the crystal growth, so that As does not scatter from the crystal. Further, in the vertical boat method, during crystal growth,
Since the raw material melt 2 is not agitated, disturbance factors in stoichiometry are extremely reduced. In addition, B 2 O 3 Since the raw material melt 2 is not agitated, disturbance factors in stoichiometry are extremely reduced. In addition, B 2 O 3
In the case where gallium oxide is generated by reacting the sealing agent composed of and the raw material melt 2, the interface between the sealing agent 4 composed of B 2 O 3 and the raw material melt 2 has a distance from the GaAs single crystal 1. Since they are far apart, they hardly affect the GaAs single crystal 1. In the case where gallium oxide is generated by reacting the sealing agent composed of and the raw material melt 2, the interface between the sealing agent 4 composed of B 2 O 3 and the raw material melt 2 has a distance from the GaAs single crystal 1 . Since they are far apart, they hardly affect the GaAs single crystal 1.

【0034】さらに、この実施の形態によれば、るつぼ
の底部の温度に対してるつぼの上部の温度が5℃以上高
くなるように設定して加熱しているため、原料融液2に
おける自然対流が一層抑制される。そのため、インゴッ
トの全長にわたって、EL2濃度が均一になるものと考
えられる。
Further, according to this embodiment, since the temperature at the top of the crucible is set so as to be higher than the temperature at the bottom of the crucible by 5 ° C. or more, the natural convection in the raw material melt 2 is achieved. Is further suppressed. Therefore, it is considered that the EL2 concentration becomes uniform over the entire length of the ingot.

【0035】次に、比較のため、従来のLEC法を用いたGaAs単結晶の育成方法について説明する。 Next, for comparison, a method of growing a GaAs single crystal using the conventional LEC method will be described.

【0036】図4は、従来のLEC法によるGaAs単結晶育成装置の一例を示す断面図である。 FIG. 4 is a sectional view showing an example of a conventional GaAs single crystal growing apparatus by the LEC method.

【0037】図4を参照して、このGaAs単結晶育成
装置200は、気密容器20と、支持台8と、引上げ軸
39と、ヒータ6と、断熱材7とを備えている。支持台
8の下部には、下軸19が取付けられている。下軸19
および引上げ軸39はいずれも、矢印に示すように回転
しながら上下方向へ自由に駆動させることができる。ま
た、支持台8内には、るつぼ5が設置される。
Referring to FIG. 4, the GaAs single crystal growing apparatus 200 includes an airtight container 20, a support 8, a pulling shaft 39, a heater 6, and a heat insulating material 7. A lower shaft 19 is attached to a lower portion of the support base 8. Lower shaft 19
Each of the pulling shafts 39 can be freely driven in the vertical direction while rotating as shown by the arrows. Further, the crucible 5 is installed in the support base 8. Each of the pulling shafts 39 can be freely driven in the vertical direction while rotating as shown by the arrows. Further, the crucible 5 is installed in the support base 8.

【0038】次に、このように構成されるGaAs単結晶育成装置を用いて、GaAs単結晶インゴットを製造する方法について説明する。 Next, a method of manufacturing a GaAs single crystal ingot using the GaAs single crystal growing apparatus thus configured will be described.

【0039】まず、るつぼ5内に、GaAs多結晶原料
を収容する。GaAs多結晶原料としては、GaAs多
結晶の他に、少なくともGaおよびAsの一つを含んで
もよい。次に、GaAs多結晶原料の上に、液体封止剤
として、たとえばB2 3 を収容する。
First, a GaAs polycrystalline raw material is accommodated in the crucible 5. The GaAs polycrystalline raw material may include at least one of Ga and As in addition to the GaAs polycrystal. Next, for example, B 2 O 3 is housed as a liquid sealant on the GaAs polycrystalline raw material.

【0040】次に、気密容器20内に、Ar等の不活性ガス、またはN 2ガス等を導入し、気密容器20内を所定の圧力に調整する。 Next, an inert gas such as Ar or N 2 gas is introduced into the hermetic container 20 to adjust the inside of the hermetic container 20 to a predetermined pressure.

【0041】続いて、GaAs多結晶原料が収容されたるつぼ5をヒータ6により加熱し、GaAs多結晶原料を溶融して、原料融液2を作製する。 Subsequently, the crucible 5 containing the GaAs polycrystalline raw material is heated by the heater 6 to melt the GaAs polycrystalline raw material to produce a raw material melt 2.

【0042】次に、下方先端部にGaAs単結晶からな
る種結晶3が取付けられた引上げ軸39を、原料融液2
に浸漬する。続いて、引上げ軸39を矢印に示すように
回転させながら上方へ引上げることにより、種結晶3側
から原料融液2を固化して、GaAs単結晶1を成長す
る。なお、結晶成長中は、下軸29を矢印に示すように
回転させることにより、原料融液2を攪拌させる。
Next, a pulling shaft 39 having a seed crystal 3 made of a GaAs single crystal attached to a lower end portion is moved to the raw material melt 2.
Soak in Subsequently, the raw material melt 2 is solidified from the side of the seed crystal 3 by rotating the pulling shaft 39 as shown by the arrow, thereby growing the GaAs single crystal 1. During crystal growth, the raw material melt 2 is stirred by rotating the lower shaft 29 as shown by the arrow. Soak in gradually, the raw material melt 2 is solidified from the side of the seed crystal 3 by rotating the pulling shaft 39 as shown by the arrow, thereby growing the GaAs single crystal 1. During crystal growth, the raw material melt 2 is stirred by rotating the lower shaft 29 as shown by the arrow.

【0043】このようにして得られたGaAs単結晶インゴットは、直径が3インチ以上の場合、平均転位密度が10,000cm -2以上、典型的には40,000〜
80,000cm -2であり、平均残留歪みが1.0×1

-5以上、典型的には、1.0〜2.0×10 -5となる。 It is 0 -5 or more, typically 1.0 to 2.0 × 10 -5 . The GaAs single crystal ingot obtained as described above has an average dislocation density of 10,000 cm -2 or more, typically 40,000 to 400, when the diameter is 3 inches or more. The GaAs single crystal ingot obtained as described above has an average dislocation density of 10,000 cm -2 or more, typically 40,000 to 400, when the diameter is 3 inches or more.
80,000 cm -2 and an average residual strain of 1.0 × 1 80,000 cm -2 and an average residual strain of 1.0 × 1
0 -5 or more, typically 1.0 to 2.0 × 10 -5 . 0 -5 or more, typically 1.0 to 2.0 x 10 -5 .

【0044】また、GaAs単結晶インゴットの頭部から尾部にわたって均一なEL2濃度が得られる条件で結晶成長を行なうと、結果的にEL2濃度は1.5×10
16 cm -3近辺に制約されてしまう。 It is restricted to around 16 cm -3 . すなわち、EL2濃度が1.5×10 16 cm -3より高くなる条件で結晶成長を行なった場合には、GaAs単結晶インゴットの頭部から尾部に向かってEL2濃度が次第に高くなってしまう。 That is, when the crystal growth is performed under the condition that the EL2 concentration is higher than 1.5 × 10 16 cm -3 , the EL2 concentration gradually increases from the head to the tail of the GaAs single crystal ingot. 一方、EL2濃度が1.5×10 16 cm -3より低くなる条件で結晶成長を行なった場合には、GaAs単結晶インゴットの頭部から尾部に向かってEL2濃度が低くなってしまう。 On the other hand, when the crystal growth is performed under the condition that the EL2 concentration is lower than 1.5 × 10 16 cm -3 , the EL2 concentration becomes lower from the head to the tail of the GaAs single crystal ingot. When a crystal is grown under the condition that a uniform EL2 concentration is obtained from the head to the tail of the GaAs single crystal ingot, the EL2 concentration becomes 1.5 × 10 When a crystal is grown under the condition that a uniform EL2 concentration is obtained from the head to the tail of the GaAs single crystal ingot, the EL2 concentration becomes 1.5 × 10
It is restricted to around 16 cm -3 . That is, when crystal growth is performed under the condition that the EL2 concentration is higher than 1.5 × 10 16 cm −3 , the EL2 concentration gradually increases from the head to the tail of the GaAs single crystal ingot. On the other hand, when crystal growth is performed under the condition that the EL2 concentration is lower than 1.5 × 10 16 cm −3 , the EL2 concentration decreases from the head to the tail of the GaAs single crystal ingot. It is restricted to around 16 cm -3 . That is, when crystal growth is performed under the condition that the EL2 concentration is higher than 1.5 x 10 16 cm −3 , the EL2 concentration gradually increases from the head to the tail of the GaAs On the other hand, when crystal growth is performed under the condition that the EL2 concentration is lower than 1.5 × 10 16 cm −3 , the EL2 concentration decreases from the head to the tail of the GaAs single crystal ingot.

【0045】このように、従来のLEC法を用いた場合
には、GaAs単結晶インゴットの頭部と尾部との間で
EL2濃度の変化の割合が大きくなってしまうととも
に、結晶中のストイキオメトリーも不安定となりやす
い。これは、LEC法を用いた場合、図4に示したよう
に、成長したGaAs単結晶1はB2 3 4より上方に
出てしまうため、不活性ガス雰囲気下においてこの部分
から解離圧の高いAsが抜けてしまうためと考えられ
る。また、LEC法においては、上述したように結晶成
長中に原料融液2が攪拌されるため、ストイキオメトリ
ーの攪乱要因が大きくなる。さらに、封止剤としてのB
23 4と原料融液2とが反応して酸化ガリウムが生成した場合、B 23 4と原料融液2との界面がGaAs When 2 O 3 4 reacts with the raw material melt 2 to form gallium oxide, the interface between B 2 O 3 4 and the raw material melt 2 is GaAs.
単結晶1と比較的近い位置にあるため、GaAs単結晶1に影響を及ぼしやすいと考えられる。 Since it is located relatively close to the single crystal 1, it is considered that it easily affects the GaAs single crystal 1. As described above, when the conventional LEC method is used, the rate of change of the EL2 concentration between the head and the tail of the GaAs single crystal ingot becomes large, and the stoichiometry in the crystal becomes small. Also tends to be unstable. This is because, when the LEC method is used, the grown GaAs single crystal 1 comes out above B 2 O 3 4 as shown in FIG. It is considered that high As escapes. Further, in the LEC method, since the raw material melt 2 is stirred during the crystal growth as described above, a disturbance factor in stoichiometry increases. Further, B as a sealant As described above, when the conventional LEC method is used, the rate of change of the EL2 concentration between the head and the tail of the GaAs single crystal ingot becomes large, and the stoichiometry in the crystal becomes small. Also tends to be unstable. This is because, when the LEC method is used, the grown GaAs single crystal 1 comes out above B 2 O 3 4 as shown in FIG. It is considered that high As escapes. Further, in the LEC method, since the raw material melt 2 is stirred during the crystal growth as described above, a disturbance factor in stoichiometry increases. Further, B as a sealant
2 O 3 4 of the raw material melt 2 and react if gallium oxide is generated, the interface between the B 2 O 3 4 of the raw material melt 2 is GaAs 2 O 3 4 of the raw material melt 2 and react if gallium oxide is generated, the interface between the B 2 O 3 4 of the raw material melt 2 is GaAs
It is considered that the GaAs single crystal 1 is likely to be affected since it is located relatively close to the single crystal 1. It is considered that the GaAs single crystal 1 is likely to be affected since it is located relatively close to the single crystal 1.

【0046】 [0046]

【実施例】(実施例1)図2に示すVB法によるGaA
s単結晶育成装置を用いて、以下のように直径3インチのGaAs単結晶インゴットを作製した。
(Example 1) GaAs by the VB method shown in FIG.
Using an s single crystal growing apparatus, a GaAs single crystal ingot having a diameter of 3 inches was produced as follows.

【0047】まず、pBN(熱分解窒化ホウ素)製るつ
ぼの下部に、GaAs単結晶からなる種結晶を配置し
た。続いて、るつぼ中に、GaAs原料として、As/
(Ga+As)の組成比割合を0.500の条件として
予め合成したGaAs多結晶と、封止剤として、B2
3 を充填した。したがって、この例において、GaAs
原料全体のAs/(Ga+As)の組成比割合は、0.
500であった。
First, a seed crystal made of a GaAs single crystal was placed under a crucible made of pBN (pyrolytic boron nitride). Subsequently, As /
A GaAs polycrystal previously synthesized under the condition that the composition ratio of (Ga + As) is 0.500, and B 2 O as a sealant
3 was filled. Therefore, in this example, GaAs
The composition ratio of As / (Ga + As) in the entire raw material is 0.1%. The composition ratio of As / (Ga + As) in the entire raw material is 0.1%.
500. 500.

【0048】次に、GaAs原料とB 23とが充填されたるつぼを、石英アンプル内に真空封入した。るつぼをヒータにより加熱することにより、GaAs多結晶原料を溶融して原料融液を作製し、原料融液の表面をB 2
3からなる液体封止剤により液封した。
Next, the crucible filled with the GaAs material and B 2 O 3 was vacuum-sealed in a quartz ampoule. By heating the crucible with a heater, the GaAs polycrystalline raw material is melted to produce a raw material melt, and the surface of the raw material melt is treated with B 2.
The liquid was sealed with a liquid sealant made of O 3 .

【0049】続いて、下軸を下方へ移動させることによ
り、るつぼの底部より原料融液を固化して、GaAs単
結晶を成長した。
Subsequently, by moving the lower axis downward, the raw material melt was solidified from the bottom of the crucible to grow a GaAs single crystal.

【0050】なお、原料融液の作製からGaAs単結晶成長までを通じてのヒータによる加熱の際には、るつぼの上部の温度がるつぼの底部の温度よりも10℃高くなるような条件に設定した。 In the heating by the heater from the production of the raw material melt to the growth of the GaAs single crystal, conditions were set such that the temperature at the top of the crucible was higher by 10 ° C. than the temperature at the bottom of the crucible.

【0051】(実施例2)GaAs原料として、実施例1において予め合成したGaAs多結晶(As/(Ga
+As)=0.500)に加えて、過剰のGaを用いた。 In addition to + As) = 0.500), excess Ga was used. したがって、この例において、GaAs原料全体のAs/(Ga+As)の組成比割合は、0.480であった。 Therefore, in this example, the composition ratio ratio of As / (Ga + As) in the entire GaAs raw material was 0.480. 原料が充填されたるつぼを高圧チャンバ内に配置してN 2ガス圧力10気圧の下でカーボンヒータの温度を調整し、るつぼの上部の温度がるつぼの底部の温度よりも40℃高くなるような条件に設定して、GaAs単結晶を成長した。 A crucible filled with raw materials is placed in a high pressure chamber and the temperature of the carbon heater is adjusted under an N 2 gas pressure of 10 atm so that the temperature at the top of the crucible is 40 ° C higher than the temperature at the bottom of the crucible. A GaAs single crystal was grown under the conditions. このようにして、実施例1と同様に、 In this way, as in Example 1,
直径3インチのGaAs単結晶インゴットを作製した。 A GaAs single crystal ingot with a diameter of 3 inches was produced. (Example 2) As a GaAs raw material, a GaAs polycrystal (As / (Ga (Example 2) As a GaAs raw material, a GaAs polycrystal (As / (Ga)
+ As) = 0.500), and excess Ga was used. Therefore, in this example, the composition ratio of As / (Ga + As) in the whole GaAs raw material was 0.480. The crucible filled with the raw material is placed in a high pressure chamber, and the temperature of the carbon heater is adjusted under N 2 gas pressure of 10 atm so that the temperature at the top of the crucible is 40 ° C. higher than the temperature at the bottom of the crucible. Under these conditions, a GaAs single crystal was grown. Thus, similarly to the first embodiment, + As) = 0.500), and excess Ga was used. Therefore, in this example, the composition ratio of As / (Ga + As) in the whole GaAs raw material was 0.480. The crucible filled with the raw material is placed in a high pressure chamber, and the temperature of the carbon heater is adjusted under N 2 gas pressure of 10 atm so that the temperature at the top of the crucible is 40 ° C. higher than the temperature at the bottom of the crucible. Under these conditions , a GaAs single crystal was grown. Thus, similarly to the first embodiment,
A GaAs single crystal ingot having a diameter of 3 inches was produced. A GaAs single crystal ingot having a diameter of 3 inches was produced.

【0052】なお、他の製造条件については、実施例1
と全く同様であるので、その説明は省略する。
For other manufacturing conditions, see Example 1.
The description is omitted because it is completely the same.

【0053】(比較例)図4に示すLEC法によるGa
As単結晶育成装置を用いて、直径3インチのGaAs
単結晶インゴットを作製した。
(Comparative Example) Ga according to the LEC method shown in FIG.
3 inch diameter GaAs using As single crystal growing equipment
A single crystal ingot was produced.

【0054】本比較例では、GaとAsとをるつぼに収容し、チャンバ内でのGaとAsとの反応によりGaA
s原料を作製し、溶融後に引き続き、単結晶成長を開始する方式を採った。GaAs原料全体のAs/(Ga+
As)の組成比割合が0.488、0.501、0.5

12の3条件で、それぞれインゴットの作製を実施した。 Ingots were prepared under each of the three conditions of 12. In this comparative example, Ga and As were accommodated in a crucible, and GaAs was reacted by Ga and As in the chamber. In this comparative example, Ga and As were accommodated in a crucible, and GaAs was reacted by Ga and As in the chamber.
An s raw material was prepared, and after melting, a method of starting single crystal growth was adopted. As / (Ga + An s raw material was prepared, and after melting, a method of starting single crystal growth was adopted. As / (Ga +
As) having a composition ratio of 0.488, 0.501, 0.5 As) having a composition ratio of 0.488, 0.501, 0.5
Under the three conditions of 12, each ingot was manufactured. Under the three conditions of 12, each ingot was manufactured.

【0055】(評価)上述のようにして得られたGaA
s単結晶インゴットについて、EL2濃度、平均転位密度、平均残留歪み、および比抵抗を測定した。
(Evaluation) GaAs obtained as described above
For the s single crystal ingot, the EL2 concentration, the average dislocation density, the average residual strain, and the specific resistance were measured.

【0056】以下の表1に、実施例1、実施例2、およ
び比較例のGaAs単結晶インゴットについて測定し
た、インゴット頭部(固化率g=0.1)におけるEL
2濃度(cm-3)、インゴット尾部(固化率g=0.
8)におけるEL2濃度(cm -3 )、インゴット頭部におけるEL2濃度とインゴット尾部におけるEL2濃度との変化の割合(尾部のEL2濃度/頭部のEL2濃度)、平均転位密度(cm -2 )、および平均残留歪みを示す。 EL2 concentration in 8) (cm- 3 ), rate of change between EL2 concentration in the ingot head and EL2 concentration in the ingot tail (EL2 concentration in the tail / EL2 concentration in the head), average dislocation density (cm- 2 ), And the average residual strain. なお、いずれのインゴットについても、室温での比抵抗は1.0×10 7 (Ω・cm)以上となり、半絶縁性を示した。 Note that none of the ingot, the resistivity at room temperature becomes 1.0 × 10 7 (Ω · cm ) or more, showed semi-insulating. Table 1 below shows the EL at the ingot head (solidification ratio g = 0.1) measured for the GaAs single crystal ingots of Example 1, Example 2, and Comparative Example. Table 1 below shows the EL at the ingot head (solidification ratio g = 0.1) measured for the GaAs single crystal ingots of Example 1, Example 2, and Comparative Example.
2 concentration (cm -3 ), ingot tail (solidification rate g = 0. 2 concentration (cm -3 ), ingot tail (solidification rate g = 0.
EL2 concentration of 8) (cm -3), EL2 concentration of EL2 concentration / head ratio (tail change between EL2 concentration in EL2 concentration and the ingot tail of the ingot head), the average dislocation density (cm -2), And average residual strain. In addition, each of the ingots had a specific resistance at room temperature of 1.0 × 10 7 (Ω · cm) or more and exhibited semi-insulating properties. EL2 concentration of 8) (cm -3), EL2 concentration of EL2 concentration / head ratio (tail change between EL2 concentration in EL2 concentration and the ingot tail of the ingot head), the average dislocation density (cm -2), And average residual strain. In addition, each of the ingots had a specific resistance at room temperature of 1.0 × 10 7 (Ω · cm) or more and exhibited semi-insulating properties.

【0057】また、各インゴットについて、切断、研磨により、インゴットの頭部(固化率g=0.1)から尾部(固化率g=0.8)の間で、合計80枚の鏡面研磨ウエハを採取した。 For each ingot, a total of 80 mirror-polished wafers were cut and polished between the head (solidification ratio g = 0.1) and the tail (solidification ratio g = 0.8) of the ingot. Collected.

【0058】インゴットの頭部および尾部で測定したE
L2濃度から、一続きのウエハの中の互いに隣接するウエハ間でのEL2濃度の変化の割合の平均は、以下の式(1)で見積ることができる。
E measured at the head and tail of the ingot
From the L2 concentration, the average of the rate of change of the EL2 concentration between adjacent wafers in a series of wafers can be estimated by the following equation (1).

【0059】 ([EL2] B /[EL2] F1/n …(1) ここで、nは1つのインゴットから採取したウエハの枚数を、[EL2] Fはインゴットの頭部(固化率g=
0.1)でのEL2濃度(cm -3 )を、[EL2] Bはインゴットの尾部(固化率g=0.8)でのEL2濃度(cm -3 )を、それぞれ示している。 The EL2 concentration (cm -3) in 0.1), [EL2] B is the tail of the ingot (EL2 concentration in solidification rate g = 0.8) (cm -3) , respectively show. ([EL2] B / [EL2] F ) 1 / n (1) where n is the number of wafers collected from one ingot, and [EL2] F is the head of the ingot (solidification rate g = ([EL2] B / [EL2] F ) 1 / n (1) where n is the number of wafers collected from one ingot, and [EL2] F is the head of the ingot (solidification rate g =
The EL2 concentration (cm -3) in 0.1), [EL2] B is the tail of the ingot (EL2 concentration in solidification rate g = 0.8) (cm -3) , respectively show. The EL2 concentration (cm -3) in 0.1), [EL2] B is the tail of the ingot (EL2 concentration in solidification rate g = 0.8) (cm -3) , respectively show.

【0060】上記式(1)に従い、実施例1、実施例2、および比較例のインゴットの各々から得られた80
枚のウエハについて、互いに隣接するウエハ間でのEL

2濃度の変化の割合の平均を求めた。 The average of the rate of change in the two concentrations was calculated. その値を、表1に併せて示す。 The values ​​are also shown in Table 1. According to the above formula (1), 80 obtained from each of the ingots of Example 1, Example 2, and Comparative Example was obtained. According to the above formula (1), 80 obtained from each of the ingots of Example 1, Example 2, and Comparative Example was obtained.
EL between two adjacent wafers EL between two adjacent wafers
The average of the rate of change of the two concentrations was determined. The values are also shown in Table 1. The average of the rate of change of the two concentrations was determined. The values ​​are also shown in Table 1.

【0061】 [0061]

【表1】 [Table 1]

【0062】なお、上記表1には示していないが、実施例2のGaAs単結晶インゴットにおいて、固化率g≧
0.9(x/L≧0.9)で表わされる部分についてはEL2濃度の低下が見られ、固化率g=0.92(x/

L=0.92)で表わされる位置におけるEL2濃度は、0.6×10 16 cm -3まで低下していた。 The EL2 concentration at the position represented by L = 0.92) decreased to 0.6 × 10 16 cm -3 . Although not shown in Table 1, in the GaAs single crystal ingot of Example 2, the solidification rate g ≧ Although not shown in Table 1, in the GaAs single crystal ingot of Example 2, the solidification rate g ≧
For the portion represented by 0.9 (x / L ≧ 0.9), the EL2 concentration was reduced, and the solidification rate g = 0.92 (x / L For the portion represented by 0.9 (x / L ≧ 0.9), the EL2 concentration was reduced, and the solidification rate g = 0.92 (x / L)
L = 0.92), the EL2 concentration was reduced to 0.6 × 10 16 cm −3 . L = 0.92), the EL2 concentration was reduced to 0.6 × 10 16 cm −3 .

【0063】また、図5は、実施例1、実施例2および比較例のGaAs単結晶インゴットについて、インゴットの位置とEL2濃度との関係を示す図である。図5において、横軸は固化率gを示し、縦軸はEL2濃度(c
-3 )を示している。 It shows m -3 ). FIG. 5 is a diagram showing the relationship between the ingot position and the EL2 concentration for the GaAs single crystal ingots of Example 1, Example 2, and Comparative Example. In FIG. 5, the horizontal axis represents the solidification rate g, and the vertical axis represents the EL2 concentration (c FIG. 5 is a diagram showing the relationship between the ingot position and the EL2 concentration for the GaAs single crystal ingots of Example 1, Example 2, and Comparative Example. In FIG. 5, the horizontal axis represents the solidification rate g, and the vertical axis represents the EL2 concentration (c
m -3 ). m -3 ).

【0064】次に、実施例1、実施例2および比較例のGaAs単結晶インゴットからGaAs単結晶ウエハを採取し、これを用いてMES−FET(metal-semicond
uctor FET)を作製した。
Next, GaAs single crystal wafers were sampled from the GaAs single crystal ingots of Example 1, Example 2 and Comparative Example, and used for MES-FET (metal-semicondone).
uctor FET).

【0065】MES−FETは、埋め込みp型層を有する自己整合型LDD構造であり、ゲート長は0.8μm
とした。
The MES-FET has a self-aligned LDD structure having a buried p-type layer, and has a gate length of 0.8 μm.
And

【0066】図6および図7は、それぞれ実施例1および比較例のGaAs単結晶インゴットから採取したGa
As単結晶ウエハを用いたMES−FETにおけるドレインコンダクタンス(gd)周波数分散を示す図である。
FIGS. 6 and 7 show the Ga sampled from the GaAs single crystal ingots of Example 1 and Comparative Example, respectively.

It is a figure which shows the drain conductance (gd) frequency dispersion in the MES-FET using an As single crystal wafer. It is a figure which shows the drain conductance (gd) frequency dispersion in the MES-FET using an As single crystal wafer.

【0067】ゲート電圧(Vgs)が0Vの状態でドレイン直流電圧(Vds)2.0V上に交流成分(ΔVd
s)0.2Vを載せたときの負荷抵抗(R L )に発生する交流電圧ΔVoutを縦軸に、印加周波数を横軸に示している。周波数は、10〜20kHzの範囲で測定した。gdは、以下の式(2)で表わされる。
When the gate voltage (Vgs) is 0 V, an AC component (ΔVd) is added to the drain DC voltage (Vds) 2.0 V.

s) The AC voltage ΔVout generated in the load resistance ( RL ) when 0.2 V is applied is shown on the vertical axis, and the applied frequency is shown on the horizontal axis. The frequency was measured in the range of 10 to 20 kHz. gd is represented by the following equation (2). s) The AC voltage ΔVout generated in the load resistance ( RL ) when 0.2 V is applied is shown on the vertical axis, and the applied frequency is shown on the horizontal axis. The frequency was measured in the range of 10 to 20 kHz. gd is represented by the following equation (2).

【0068】 gd=(1/R L )(ΔVout/ΔVds) …(2) 周波数分散の度合いを、低周波平坦部gd(10Hz,
373K)と高周波平坦部gd(10kHz,298
K)との比であるgd(10kHz,298K)/gd
(10kHz,373K)で定義する。
Gd = (1 / R L ) (ΔVout / ΔVds) (2) The degree of frequency dispersion is determined by changing the low-frequency flat part gd (10 Hz,
373K) and a high frequency flat portion gd (10 kHz, 298
Gd (10 kHz, 298 K) / gd

(10 kHz, 373 K). (10 kHz, 373 K).

【0069】図6および図7から明らかなように、比較例のGaAs単結晶インゴットから採取したGaAs単結晶ウエハを用いた場合、周波数分散の度合いは1.8
0であったのに対し、実施例1のGaAs単結晶インゴットから採取したGaAs単結晶ウエハを用いた場合、
周波数分散の度合いは1.66と小さかった。これは、
実施例1のGaAs単結晶インゴットにおいて、EL2
濃度が小さいことの効果であると考えられる。
As is clear from FIGS. 6 and 7, when a GaAs single crystal wafer obtained from the GaAs single crystal ingot of the comparative example was used, the degree of frequency dispersion was 1.8.

On the other hand, when the GaAs single crystal wafer obtained from the GaAs single crystal ingot of Example 1 was used, On the other hand, when the GaAs single crystal wafer obtained from the GaAs single crystal ingot of Example 1 was used,
The degree of frequency dispersion was as small as 1.66. this is, The degree of frequency dispersion was as small as 1.66. This is,
In the GaAs single crystal ingot of Example 1, EL2 In the GaAs single crystal ingot of Example 1, EL2
This is considered to be the effect of the low concentration. This is considered to be the effect of the low concentration.

【0070】また、実施例2のGaAs単結晶インゴットから採取したGaAs単結晶ウエハを用いた場合の周波数分散の度合いは、1.50となり、さらに小さな値となることがわかった。 Further, it was found that the degree of frequency dispersion when the GaAs single crystal wafer obtained from the GaAs single crystal ingot of Example 2 was used was 1.50, which was a smaller value.

【0071】 [0071]

【発明の効果】以上説明したように、本願発明によれ
ば、デバイス特性の不良の原因の1つとなり得るEL2
濃度が、低く、かつ、頭部から尾部にわたって均一であ
ることを特徴とするGaAs単結晶インゴットが得られ
る。そのため、高い歩留りでイオン注入に適したGaA
s単結晶ウエハを製造することができる。
As described above, according to the present invention, EL2 which can be one of the causes of the failure of the device characteristics is obtained.
A GaAs single crystal ingot having a low concentration and being uniform from the head to the tail is obtained. Therefore, GaAs suitable for ion implantation with high yield
An s single crystal wafer can be manufactured.

【図面の簡単な説明】 [Brief description of the drawings]

【図1】GaAs単結晶インゴットの頭部および尾部の位置を説明するための図である。 FIG. 1 is a diagram for explaining positions of a head and a tail of a GaAs single crystal ingot.

【図2】本発明によるGaAs単結晶インゴットの製造に用いられるVB法によるGaAs単結晶育成装置の一例を示す断面図である。 FIG. 2 is a sectional view showing an example of a GaAs single crystal growing apparatus by a VB method used for manufacturing a GaAs single crystal ingot according to the present invention.

【図3】本発明によるGaAs単結晶インゴットの製造においてGaAs単結晶成長中の温度プロファイルを示す図である。 FIG. 3 is a diagram showing a temperature profile during the growth of a GaAs single crystal in the production of a GaAs single crystal ingot according to the present invention.

【図4】従来のLEC法によるGaAs単結晶育成装置の一例を示す断面図である。 FIG. 4 is a cross-sectional view showing an example of a conventional GaAs single crystal growing apparatus by the LEC method.

【図5】実施例1、実施例2、および比較例のGaAs
単結晶インゴットについてインゴットの位置とEL2濃度との関係を示す図である。 It is a figure which shows the relationship between the position of an ingot and EL2 concentration about a single crystal ingot. FIG. 5 shows GaAs of Example 1, Example 2, and Comparative Example. FIG. 5 shows GaAs of Example 1, Example 2, and Comparative Example.
It is a figure showing the relation between the position of an ingot and EL2 density about a single crystal ingot. It is a figure showing the relation between the position of an ingot and EL2 density about a single crystal ingot.

【図6】実施例1のGaAs単結晶インゴットから採取したGaAs単結晶ウエハを用いたMES−FETにおけるドレインコンダクタンス(gd)周波数分散を示す図である。 FIG. 6 is a diagram showing a drain conductance (gd) frequency dispersion in an MES-FET using a GaAs single crystal wafer taken from the GaAs single crystal ingot of Example 1.

【図7】比較例のGaAs単結晶インゴットから採取したGaAs単結晶ウエハを用いたMES−FETにおけるドレインコンダクタンス(gd)周波数分散を示す図である。 FIG. 7 is a diagram showing a drain conductance (gd) frequency dispersion in a MES-FET using a GaAs single crystal wafer taken from a GaAs single crystal ingot of a comparative example.

【符号の説明】 [Explanation of symbols]

1 GaAs単結晶 2 GaAs多結晶原料融液 3 種結晶 4 B2 3 (封止剤) 5 るつぼ 6 ヒータ 7 断熱材 8 支持台 10,20 気密容器 19,29 下軸 39 引上げ軸 100 VB法によるGaAs単結晶育成装置 200 LEC法によるGaAs単結晶育成装置1 GaAs single crystal 2 GaAs polycrystalline raw material melt 3 seed crystal 4 B 2 O 3 (sealant) 5 crucible 6 heater 7 heat insulating material 8 support table 10, 20 airtight container 19, 29, the lower shaft 39 pulling shaft 100 VB method GaAs single crystal growing device by 200 LEC method GaAs single crystal growing device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川瀬 智博 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Tomohiro Kawase 1-1-1, Koyokita, Itami-shi, Hyogo Sumitomo Electric Industries, Ltd. Itami Works

Claims (8)

    【特許請求の範囲】 [Claims]
  1. 【請求項1】 GaAs単結晶からなるインゴットであって、 前記インゴットの頭部から尾部までの全領域において、
    EL2濃度が0.8〜1.4×10 16 cm -3の範囲であることを特徴とする、GaAs単結晶インゴット。
    1. An ingot made of a GaAs single crystal, wherein in an entire region from a head to a tail of the ingot,
    A GaAs single crystal ingot, wherein the EL2 concentration is in a range of 0.8 to 1.4 × 10 16 cm −3 .
  2. 【請求項2】 前記インゴットの頭部におけるEL2濃度と、前記インゴットの尾部におけるEL2濃度との変化の割合が、10%未満であることを特徴とする、請求項1記載のGaAs単結晶インゴット。 2. The GaAs single crystal ingot according to claim 1, wherein the rate of change between the EL2 concentration at the head of the ingot and the EL2 concentration at the tail of the ingot is less than 10%.
  3. 【請求項3】 前記GaAs単結晶の平均転位密度は1
    0,000cm -2未満であり、 前記GaAs単結晶の平均残留歪みは1×10 -5未満であり、 前記インゴットの直径は3インチ以上である、請求項1

    または請求項2に記載のGaAs単結晶インゴット。 Alternatively, the GaAs single crystal ingot according to claim 2. 3. An average dislocation density of the GaAs single crystal is 1 3. An average dislocation density of the GaAs single crystal is 1
    Less than 0,000Cm -2, mean residual strain of the GaAs single crystal is less than 1 × 10 -5, the diameter of the ingot is 3 inches or more, according to claim 1 Less than 0,000Cm -2, mean residual strain of the GaAs single crystal is less than 1 × 10 -5, the diameter of the ingot is 3 inches or more, according to claim 1
    Or the GaAs single crystal ingot according to claim 2. Or the GaAs single crystal ingot according to claim 2.
  4. 【請求項4】 GaAs単結晶からなるインゴットから採取したウエハであって、 前記インゴットの頭部から尾部までの全領域において、
    EL2濃度が0.8〜1.4×10 16 cm -3の範囲であることを特徴とする、GaAs単結晶ウエハ。
    4. A wafer taken from an ingot made of a GaAs single crystal, wherein the whole region from the head to the tail of the ingot is:

    A GaAs single crystal wafer, wherein the EL2 concentration is in the range of 0.8 to 1.4 × 10 16 cm −3 . A GaAs single crystal wafer, wherein the EL2 concentration is in the range of 0.8 to 1.4 × 10 16 cm −3 .
  5. 【請求項5】 前記インゴットの頭部におけるEL2濃度と、前記インゴットの尾部におけるEL2濃度との変化の割合が、10%未満であることを特徴とする、請求項4記載のGaAs単結晶ウエハ。 5. The GaAs single crystal wafer according to claim 4, wherein the rate of change between the EL2 concentration at the head of the ingot and the EL2 concentration at the tail of the ingot is less than 10%.
  6. 【請求項6】 GaAs単結晶からなるインゴットから
    採取した複数のウエハであって、 前記複数のウエハの各々のEL2濃度は0.8〜1.4
    ×1016cm-3の範囲であり、 前記複数のウエハの互いに隣接するウエハ間でのEL2
    濃度の変化の割合の平均が、0.1%未満であることを
    特徴とする、GaAs単結晶ウエハ。
    6. A plurality of wafers collected from an ingot made of a GaAs single crystal, wherein each of the plurality of wafers has an EL2 concentration of 0.8 to 1.4.
    × 10 16 cm −3 , EL2 between adjacent ones of the plurality of wafers.
    A GaAs single crystal wafer, wherein the average of the rate of change in concentration is less than 0.1%.
  7. 【請求項7】 前記GaAs単結晶の平均転位密度は1
    0,000cm -2未満であり、 前記GaAs単結晶の平均残留歪みは1×10 -5未満であり、 前記ウエハの直径は3インチ以上である、請求項4〜請求項6のいずれかに記載のGaAs単結晶ウエハ。
    7. The GaAs single crystal has an average dislocation density of 1
    Less than 0,000Cm -2, mean residual strain of the GaAs single crystal is less than 1 × 10 -5, the diameter of the wafer is at least 3 inches, according to one of claims 4 to claim 6 GaAs single crystal wafer.
  8. 【請求項8】 頭部から尾部までの全領域においてEL
    2濃度が0.8〜1.4×10 16 cm -3の範囲である、

    GaAs単結晶インゴットの製造方法であって、 垂直に配置したるつぼの底部に、単結晶のGaAs化合物からなる種結晶を配置するステップと、 前記るつぼの残部に、多結晶のGaAs化合物原料を配置するステップと、 前記るつぼを加熱手段中に配置するステップと、 前記加熱手段により、前記るつぼの底部の温度に対して前記るつぼの上部の温度が5℃以上高くなるように設定して加熱することにより、前記GaAs化合物原料を溶融した後、前記るつぼの底部より前記溶融したGaAs A method for producing a GaAs single crystal ingot, in which a step of arranging a seed crystal composed of a single crystal GaAs compound on the bottom of a vertically arranged crucible and a polycrystalline GaAs compound raw material are arranged on the rest of the crucible. By setting the temperature of the upper part of the crucible to be 5 ° C. or more higher than the temperature of the bottom of the crucible by the step, the step of arranging the crucible in the heating means, and heating by the heating means. After melting the GaAs compound raw material, the melted GaAs from the bottom of the crucible
    化合物原料を固化して、GaAs単結晶を成長するステップと、 を備えた、GaAs単結晶インゴットの製造方法。 A method for producing a GaAs single crystal ingot, which comprises a step of solidifying a compound raw material to grow a GaAs single crystal. 8. EL in all regions from the head to the tail 8. EL in all regions from the head to the tail
    (2) the concentration is in the range of 0.8 to 1.4 × 10 16 cm −3 ; (2) the concentration is in the range of 0.8 to 1.4 × 10 16 cm −3 ;
    A method for producing a GaAs single crystal ingot, comprising: disposing a seed crystal made of a single crystal GaAs compound at the bottom of a vertically arranged crucible; and disposing a polycrystalline GaAs compound raw material at the rest of the crucible. Placing the crucible in a heating means, and heating the heating means by setting the temperature at the top of the crucible to be higher than the temperature at the bottom of the crucible by 5 ° C. or more by the heating means. , After melting the GaAs compound raw material, the molten GaAs from the bottom of the crucible. A method for producing a GaAs single crystal ingot, comprising: disposing a seed crystal made of a single crystal GaAs compound at the bottom of a vertically arranged crucible; and disposing a conventionally GaAs compound raw material at the rest of the crucible. Placing the crucible. in a heating means, and heating the heating means by setting the temperature at the top of the crucible to be higher than the temperature at the bottom of the crucible by 5 ° C. or more by the heating means., After melting the GaAs compound raw material, the molten GaAs from the bottom of the crucible.
    Solidifying the compound raw material to grow a GaAs single crystal, comprising the steps of: Solidifying the compound raw material to grow a GaAs single crystal, comprising the steps of:
JP7408998A 1998-03-23 1998-03-23 Gallium arsenic single crystal ingot, its production, and gallium arsenic single crystal wafer using the same Pending JPH11268998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7408998A JPH11268998A (en) 1998-03-23 1998-03-23 Gallium arsenic single crystal ingot, its production, and gallium arsenic single crystal wafer using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7408998A JPH11268998A (en) 1998-03-23 1998-03-23 Gallium arsenic single crystal ingot, its production, and gallium arsenic single crystal wafer using the same

Publications (1)

Publication Number Publication Date
JPH11268998A true JPH11268998A (en) 1999-10-05

Family

ID=13537115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7408998A Pending JPH11268998A (en) 1998-03-23 1998-03-23 Gallium arsenic single crystal ingot, its production, and gallium arsenic single crystal wafer using the same

Country Status (1)

Country Link
JP (1) JPH11268998A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008032628A1 (en) 2008-07-11 2010-01-28 Freiberger Compound Materials Gmbh Preparation of doped gallium arsenide single crystal, useful to produce gallium arsenide substrate wafer, comprises melting gallium arsenide starting material and subsequently making the gallium arsenide melts
US8025728B2 (en) * 2006-03-24 2011-09-27 Ngk Insulators, Ltd. Method for manufacturing single crystal of nitride
US8329295B2 (en) 2008-07-11 2012-12-11 Freiberger Compound Materials Gmbh Process for producing doped gallium arsenide substrate wafers having low optical absorption coefficient
US8771560B2 (en) 2005-07-01 2014-07-08 Freiberger Compound Materials Gmbh Process for the manufacture of doped semiconductor single crystals, and III-V semiconductor single crystal
US8906158B2 (en) 2004-08-24 2014-12-09 Sumitomo Chemical Company, Limited Method for producing compound semiconductor epitaxial substrate having PN junction
CN105405178A (en) * 2014-09-12 2016-03-16 联咏科技股份有限公司 Driving recorder and operation method thereof
WO2019053856A1 (en) * 2017-09-14 2019-03-21 住友電気工業株式会社 Gallium arsenide compound semiconductor crystal and wafer group

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8906158B2 (en) 2004-08-24 2014-12-09 Sumitomo Chemical Company, Limited Method for producing compound semiconductor epitaxial substrate having PN junction
US8771560B2 (en) 2005-07-01 2014-07-08 Freiberger Compound Materials Gmbh Process for the manufacture of doped semiconductor single crystals, and III-V semiconductor single crystal
US8025728B2 (en) * 2006-03-24 2011-09-27 Ngk Insulators, Ltd. Method for manufacturing single crystal of nitride
DE102008032628A1 (en) 2008-07-11 2010-01-28 Freiberger Compound Materials Gmbh Preparation of doped gallium arsenide single crystal, useful to produce gallium arsenide substrate wafer, comprises melting gallium arsenide starting material and subsequently making the gallium arsenide melts
JP2011527280A (en) * 2008-07-11 2011-10-27 フライベルガー・コンパウンド・マテリアルズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングFreiberger Compound Materials Gmbh Method for manufacturing a doped gallium arsenide substrate wafer having a low light absorption coefficient
US8329295B2 (en) 2008-07-11 2012-12-11 Freiberger Compound Materials Gmbh Process for producing doped gallium arsenide substrate wafers having low optical absorption coefficient
CN105405178A (en) * 2014-09-12 2016-03-16 联咏科技股份有限公司 Driving recorder and operation method thereof
WO2019053856A1 (en) * 2017-09-14 2019-03-21 住友電気工業株式会社 Gallium arsenide compound semiconductor crystal and wafer group

Similar Documents

Publication Publication Date Title
Baldini et al. Recent progress in the growth of β-Ga2O3 for power electronics applications
Gault et al. A novel application of the vertical gradient freeze method to the growth of high quality III–V crystals
JP4647525B2 (en) Method for producing group III nitride crystal
KR101030099B1 (en) Indium phosphide substrate, indium phosphide single crystal and process for producing them
JP4100228B2 (en) Silicon carbide single crystal and manufacturing method thereof
Kimoto Bulk and epitaxial growth of silicon carbide
US9856582B2 (en) SiC single crystal and production method thereof
US7279040B1 (en) Method and apparatus for zinc oxide single crystal boule growth
USRE41551E1 (en) Method of preparing group III-V compound semiconductor crystal
US7211142B2 (en) CdTe single crystal and CdTe polycrystal, and method for preparation thereof
US20120282133A1 (en) Crystal growth apparatus and method
KR101451995B1 (en) Process for producing ZnO single crystal according to method of liquid phase growth
JP5068423B2 (en) Silicon carbide single crystal ingot, silicon carbide single crystal wafer, and manufacturing method thereof
Szeles et al. Advances in the crystal growth of semi-insulating CdZnTe for radiation detector applications
US7520930B2 (en) Silicon carbide single crystal and a method for its production
US9074298B2 (en) Processes for production of silicon ingot, silicon wafer and epitaxial wafer, and silicon ingot
JP4908730B2 (en) Manufacturing method of high resistance silicon single crystal
EP1782454A4 (en) Low-doped semi-insulating sic crystals and method
EP1739210B1 (en) Method for production of doped semiconductor single crystal, and III-V semiconductor single crystal
JP2004099340A (en) Seed crystal for silicon carbide single crystal growth, silicon carbide single crystal ingot and method of manufacturing the same
US6849121B1 (en) Growth of uniform crystals
US4303464A (en) Method of manufacturing gallium phosphide single crystals with low defect density
US4040895A (en) Control of oxygen in silicon crystals
EP2659030B1 (en) Method of manufacturing silicon single crystal and silicon single crystal
GB2108404A (en) Doping ga/as single crystal with boron

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041020

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070118

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Effective date: 20071119

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080129